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Abstract Given 2-factors R and S of order n, let r and s be nonnegative
integers with r + s = [251], the Hamilton-Waterloo problem asks for a 2-
factorization of K, if n is odd, or of K, — I if n is even, in which r of its
2-factors are isomorphic to R and the other s 2-factors are isomorphic to S. In
this paper, we solve the problem for the case of triangle-factors and heptagon-

factors for odd n with 3 possible exceptions when n = 21.
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1 Introduction

A decomposition of a graph G is a collection of edge-disjoint subgraphs such
that every edge of G belongs to exactly one of the subgraphs. A subgraph F' of
a graph G is a factor if F' contains all the vertices of G, if each component of F'
is isomorphic to a graph H, then F is called an H-factor of G, while if F is a
d-regular graph, then we call F' a d-factor. A Cg-factor is a 2-factor consisting
entirely of cycles of length k. A factorization of a graph G is a decomposition
of G such that each subgraph is a factor, if the factors are all 2-factors then it
is called a 2-factorization. An {H{™, H3",..., H;"* }-factorization of a graph
G is a factorization of GG in which there are precisely m; H;-factors. If such a
factorization exists, we say that (G; H{"*, Hy"?, ..., H;"") exists.
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Given 2-factors R and S of oder n, let r and s be nonnegative integers with
r4+s = L%J, the Hamilton-Waterloo problem asks for a 2-factorization of
the complete graph K,, if n is odd, or K,, — I if n is even, in which r of its
2-factors are isomorphic to R and the other s 2-factors are isomorphic to 5,
where [ is a 1-factor. The goal of the problem is to determine the spectrum of
r (or s) for all possible n, i.e. the set of r (or s) such that the corresponding
2-factorization of K, or k, — I exists. If R is a C,,-factor and S is a Cp-
factor, i.e. each 2-factor is uniform, then such a 2-factorization is denoted by
HW (n;r, s;m, k).

The uniform cases of the Hamilton-Waterloo problem have attracted much
attention in the last decade. The existence of HW (n;r, s; m, k) has been settled
when = 0 or s = 0 in [2|B[10]. So we only discuss the case rs # 0 in this

paper.
Theorem 1 [2[3[10] Let n > 3 and m > 3. Let G = K, if n is odd, G =

K, — I if n is even. Then (G; C’#:TAJ) exists if and only if n = 0 (mod m)
and (n,m) ¢ {(6,3), (12,3)}.

Adams et al. [I] dealt with the cases (m, k) € {(4,6), (4,8), (4,16), (8,16),
(3,5), (3,15), (5,15)} and completely solved some of them, they also intro-
duced some methods. Danziger et al.[6] almost completely solved the case
(m, k) = (3,4) with only 9 possible exceptions. The case (m, k) = (n,3), i.e.
R is a Hamilton cycle and S is a triangle-factor, was studied in [7[8/ITI13],
and is still open. In recent years, remarkable progress has been made on the
Hamilton-Waterloo problem when both R and S are consist of even cycles, see
[45L9L12].

The next two lemmas are useful for our constructions, and have been used
in many papers, for example see [9].

Lemma 1 Suppose G1 and Ga are two vertex-disjoint graphs. If (G1; C},, Cy)
and (G2; C},, Cy) both exist, then (G1 U Go; C),,C}) exists.

Lemma 2 Suppose G1 and G2 are two edge-disjoint graphs with the same ver-
tex set. If (G1;CLL, CpY) and (Ga; Cr2, CR?) both exist, then (G1UGa; Cit72,
CHe2) eists.

In this paper, we deal with the case (m, k) = (3, 7) with n odd. Lemma 3.3 in [I]
shows that if HW (21;r, s;3,7) exists for all nonnegative integers r and s with
r 4+ s = 10 then the problem is settled. Unfortunately we can’t construct all
possible 2-factorizations of this kind for n = 21. Instead, using 2-factorizations
of K777, we will prove the following result.

Theorem 2 If n = 1 (mod 2) and rs # 0 with r + s = 251 then there
exists an HW (n;r, s;3,7) if and only if n = 21 (mod 42) except possibly when
n =21 andr =2,4,6.

In Section 2, we decompose K7 77 into Cs-factors and Cr-factors. In Section
3, we deal with Ky;. In Section 4, we show how to decompose K, into K7 7 7-
factors and Koi-factors, then prove Theorem 2
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2 Factorizations of K7 7 7

Let V(K71777) ={ji|j € Zryi€ Zs},and let V; = {j; | j € Z7} for i € Z3 be
the three partite sets of K77 7. Denote the complete graph on V; by Ky;, the
complete bipartite graph on V; and V; by Ky; v, and the complete tripartite
graph K777 on Vp, Vi and Vo by Ky, v;,v,. Then

E(KV07V17V2) = E(KVO,V1) U E(KV1,V2) U E(KV27V0)'

For i,j € Zs and d € Z7, let E;j(d) = {{li,;(I +d);} | |l € Zz}. It is easy to
verify that

3
E(Kvy,) = | Eu(d),
d=1

6
E(Kv,v,) = | Ei(d) for i # .
d=0

Some of the techniques used in the following lemmas are widely used in
combinatorial designs, see [14] for example. In the beginning we give a few
basic constructions. The first two lemmas are easy to see, so we omit the
proofs.

Lemma 3 Let dy,d1,ds € Z7. If dg +di + da =0 (mod 7), then the edges of
FEo1 (do) U E12 (dl) U FEog (dg) form a Cs-factor of K7,777.

Lemma 4 If (d,7) = 1, then the edges of E;;(d) form a Hamilton cycle, i.e.
a Cy-factor of Ky;,.

Lemma 5 The edges of |J (Ep1(d) U E12(d) U Ego(d)) can be decomposed
de{1,6}
into 2 Cr-factors of K77.7.

Proof Let
Py = {(04, Lit1, 2i42, 3, 4i+1, 54, 6i41) | © € Z3},
Fy = {(04, Liv2,2i41, 36, 4iv2, 54, 6i42) | 1 € Z3},

then both F; and F» are Cy-factors of K77 7. It is straightforward to verify
that
E(F)UEF) = |J (Eo(d)U Ea(d)U Ex(d)).
de{1,6}
Lemma 6 The edges of |J (Eo1(d)U E12(d) U E20(d)) can be decomposed

de{2,5}
into 2 Cr-factors of Kr77.

Proof The proof is similar to Lemmal[B] let the 2 Cr-factors be

Fy = {(04,2i41,4i42,6i, Lig1,34,5i41) | © € Z3},
Fy = {(04,2i42,4i41,6i, Liz2,34,5i42) | © € Z3}.
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Lemma 7 The edges of |J (Eo1(d) U E12(d) U Ego(d)) can be decomposed
de{3,4}
into 2 Cr-factors of K77.7.

Proof Let the 2 Cr-factors be

Fy = {(04,3i+1,6i+2,2i,5i41, Li, 4i1) | i € Z3},
Fy = {(04,3i42,6i41,2, 5142, i, 4ig2) | i € Z3}.
Lemma 8 [3] Let Ky, be the complete multipartite graph with d parts of

size m, if d and m are both odd integers, then there is a 2-factorization of
Kq(m)y, in which each 2-factor is a Cp,-factor.

Now we decompose K7 77 into Cs-factors and C7-factors.
Lemma 9 (K777 CS, CP) exists for a € {0,1,3,5,7} with a+ 5 =17.

Proof For a =0, (K7 77;CT) exists by Lemma [l
For o« = 1, decompose {FEy1(d) U E12(d) U E9o(d) | d = 1,2,...,6} into 6
C7-factors by Lemma [BHT], the remaining edges Fp1(0) U E12(0) U EQO( ) form
a Cz-factor by Lemma [
For a = 3, decompose {Ep1(d) U E12(d) U Ex(d) | d = 2,3,4,5} into
4 Cq-factors by Lemma [l and Lemma [l The 3 Cs-factors are Ez(z-i—l)(o)
E(Z+1)(1+2)( ) @] E(ZJFQ) ( ) i € Z3 by Lemma, [3]
For o = 5, decompose { Ep1 (d)UE12(d)UFE20(d) | d = 3,4} into 2 Cr-factors
by Lemma [[l By Lemma [Bl the 5 C3-factors are
Eo (0) U E12(1) U E23(6), Eo (2) U E12(0) U E23(5),
E01(5) @] E12(2) U EQg(O), Eo (6) U E12(6) @] E23(2),
Eo1(1) U E12(5) U Eag(1).

For oo = 7, by Lemma [3] the 7 Cs-factors are
Eii+1)(1) U Ei41)(i42)(2) U E(i42)i(4), i € Zs;

Ei+1)(3) U E(j1)(j4+2)(5) U E(j12);(6), J € Zs;
Fo1(0) U E1s(0) U Ess(0).

3 Factorizations of Koq

In this section, Vi, Kv;, Kv; v,, Kv,,v1, 15, and Ejj(d) have the same meanings
as given in Section 2. Let V(K21) = V5 UV} U Vo, then the edge set

E(K2) = (U E(Kw)> UE(Kv,vi.vs)-

i€Z3
Now we decompose Ko into v Cs-factors and § Cr-factors with v+ 6 = 10.
Lemma 10 (K21;Cy,C2) exists for v € {0,1,3,5,7,10} with v+ & = 10.
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3
Proof Since E(Ky;) = |J FEii(d) for i € Z3, by Lemma H (Ky,;C3) exists.
d=1

Then by Lemma [0 (U;cz, Kvi; C3) exists. Hence, it is easy to observe that

it (Kv,,vy.v; CS, CE) exists, then (Kv,uwuvy; CS, C7ﬁ+3) exists by Lemma 21

Thus by Lemma [, (Ka1;C3, ) exists for v € {0,1,3,5,7} with v + § = 10.
For (v,8) = (10,0), (K21; C5,C?) exists by Theorem [l

Lemma 11 (K21;C5,C2) exists for (v,0) = (8,2).
Proof Let

Fo ={(00, 10,21), (11,41, 52), (12, 62, 30), (20, 61, 42),
(40,01,32), (50,31, 22), (60,51,02)},
then Fy is a Cs-factor of Ko;. Six additional Cs-factors, denoted by Fi, Fs, .. .,
Fg, are formed by developing Fy mod(7, —). Let F; = Ep1(0)UE12(0)U Eo(0),
then by Lemmalﬁl F7 is a C3—factor. Let Fg = E00(2) @] Ell(l) @] Egg(l), Fg =
Eoo(3)UE11(2)UFE22(3), then Fg and Fy are both Cr-factors of Ks; by Lemma

[ and Lemma [l Finally, one can check that each edge of K51 is used exactly
once.

Lemma 12 (Ka1;C3,C?2) exists for (7v,0) = (9,1).
Proof Let

Fo ={(00,10,61), (01,11,42), (02, 22, 30), (20, 40,41),
(31) 51) 32)) (52) 62) 50)7 (607 217 12)}7

then Fy is a Cs-factor of Ko;. Six additional Cs-factors, denoted by Fi, Fs, .. .,
Fg, are formed by developing Fy mod(7, —). Let Fr = Ep1(1)UE12(2)U Eg(4),
Fs = Ep1(4)UE12(1)UE5(2), then by Lemmal[3 F7 and Fg are both Cs-factors.
Let Fy = Eoo(3) U E11(3) U E22(3), then Fy is a Cz-factor of Ka; by Lemma
[ and Lemma @ Again, one can check that each edge of Ko; is used exactly
once.

Combining Lemmas [[OHI2, we have the following result.
Lemma 13 (K21;Cy,C2) exists for v € {0,1,3,5,7,8,9,10} with v+ = 10.

4 Main Results

Let n be an odd integer. Let r and s be positive integers with r4s = "T’l It is
easy to see that a necessary condition for the existence of an HW (n;r,s;3,7)
is n = 21 (mod 42). Let n = 42t 4+ 21, ¢ > 0. Let the vertex set of K, be
V(Kn) = {.71 | j € Z7,1 € Zﬁt+3}; denote V; = Z7 x {Z} for 7 € Z6t+3- The

next lemma is based on a construction given in the paper [1].

Lemma 14 Forn =42t +21 and t >0, (K,; K3 ;, Ko1) exists.
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Proof By Theorem [I] (K6t+3;033t+1) exists for ¢t > 0, it is actually the well
known Kirkman triple system of order 6t + 3. Let the vertex set of Kgiis
be {V; | i € Zg+3}, replace each 3-cycle (V;,V;, Vi) with the complete tri-
partite graph K777 on vertex sets V;,V; and Vi, then each Cs-factor of
Kei4+3 corresponds to a Ky 7 7-factor of K, also these K7 7 7-factors form
the complete multipartite graph Kg:13)(7) on vertex sets Vo, Vi,..., Voii2,
ie. (K(6t+3)(7);K$’f7'f71) exists. Hence (Kn,th;;,Kﬁ exists and the union of
any K7 7 7-factor and the Kr-factor of K, is actually a Kai-factor. Therefore,
(Kn; K3% 7, K1) exists.

Lemma 15 Let o; € {0,1,3,5,7} with a; + 8; = 7 for i = 1,2,...,3t, and
v€{0,1,3,5,7,8,9,10} with v+ = 10, then there exists an HW (n; Zf’il o+

Proof By Lemmal[l4] we decompose K, into 3t K7 7 7-factors and a Ko;-factor.

For the ith K77 7-factor, let «; € {0,1,3,5,7} and «; + 8; = 7. Then
decompose each K7 7 7 of this K7 7 7-factor into o; C3-factors and 3; Cr-factors
by Lemma [ by Lemma [ these 2-factors of K7 77 form «; Cs-factors and §;
Cr-factors of K.

Similarly, the Koi-factor of K, can be decomposed into v Cs-factors and
§ Cr-factors for v € {0,1,3,5,7,8,9,10} with v+ § = 10 by Lemma [l and [[3

Then by Lemmal[2] (K,; 032521 aﬁ'y, 072521 ﬁiH) exists, i.e. there exists an
HW (n; Zf’il a; + 7, Zf’il Bi +6;3,7).

We are now ready to prove the main theorem of this paper.

Proof of Theorem[2 As noted earlier, the condition n = 21 (mod 42) is nec-
essary, we now prove sufficiency. Let n = 42t + 21, the case t =0 (i.e. n = 21)
is solved by Lemma [I3]

For the case t > 0, let r = 7Ta+ b, where 0 < b < 7. For the existence of an
HW (n;r, s;3,7), we only need to assign a proper value to each of {vy,q; | i =
1,2,...,3t} in Lemma I8 Note that if a = 3t + 1, then b < 3 (the case b= 3
is the case s = 0, which is covered by Theorem [I).

7, forl<i<a,
0, fora<i<3t.
Ifb=0and a=3t+1, thenlet y=7and a; =7 fori=1,2,...,3t.
7, forl1l<i<a,
0, fora<i<3t.
Ifb=1anda=3t+1,thenlet y=8 and a; =7 fori=1,2,...,3t.
1, fori=1,
7, for2<i<a+1,
0, fora+1<i<3t
1

Ifb=0and a < 3t+ 1, then let v =0 and a; =

Ifb=1and a < 3t+1, thenlet v =1 and a; =

If b=2 and a < 3¢, then let vy =1 and «; =

, fori=1,
7, for 2 <i < 3t.
Ifb=2anda=3t+1, thenlet y=8 and a; =7 fori =1,2,...,3t.

If b=2 and a = 3¢, then let vy =9 and «; =
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7, for 1<i<a,
0, fora<i<3t.
fori=1,
Ifb=4and a < 3t,thenlet y=3and a; = 7, for2<i<a-+1,
0, fora+1<i<3t.
3, fori=1,
7, for 1< i <3t
7, forl<i<a,
0, fora<i<3t.
5, fori=1,
Ifb=6and a < 3t,thenlet y=1and a; =7, for2<i<a-+1,
0, fora+1<i<3t
5, fori=1,
7, for1<i <3t

If b= 3, then let y =3 and o; =

If b=4 and a = 3¢, then let v = 8 and «; =

If b=>5, then let v =05 and «; =

If b= 6 and a = 3¢, then let v = 8 and «;
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