(will be inserted by the editor)

The Hamilton-Waterloo problem for triangle-factors and heptagon-factors

Hongchuan Lei · Hung-Lin Fu

Received: date / Accepted: date

Abstract Given 2-factors R and S of order n, let r and s be nonnegative integers with $r+s=\lfloor \frac{n-1}{2}\rfloor$, the Hamilton-Waterloo problem asks for a 2-factorization of K_n if n is odd, or of K_n-I if n is even, in which r of its 2-factors are isomorphic to R and the other s 2-factors are isomorphic to S. In this paper, we solve the problem for the case of triangle-factors and heptagon-factors for odd n with 3 possible exceptions when n=21.

Keywords Cycle decomposition · Triangle-factor · Heptagon-factor · 2-factorization

1 Introduction

A decomposition of a graph G is a collection of edge-disjoint subgraphs such that every edge of G belongs to exactly one of the subgraphs. A subgraph F of a graph G is a factor if F contains all the vertices of G, if each component of F is isomorphic to a graph H, then F is called an H-factor of G, while if F is a d-regular graph, then we call F a d-factor. A C_k -factor is a 2-factor consisting entirely of cycles of length k. A factorization of a graph G is a decomposition of G such that each subgraph is a factor, if the factors are all 2-factors then it is called a 2-factorization. An $\{H_1^{m_1}, H_2^{m_2}, \ldots, H_t^{m_t}\}$ -factorization of a graph G is a factorization of G in which there are precisely m_i H_i -factors. If such a factorization exists, we say that $(G; H_1^{m_1}, H_2^{m_2}, \ldots, H_t^{m_t})$ exists.

Hongchuan Lei

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan:

Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan

E-mail: hongchuanlei@gmail.com

Hung-Lin Fu

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan

E-mail: hlfu@math.nctu.edu.tw

Given 2-factors R and S of oder n, let r and s be nonnegative integers with $r+s=\lfloor \frac{n-1}{2}\rfloor$, the Hamilton-Waterloo problem asks for a 2-factorization of the complete graph K_n if n is odd, or K_n-I if n is even, in which r of its 2-factors are isomorphic to R and the other s 2-factors are isomorphic to S, where I is a 1-factor. The goal of the problem is to determine the spectrum of r (or s) for all possible n, i.e. the set of r (or s) such that the corresponding 2-factorization of K_n or k_n-I exists. If R is a C_m -factor and S is a C_k -factor, i.e. each 2-factor is uniform, then such a 2-factorization is denoted by HW(n;r,s;m,k).

The uniform cases of the Hamilton-Waterloo problem have attracted much attention in the last decade. The existence of HW(n;r,s;m,k) has been settled when r=0 or s=0 in [2,3,10]. So we only discuss the case $rs\neq 0$ in this paper.

Theorem 1 [2,3,10] Let $n \geq 3$ and $m \geq 3$. Let $G = K_n$ if n is odd, $G = K_n - I$ if n is even. Then $(G; C_m^{\lfloor \frac{n-1}{2} \rfloor})$ exists if and only if $n \equiv 0 \pmod{m}$ and $(n,m) \notin \{(6,3),(12,3)\}$.

Adams et al. [1] dealt with the cases $(m,k) \in \{(4,6), (4,8), (4,16), (8,16), (3,5), (3,15), (5,15)\}$ and completely solved some of them, they also introduced some methods. Danziger et al.[6] almost completely solved the case (m,k)=(3,4) with only 9 possible exceptions. The case (m,k)=(n,3), i.e. R is a Hamilton cycle and S is a triangle-factor, was studied in [7,8,11,13], and is still open. In recent years, remarkable progress has been made on the Hamilton-Waterloo problem when both R and S are consist of even cycles, see [4,5,9,12].

The next two lemmas are useful for our constructions, and have been used in many papers, for example see [9].

Lemma 1 Suppose G_1 and G_2 are two vertex-disjoint graphs. If $(G_1; C_m^r, C_k^s)$ and $(G_2; C_m^r, C_k^s)$ both exist, then $(G_1 \cup G_2; C_m^r, C_k^s)$ exists.

Lemma 2 Suppose G_1 and G_2 are two edge-disjoint graphs with the same vertex set. If $(G_1; C_m^{r_1}, C_k^{s_1})$ and $(G_2; C_m^{r_2}, C_k^{s_2})$ both exist, then $(G_1 \cup G_2; C_m^{r_1+r_2}, C_k^{s_1+s_2})$ exists.

In this paper, we deal with the case (m,k)=(3,7) with n odd. Lemma 3.3 in [1] shows that if HW(21;r,s;3,7) exists for all nonnegative integers r and s with r+s=10 then the problem is settled. Unfortunately we can't construct all possible 2-factorizations of this kind for n=21. Instead, using 2-factorizations of $K_{7,7,7}$, we will prove the following result.

Theorem 2 If $n \equiv 1 \pmod{2}$ and $rs \neq 0$ with $r + s = \frac{n-1}{2}$, then there exists an HW(n; r, s; 3, 7) if and only if $n \equiv 21 \pmod{42}$ except possibly when n = 21 and r = 2, 4, 6.

In Section 2, we decompose $K_{7,7,7}$ into C_3 -factors and C_7 -factors. In Section 3, we deal with K_{21} . In Section 4, we show how to decompose K_n into $K_{7,7,7}$ -factors and K_{21} -factors, then prove Theorem 2.

2 Factorizations of $K_{7,7,7}$

Let $V(K_{7,7,7}) = \{j_i \mid j \in Z_7, i \in Z_3\}$, and let $V_i = \{j_i \mid j \in Z_7\}$ for $i \in Z_3$ be the three partite sets of $K_{7,7,7}$. Denote the complete graph on V_i by K_{V_i} , the complete bipartite graph on V_i and V_j by K_{V_i,V_j} , and the complete tripartite graph $K_{7,7,7}$ on V_0 , V_1 and V_2 by K_{V_0,V_1,V_2} . Then

$$E(K_{V_0,V_1,V_2}) = E(K_{V_0,V_1}) \cup E(K_{V_1,V_2}) \cup E(K_{V_2,V_0}).$$

For $i, j \in Z_3$ and $d \in Z_7$, let $E_{ij}(d) = \{\{l_i, (l+d)_j\} \mid l \in Z_7\}$. It is easy to verify that

$$E(K_{V_i}) = \bigcup_{d=1}^{3} E_{ii}(d),$$

$$E(K_{V_i,V_j}) = \bigcup_{d=0}^{6} E_{ij}(d) \text{ for } i \neq j.$$

Some of the techniques used in the following lemmas are widely used in combinatorial designs, see [14] for example. In the beginning we give a few basic constructions. The first two lemmas are easy to see, so we omit the proofs.

Lemma 3 Let $d_0, d_1, d_2 \in \mathbb{Z}_7$. If $d_0 + d_1 + d_2 \equiv 0 \pmod{7}$, then the edges of $E_{01}(d_0) \cup E_{12}(d_1) \cup E_{20}(d_2)$ form a C_3 -factor of $K_{7,7,7}$.

Lemma 4 If (d,7) = 1, then the edges of $E_{ii}(d)$ form a Hamilton cycle, i.e. a C_7 -factor of K_{V_i} .

Lemma 5 The edges of $\bigcup_{d \in \{1,6\}} (E_{01}(d) \cup E_{12}(d) \cup E_{20}(d))$ can be decomposed into 2 C_7 -factors of $K_{7,7,7}$.

Proof Let

$$\begin{split} F_1 &= \{ (0_i, 1_{i+1}, 2_{i+2}, 3_i, 4_{i+1}, 5_i, 6_{i+1}) \mid i \in Z_3 \}, \\ F_2 &= \{ (0_i, 1_{i+2}, 2_{i+1}, 3_i, 4_{i+2}, 5_i, 6_{i+2}) \mid i \in Z_3 \}, \end{split}$$

then both F_1 and F_2 are C_7 -factors of $K_{7,7,7}$. It is straightforward to verify that

$$E(F_1) \cup E(F_2) = \bigcup_{d \in \{1,6\}} (E_{01}(d) \cup E_{12}(d) \cup E_{20}(d)).$$

Lemma 6 The edges of $\bigcup_{d \in \{2,5\}} (E_{01}(d) \cup E_{12}(d) \cup E_{20}(d))$ can be decomposed into 2 C_7 -factors of $K_{7,7,7}$.

Proof The proof is similar to Lemma 5, let the 2 C_7 -factors be

$$F_1 = \{ (0_i, 2_{i+1}, 4_{i+2}, 6_i, 1_{i+1}, 3_i, 5_{i+1}) \mid i \in Z_3 \},$$

$$F_2 = \{ (0_i, 2_{i+2}, 4_{i+1}, 6_i, 1_{i+2}, 3_i, 5_{i+2}) \mid i \in Z_3 \}.$$

Lemma 7 The edges of $\bigcup_{d \in \{3,4\}} (E_{01}(d) \cup E_{12}(d) \cup E_{20}(d))$ can be decomposed into 2 C_7 -factors of $K_{7,7,7}$.

Proof Let the 2 C_7 -factors be

$$F_1 = \{ (0_i, 3_{i+1}, 6_{i+2}, 2_i, 5_{i+1}, 1_i, 4_{i+1}) \mid i \in Z_3 \},$$

$$F_2 = \{ (0_i, 3_{i+2}, 6_{i+1}, 2_i, 5_{i+2}, 1_i, 4_{i+2}) \mid i \in Z_3 \}.$$

Lemma 8 [3] Let $K_{d(m)}$ be the complete multipartite graph with d parts of size m, if d and m are both odd integers, then there is a 2-factorization of $K_{d(m)}$, in which each 2-factor is a C_m -factor.

Now we decompose $K_{7,7,7}$ into C_3 -factors and C_7 -factors.

Lemma 9 $(K_{7,7,7}; C_3^{\alpha}, C_7^{\beta})$ exists for $\alpha \in \{0, 1, 3, 5, 7\}$ with $\alpha + \beta = 7$.

Proof For $\alpha = 0$, $(K_{7,7,7}; C_7^7)$ exists by Lemma 8.

For $\alpha=1$, decompose $\{E_{01}(d) \cup E_{12}(d) \cup E_{20}(d) \mid d=1,2,\ldots,6\}$ into 6 C_7 -factors by Lemma 5-7, the remaining edges $E_{01}(0) \cup E_{12}(0) \cup E_{20}(0)$ form a C_3 -factor by Lemma 3.

For $\alpha = 3$, decompose $\{E_{01}(d) \cup E_{12}(d) \cup E_{20}(d) \mid d = 2, 3, 4, 5\}$ into 4 C_7 -factors by Lemma 6 and Lemma 7. The 3 C_3 -factors are $E_{i(i+1)}(0) \cup E_{(i+1)(i+2)}(1) \cup E_{(i+2)i}(6)$, $i \in Z_3$ by Lemma 3.

For $\alpha = 5$, decompose $\{E_{01}(d) \cup E_{12}(d) \cup E_{20}(d) \mid d = 3, 4\}$ into 2 C_7 -factors by Lemma 7. By Lemma 3 the 5 C_3 -factors are

$$E_{01}(0) \cup E_{12}(1) \cup E_{23}(6), \ E_{01}(2) \cup E_{12}(0) \cup E_{23}(5),$$

 $E_{01}(5) \cup E_{12}(2) \cup E_{23}(0), \ E_{01}(6) \cup E_{12}(6) \cup E_{23}(2),$
 $E_{01}(1) \cup E_{12}(5) \cup E_{23}(1).$

For $\alpha = 7$, by Lemma 3 the 7 C_3 -factors are

$$\begin{split} E_{i(i+1)}(1) \cup E_{(i+1)(i+2)}(2) \cup E_{(i+2)i}(4), & i \in Z_3; \\ E_{j(j+1)}(3) \cup E_{(j+1)(j+2)}(5) \cup E_{(j+2)j}(6), & j \in Z_3; \\ E_{01}(0) \cup E_{12}(0) \cup E_{23}(0). \end{split}$$

3 Factorizations of K_{21}

In this section, $V_i, K_{V_i}, K_{V_i,V_j}, K_{V_0,V_1,V_2}$, and $E_{ij}(d)$ have the same meanings as given in Section 2. Let $V(K_{21}) = V_0 \cup V_1 \cup V_2$, then the edge set

$$E(K_{21}) = \left(\bigcup_{i \in Z_3} E(K_{V_i})\right) \cup E(K_{V_0, V_1, V_2}).$$

Now we decompose K_{21} into γ C_3 -factors and δ C_7 -factors with $\gamma + \delta = 10$.

Lemma 10 $(K_{21}; C_3^{\gamma}, C_7^{\delta})$ exists for $\gamma \in \{0, 1, 3, 5, 7, 10\}$ with $\gamma + \delta = 10$.

Proof Since $E(K_{V_i}) = \bigcup_{d=1}^3 E_{ii}(d)$ for $i \in Z_3$, by Lemma 4, $(K_{V_i}; C_7^3)$ exists. Then by Lemma 1, $(\bigcup_{i \in Z_3} K_{V_i}; C_7^3)$ exists. Hence, it is easy to observe that if $(K_{V_0,V_1,V_2}; C_3^{\alpha}, C_7^{\beta})$ exists, then $(K_{V_1 \cup V_2 \cup V_3}; C_3^{\alpha}, C_7^{\beta+3})$ exists by Lemma 2. Thus by Lemma 9, $(K_{21}; C_3^{\gamma}, C_7^{\delta})$ exists for $\gamma \in \{0, 1, 3, 5, 7\}$ with $\gamma + \delta = 10$. For $(\gamma, \delta) = (10, 0), (K_{21}; C_3^{\gamma}, C_7^{\delta})$ exists by Theorem 1.

Lemma 11 $(K_{21}; C_3^{\gamma}, C_7^{\delta})$ exists for $(\gamma, \delta) = (8, 2)$.

Proof Let

$$F_0 = \{(0_0, 1_0, 2_1), (1_1, 4_1, 5_2), (1_2, 6_2, 3_0), (2_0, 6_1, 4_2), (4_0, 0_1, 3_2), (5_0, 3_1, 2_2), (6_0, 5_1, 0_2)\},\$$

then F_0 is a C_3 -factor of K_{21} . Six additional C_3 -factors, denoted by F_1, F_2, \ldots , F_6 , are formed by developing $F_0 \mod(7, -)$. Let $F_7 = E_{01}(0) \cup E_{12}(0) \cup E_{20}(0)$, then by Lemma 3 F_7 is a C_3 -factor. Let $F_8 = E_{00}(2) \cup E_{11}(1) \cup E_{22}(1)$, $F_9 = E_{00}(3) \cup E_{11}(2) \cup E_{22}(3)$, then F_8 and F_9 are both C_7 -factors of K_{21} by Lemma 1 and Lemma 4. Finally, one can check that each edge of K_{21} is used exactly once.

Lemma 12 $(K_{21}; C_3^{\gamma}, C_7^{\delta})$ exists for $(\gamma, \delta) = (9, 1)$.

Proof Let

$$F_0 = \{(0_0, 1_0, 6_1), (0_1, 1_1, 4_2), (0_2, 2_2, 3_0), (2_0, 4_0, 4_1), (3_1, 5_1, 3_2), (5_2, 6_2, 5_0), (6_0, 2_1, 1_2)\},\$$

then F_0 is a C_3 -factor of K_{21} . Six additional C_3 -factors, denoted by F_1, F_2, \ldots , F_6 , are formed by developing $F_0 \mod(7, -)$. Let $F_7 = E_{01}(1) \cup E_{12}(2) \cup E_{20}(4)$, $F_8 = E_{01}(4) \cup E_{12}(1) \cup E_{20}(2)$, then by Lemma 3 F_7 and F_8 are both C_3 -factors. Let $F_9 = E_{00}(3) \cup E_{11}(3) \cup E_{22}(3)$, then F_9 is a C_7 -factor of K_{21} by Lemma 1 and Lemma 4. Again, one can check that each edge of K_{21} is used exactly once.

Combining Lemmas 10-12, we have the following result.

Lemma 13 $(K_{21}; C_3^{\gamma}, C_7^{\delta})$ exists for $\gamma \in \{0, 1, 3, 5, 7, 8, 9, 10\}$ with $\gamma + \delta = 10$.

4 Main Results

Let n be an odd integer. Let r and s be positive integers with $r+s=\frac{n-1}{2}$. It is easy to see that a necessary condition for the existence of an HW(n;r,s;3,7) is $n \equiv 21 \pmod{42}$. Let n=42t+21, $t \geq 0$. Let the vertex set of K_n be $V(K_n)=\{j_i\mid j\in Z_7, i\in Z_{6t+3}\}$, denote $V_i=Z_7\times\{i\}$ for $i\in Z_{6t+3}$. The next lemma is based on a construction given in the paper [1].

Lemma 14 For n = 42t + 21 and $t \ge 0$, $(K_n; K_{7,7,7}^{3t}, K_{21})$ exists.

Proof By Theorem 1, $(K_{6t+3}; C_3^{3t+1})$ exists for $t \geq 0$, it is actually the well known Kirkman triple system of order 6t + 3. Let the vertex set of K_{6t+3} be $\{V_i \mid i \in Z_{6t+3}\}$, replace each 3-cycle (V_i, V_j, V_k) with the complete tripartite graph $K_{7,7,7}$ on vertex sets V_i, V_j and V_k , then each C_3 -factor of K_{6t+3} corresponds to a $K_{7,7,7}$ -factor of K_n , also these $K_{7,7,7}$ -factors form the complete multipartite graph $K_{(6t+3)(7)}$ on vertex sets $V_0, V_1, \ldots, V_{6t+2}$, i.e. $(K_{(6t+3)(7)}; K_{7,7,7}^{3t+1})$ exists. Hence $(K_n; K_{7,7,7}^{3t+1}, K_7)$ exists and the union of any $K_{7,7,7}$ -factor and the K_7 -factor of K_n is actually a K_{21} -factor. Therefore, $(K_n; K_{7,7,7}^{3t}, K_{21})$ exists.

Lemma 15 Let $\alpha_i \in \{0, 1, 3, 5, 7\}$ with $\alpha_i + \beta_i = 7$ for i = 1, 2, ..., 3t, and $\gamma \in \{0, 1, 3, 5, 7, 8, 9, 10\}$ with $\gamma + \delta = 10$, then there exists an $HW(n; \sum_{i=1}^{3t} \alpha_i + 1)$ $\gamma, \sum_{i=1}^{3t} \beta_i + \delta; 3, 7).$

Proof By Lemma 14, we decompose K_n into $3t K_{7,7,7}$ -factors and a K_{21} -factor. For the ith $K_{7,7,7}$ -factor, let $\alpha_i \in \{0,1,3,5,7\}$ and $\alpha_i + \beta_i = 7$. Then decompose each $K_{7,7,7}$ of this $K_{7,7,7}$ -factor into α_i C_3 -factors and β_i C_7 -factors by Lemma 9, by Lemma 1 these 2-factors of $K_{7,7,7}$ form α_i C_3 -factors and β_i C_7 -factors of K_n .

Similarly, the K_{21} -factor of K_n can be decomposed into γ C_3 -factors and

 δ C_7 -factors for $\gamma \in \{0, 1, 3, 5, 7, 8, 9, 10\}$ with $\gamma + \delta = 10$ by Lemma 1 and 13. Then by Lemma 2, $(K_n; C_3^{\sum_{i=1}^{3t} \alpha_i + \gamma}, C_7^{\sum_{i=1}^{3t} \beta_i + \delta})$ exists, i.e. there exists an $HW(n; \sum_{i=1}^{3t} \alpha_i + \gamma, \sum_{i=1}^{3t} \beta_i + \delta; 3, 7)$.

We are now ready to prove the main theorem of this paper.

Proof of Theorem 2 As noted earlier, the condition $n \equiv 21 \pmod{42}$ is necessary, we now prove sufficiency. Let n = 42t + 21, the case t = 0 (i.e. n = 21) is solved by Lemma 13.

For the case t > 0, let r = 7a + b, where $0 \le b < 7$. For the existence of an HW(n;r,s;3,7), we only need to assign a proper value to each of $\{\gamma,\alpha_i\mid i=1\}$ $1, 2, \ldots, 3t$ in Lemma 15. Note that if a = 3t + 1, then b < 3 (the case b = 3is the case s = 0, which is covered by Theorem 1).

the case
$$s = 0$$
, which is covered by Theorem 1).

If $b = 0$ and $a < 3t + 1$, then let $\gamma = 0$ and $\alpha_i = \begin{cases} 7, & \text{for } 1 \leq i \leq a, \\ 0, & \text{for } a < i \leq 3t. \end{cases}$

If $b = 0$ and $a = 3t + 1$, then let $\gamma = 7$ and $\alpha_i = 7$ for $i = 1, 2, ..., 3t$.

If $b = 1$ and $a < 3t + 1$, then let $\gamma = 1$ and $\alpha_i = \begin{cases} 7, & \text{for } 1 \leq i \leq a, \\ 0, & \text{for } a < i \leq 3t. \end{cases}$

If $b = 1$ and $a = 3t + 1$, then let $\gamma = 8$ and $\alpha_i = 7$ for $i = 1, 2, ..., 3t$.

If $b = 2$ and $a < 3t$, then let $\gamma = 1$ and $\alpha_i = \begin{cases} 1, & \text{for } i = 1, \\ 7, & \text{for } 2 \leq i \leq a + 1, \\ 0, & \text{for } a + 1 < i \leq 3t. \end{cases}$

If $b = 2$ and $a = 3t$, then let $\gamma = 9$ and $\alpha_i = \begin{cases} 1, & \text{for } i = 1, \\ 7, & \text{for } 2 \leq i \leq a + 1, \\ 7, & \text{for } 2 \leq i \leq 3t. \end{cases}$

If $b = 2$ and $a = 3t + 1$, then let $\gamma = 8$ and $\alpha_i = 7$ for $i = 1, 2, ..., 3t$.

If
$$b=3$$
, then let $\gamma=3$ and $\alpha_i = \begin{cases} 7, & \text{for } 1 \leq i \leq a, \\ 0, & \text{for } a < i \leq 3t. \end{cases}$

If $b=4$ and $a < 3t$, then let $\gamma=3$ and $\alpha_i = \begin{cases} 1, & \text{for } i=1, \\ 7, & \text{for } 2 \leq i \leq a+1, \\ 0, & \text{for } a+1 < i \leq 3t. \end{cases}$

If $b=4$ and $a=3t$, then let $\gamma=8$ and $\alpha_i = \begin{cases} 3, & \text{for } i=1, \\ 7, & \text{for } 1 < i \leq 3t. \end{cases}$

If $b=5$, then let $\gamma=5$ and $\alpha_i = \begin{cases} 7, & \text{for } 1 \leq i \leq a, \\ 0, & \text{for } a < i \leq 3t. \end{cases}$

If $b=6$ and $a < 3t$, then let $\gamma=1$ and $\alpha_i = \begin{cases} 5, & \text{for } i=1, \\ 7, & \text{for } 2 \leq i \leq a+1, \\ 0, & \text{for } a+1 < i \leq 3t. \end{cases}$

If $b=6$ and $a=3t$, then let $\gamma=8$ and $\alpha_i = \begin{cases} 5, & \text{for } i=1, \\ 7, & \text{for } 1 < i \leq 3t. \end{cases}$

Acknowledgments

The authors would like to express their deep gratefulness to the reviewers for their detail comments and valuable suggestions. The work of Hung-Lin Fu was partially supported by NSC 100-2115-M-009-005-MY3.

References

- Adams, P., Billington, E.J., Bryant, D.E., El-Zanati, S.I.: On the Hamilton-Waterloo problem. Graphs Combin. 18, 31-51 (2002)
- Alspach, B., Häggkvist, R.: Some observations on the Oberwolfach problem. J. Graph Theory 9, 177-187 (1985)
- 3. Alspach, B., Schellenberg, P.J., Stinson, D. R., Wagner, D.: The Oberwolfach problem and factors of uniform odd length cycles. J. Combin. Theory Ser. A 52, 20-43 (1989)
- 4. Bryant, D.E., Danziger, P.: On bipartite 2-factorizations of k_n-I and the Oberwolfach problem. J. Graph Theory 68, 22-37 (2011)
- Bryant, D.E., Danziger, P., Dean, M.: On the Hamilton-Waterloo problem for bipartite 2-factors. J. Combin. Des. 21, 60-80 (2013)
- Danziger, P., Quattrocchi, G., Stevens, B.: The Hamilton-Waterloo problem for cycle sizes 3 and 4. J. Combin. Des. 17, 342-352 (2009)
- 7. Dinitz, J.H., Ling, A.C.H.: The Hamilton-Waterloo problem with triangle-factors and Hamilton cycles: The case $n \equiv 3 \pmod{18}$. J. Combin. Math. Combin. Comput. 70, 143-147 (2009)
- 8. Dinitz, J.H., Ling, A.C.H.: The Hamilton-Waterloo problem: the case of triangle-factors and one Hamilton cycle. J. Combin. Des. 17, 160-176 (2009)
- 9. Fu, H.L., Huang, K.C.: The Hamilton-Waterloo problem for two even cycles factors. Taiwanese J. of Math. 12, 933-940 (2008)
- 10. Hoffman, D., Schellenberg, P.: The existence of C_k -factorizations of $K_{2n}-F$. Discrete Math. 97, 243-250 (1991)
- Horak, P., Nedela, R., Rosa, A.: The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors. Discrete Math. 284, 181-188 (2004)

- 12. Lei, H., Fu, H.L., Shen, H.: The Hamilton-Waterloo problem for Hamilton cycles and C_{4k} -factors. Ars Combin. 100, 341-347 (2011)
- 13. Lei, H., Shen, H.: The Hamilton-Waterloo problem for Hamilton cycles and triangle-factors. J. Combin. Des. 20, 305-316 (2012)
- 14. Liu, J.: The equipartite Oberwolfach problem with uniform tables. J. Combin. Theory, Ser. A 101, 20-34 (2003)