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Abstract Given 2-factors R and S of order n, let r and s be nonnegative
integers with r + s = ⌊n−1

2 ⌋, the Hamilton-Waterloo problem asks for a 2-
factorization of Kn if n is odd, or of Kn − I if n is even, in which r of its
2-factors are isomorphic to R and the other s 2-factors are isomorphic to S. In
this paper, we solve the problem for the case of triangle-factors and heptagon-
factors for odd n with 3 possible exceptions when n = 21.

Keywords Cycle decomposition · Triangle-factor · Heptagon-factor ·
2-factorization

1 Introduction

A decomposition of a graph G is a collection of edge-disjoint subgraphs such
that every edge of G belongs to exactly one of the subgraphs. A subgraph F of
a graph G is a factor if F contains all the vertices of G, if each component of F
is isomorphic to a graph H , then F is called an H-factor of G, while if F is a
d-regular graph, then we call F a d-factor. A Ck-factor is a 2-factor consisting
entirely of cycles of length k. A factorization of a graph G is a decomposition
of G such that each subgraph is a factor, if the factors are all 2-factors then it
is called a 2-factorization. An {Hm1

1 , Hm2

2 , . . . , Hmt

t }-factorization of a graph
G is a factorization of G in which there are precisely mi Hi-factors. If such a
factorization exists, we say that (G;Hm1

1 , Hm2

2 , . . . , Hmt

t ) exists.
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Given 2-factors R and S of oder n, let r and s be nonnegative integers with
r + s = ⌊n−1

2 ⌋, the Hamilton-Waterloo problem asks for a 2-factorization of
the complete graph Kn if n is odd, or Kn − I if n is even, in which r of its
2-factors are isomorphic to R and the other s 2-factors are isomorphic to S,
where I is a 1-factor. The goal of the problem is to determine the spectrum of
r (or s) for all possible n, i.e. the set of r (or s) such that the corresponding
2-factorization of Kn or kn − I exists. If R is a Cm-factor and S is a Ck-
factor, i.e. each 2-factor is uniform, then such a 2-factorization is denoted by
HW (n; r, s;m, k).

The uniform cases of the Hamilton-Waterloo problem have attracted much
attention in the last decade. The existence ofHW (n; r, s;m, k) has been settled
when r = 0 or s = 0 in [2,3,10]. So we only discuss the case rs 6= 0 in this
paper.

Theorem 1 [2,3,10] Let n ≥ 3 and m ≥ 3. Let G = Kn if n is odd, G =

Kn − I if n is even. Then (G;C
⌊n−1

2
⌋

m ) exists if and only if n ≡ 0 (mod m)
and (n,m) /∈ {(6, 3), (12, 3)}.

Adams et al. [1] dealt with the cases (m, k) ∈ {(4, 6), (4, 8), (4, 16), (8, 16),
(3, 5), (3, 15), (5, 15)} and completely solved some of them, they also intro-
duced some methods. Danziger et al.[6] almost completely solved the case
(m, k) = (3, 4) with only 9 possible exceptions. The case (m, k) = (n, 3), i.e.
R is a Hamilton cycle and S is a triangle-factor, was studied in [7,8,11,13],
and is still open. In recent years, remarkable progress has been made on the
Hamilton-Waterloo problem when both R and S are consist of even cycles, see
[4,5,9,12].

The next two lemmas are useful for our constructions, and have been used
in many papers, for example see [9].

Lemma 1 Suppose G1 and G2 are two vertex-disjoint graphs. If (G1;C
r
m, Cs

k)
and (G2;C

r
m, Cs

k) both exist, then (G1 ∪G2;C
r
m, Cs

k) exists.

Lemma 2 Suppose G1 and G2 are two edge-disjoint graphs with the same ver-
tex set. If (G1;C

r1
m , Cs1

k ) and (G2;C
r2
m , Cs2

k ) both exist, then (G1 ∪G2;C
r1+r2
m ,

Cs1+s2
k ) exists.

In this paper, we deal with the case (m, k) = (3, 7) with n odd. Lemma 3.3 in [1]
shows that if HW (21; r, s; 3, 7) exists for all nonnegative integers r and s with
r + s = 10 then the problem is settled. Unfortunately we can’t construct all
possible 2-factorizations of this kind for n = 21. Instead, using 2-factorizations
of K7,7,7, we will prove the following result.

Theorem 2 If n ≡ 1 (mod 2) and rs 6= 0 with r + s = n−1
2 , then there

exists an HW (n; r, s; 3, 7) if and only if n ≡ 21 (mod 42) except possibly when
n = 21 and r = 2, 4, 6.

In Section 2, we decompose K7,7,7 into C3-factors and C7-factors. In Section
3, we deal with K21. In Section 4, we show how to decompose Kn into K7,7,7-
factors and K21-factors, then prove Theorem 2.
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2 Factorizations of K7,7,7

Let V (K7,7,7) = {ji | j ∈ Z7, i ∈ Z3}, and let Vi = {ji | j ∈ Z7} for i ∈ Z3 be
the three partite sets of K7,7,7. Denote the complete graph on Vi by KVi

, the
complete bipartite graph on Vi and Vj by KVi,Vj

, and the complete tripartite
graph K7,7,7 on V0, V1 and V2 by KV0,V1,V2

. Then

E(KV0,V1,V2
) = E(KV0,V1

) ∪ E(KV1,V2
) ∪ E(KV2,V0

).

For i, j ∈ Z3 and d ∈ Z7, let Eij(d) = {{li, (l + d)j} | l ∈ Z7}. It is easy to
verify that

E(KVi
) =

3
⋃

d=1

Eii(d),

E(KVi,Vj
) =

6
⋃

d=0

Eij(d) for i 6= j.

Some of the techniques used in the following lemmas are widely used in
combinatorial designs, see [14] for example. In the beginning we give a few
basic constructions. The first two lemmas are easy to see, so we omit the
proofs.

Lemma 3 Let d0, d1, d2 ∈ Z7. If d0 + d1 + d2 ≡ 0 (mod 7), then the edges of
E01(d0) ∪ E12(d1) ∪ E20(d2) form a C3-factor of K7,7,7.

Lemma 4 If (d, 7) = 1, then the edges of Eii(d) form a Hamilton cycle, i.e.
a C7-factor of KVi

.

Lemma 5 The edges of
⋃

d∈{1,6}

(E01(d) ∪ E12(d) ∪E20(d)) can be decomposed

into 2 C7-factors of K7,7,7.

Proof Let

F1 = {(0i, 1i+1, 2i+2, 3i, 4i+1, 5i, 6i+1) | i ∈ Z3},

F2 = {(0i, 1i+2, 2i+1, 3i, 4i+2, 5i, 6i+2) | i ∈ Z3},

then both F1 and F2 are C7-factors of K7,7,7. It is straightforward to verify
that

E(F1) ∪ E(F2) =
⋃

d∈{1,6}

(E01(d) ∪ E12(d) ∪ E20(d)).

Lemma 6 The edges of
⋃

d∈{2,5}

(E01(d) ∪ E12(d) ∪E20(d)) can be decomposed

into 2 C7-factors of K7,7,7.

Proof The proof is similar to Lemma 5, let the 2 C7-factors be

F1 = {(0i, 2i+1, 4i+2, 6i, 1i+1, 3i, 5i+1) | i ∈ Z3},

F2 = {(0i, 2i+2, 4i+1, 6i, 1i+2, 3i, 5i+2) | i ∈ Z3}.
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Lemma 7 The edges of
⋃

d∈{3,4}

(E01(d) ∪ E12(d) ∪E20(d)) can be decomposed

into 2 C7-factors of K7,7,7.

Proof Let the 2 C7-factors be

F1 = {(0i, 3i+1, 6i+2, 2i, 5i+1, 1i, 4i+1) | i ∈ Z3},

F2 = {(0i, 3i+2, 6i+1, 2i, 5i+2, 1i, 4i+2) | i ∈ Z3}.

Lemma 8 [3] Let Kd(m) be the complete multipartite graph with d parts of
size m, if d and m are both odd integers, then there is a 2-factorization of
Kd(m), in which each 2-factor is a Cm-factor.

Now we decompose K7,7,7 into C3-factors and C7-factors.

Lemma 9 (K7,7,7;C
α
3 , C

β
7 ) exists for α ∈ {0, 1, 3, 5, 7} with α+ β = 7.

Proof For α = 0, (K7,7,7;C
7
7 ) exists by Lemma 8.

For α = 1, decompose {E01(d) ∪ E12(d) ∪ E20(d) | d = 1, 2, . . . , 6} into 6
C7-factors by Lemma 5-7, the remaining edges E01(0) ∪E12(0) ∪E20(0) form
a C3-factor by Lemma 3.

For α = 3, decompose {E01(d) ∪ E12(d) ∪ E20(d) | d = 2, 3, 4, 5} into
4 C7-factors by Lemma 6 and Lemma 7. The 3 C3-factors are Ei(i+1)(0) ∪
E(i+1)(i+2)(1) ∪ E(i+2)i(6), i ∈ Z3 by Lemma 3.

For α = 5, decompose {E01(d)∪E12(d)∪E20(d) | d = 3, 4} into 2 C7-factors
by Lemma 7. By Lemma 3 the 5 C3-factors are

E01(0) ∪ E12(1) ∪ E23(6), E01(2) ∪ E12(0) ∪ E23(5),

E01(5) ∪ E12(2) ∪ E23(0), E01(6) ∪ E12(6) ∪ E23(2),

E01(1) ∪ E12(5) ∪ E23(1).

For α = 7, by Lemma 3 the 7 C3-factors are

Ei(i+1)(1) ∪ E(i+1)(i+2)(2) ∪ E(i+2)i(4), i ∈ Z3;

Ej(j+1)(3) ∪ E(j+1)(j+2)(5) ∪ E(j+2)j(6), j ∈ Z3;

E01(0) ∪ E12(0) ∪ E23(0).

3 Factorizations of K21

In this section, Vi,KVi
,KVi,Vj

,KV0,V1,V2
, and Eij(d) have the same meanings

as given in Section 2. Let V (K21) = V0 ∪ V1 ∪ V2, then the edge set

E(K21) =

(

⋃

i∈Z3

E(KVi
)

)

∪ E(KV0,V1,V2
).

Now we decompose K21 into γ C3-factors and δ C7-factors with γ + δ = 10.

Lemma 10 (K21;C
γ
3 , C

δ
7 ) exists for γ ∈ {0, 1, 3, 5, 7, 10} with γ + δ = 10.
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Proof Since E(KVi
) =

3
⋃

d=1

Eii(d) for i ∈ Z3, by Lemma 4, (KVi
;C3

7 ) exists.

Then by Lemma 1, (
⋃

i∈Z3
KVi

;C3
7 ) exists. Hence, it is easy to observe that

if (KV0,V1,V2
;Cα

3 , C
β
7 ) exists, then (KV1∪V2∪V3

;Cα
3 , C

β+3
7 ) exists by Lemma 2.

Thus by Lemma 9, (K21;C
γ
3 , C

δ
7 ) exists for γ ∈ {0, 1, 3, 5, 7} with γ + δ = 10.

For (γ, δ) = (10, 0), (K21;C
γ
3 , C

δ
7 ) exists by Theorem 1.

Lemma 11 (K21;C
γ
3 , C

δ
7 ) exists for (γ, δ) = (8, 2).

Proof Let

F0 ={(00, 10, 21), (11, 41, 52), (12, 62, 30), (20, 61, 42),

(40, 01, 32), (50, 31, 22), (60, 51, 02)},

then F0 is a C3-factor ofK21. Six additional C3-factors, denoted by F1, F2, . . . ,
F6, are formed by developing F0 mod(7,−). Let F7 = E01(0)∪E12(0)∪E20(0),
then by Lemma 3 F7 is a C3-factor. Let F8 = E00(2) ∪ E11(1) ∪ E22(1), F9 =
E00(3)∪E11(2)∪E22(3), then F8 and F9 are both C7-factors of K21 by Lemma
1 and Lemma 4. Finally, one can check that each edge of K21 is used exactly
once.

Lemma 12 (K21;C
γ
3 , C

δ
7 ) exists for (γ, δ) = (9, 1).

Proof Let

F0 ={(00, 10, 61), (01, 11, 42), (02, 22, 30), (20, 40, 41),

(31, 51, 32), (52, 62, 50), (60, 21, 12)},

then F0 is a C3-factor ofK21. Six additional C3-factors, denoted by F1, F2, . . . ,
F6, are formed by developing F0 mod(7,−). Let F7 = E01(1)∪E12(2)∪E20(4),
F8 = E01(4)∪E12(1)∪E20(2), then by Lemma 3 F7 and F8 are both C3-factors.
Let F9 = E00(3) ∪ E11(3) ∪ E22(3), then F9 is a C7-factor of K21 by Lemma
1 and Lemma 4. Again, one can check that each edge of K21 is used exactly
once.

Combining Lemmas 10-12, we have the following result.

Lemma 13 (K21;C
γ
3 , C

δ
7 ) exists for γ ∈ {0, 1, 3, 5, 7, 8, 9, 10} with γ+ δ = 10.

4 Main Results

Let n be an odd integer. Let r and s be positive integers with r+s = n−1
2 . It is

easy to see that a necessary condition for the existence of an HW (n; r, s; 3, 7)
is n ≡ 21 (mod 42). Let n = 42t + 21, t ≥ 0. Let the vertex set of Kn be
V (Kn) = {ji | j ∈ Z7, i ∈ Z6t+3}, denote Vi = Z7 × {i} for i ∈ Z6t+3. The
next lemma is based on a construction given in the paper [1].

Lemma 14 For n = 42t+ 21 and t ≥ 0, (Kn;K
3t
7,7,7,K21) exists.
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Proof By Theorem 1, (K6t+3;C
3t+1
3 ) exists for t ≥ 0, it is actually the well

known Kirkman triple system of order 6t + 3. Let the vertex set of K6t+3

be {Vi | i ∈ Z6t+3}, replace each 3-cycle (Vi, Vj , Vk) with the complete tri-
partite graph K7,7,7 on vertex sets Vi, Vj and Vk, then each C3-factor of
K6t+3 corresponds to a K7,7,7-factor of Kn, also these K7,7,7-factors form
the complete multipartite graph K(6t+3)(7) on vertex sets V0, V1, . . . , V6t+2,

i.e. (K(6t+3)(7);K
3t+1
7,7,7 ) exists. Hence (Kn;K

3t+1
7,7,7 ,K7) exists and the union of

any K7,7,7-factor and the K7-factor of Kn is actually a K21-factor. Therefore,
(Kn;K

3t
7,7,7, K21) exists.

Lemma 15 Let αi ∈ {0, 1, 3, 5, 7} with αi + βi = 7 for i = 1, 2, . . . , 3t, and

γ ∈ {0, 1, 3, 5, 7, 8, 9, 10}with γ+δ = 10, then there exists an HW (n;
∑3t

i=1 αi+

γ,
∑3t

i=1 βi + δ; 3, 7).

Proof By Lemma 14, we decomposeKn into 3t K7,7,7-factors and aK21-factor.
For the ith K7,7,7-factor, let αi ∈ {0, 1, 3, 5, 7} and αi + βi = 7. Then

decompose eachK7,7,7 of this K7,7,7-factor into αi C3-factors and βi C7-factors
by Lemma 9, by Lemma 1 these 2-factors of K7,7,7 form αi C3-factors and βi

C7-factors of Kn.
Similarly, the K21-factor of Kn can be decomposed into γ C3-factors and

δ C7-factors for γ ∈ {0, 1, 3, 5, 7, 8, 9, 10} with γ + δ = 10 by Lemma 1 and 13.

Then by Lemma 2, (Kn;C
∑

3t
i=1

αi+γ

3 , C
∑

3t
i=1

βi+δ

7 ) exists, i.e. there exists an

HW (n;
∑3t

i=1 αi + γ,
∑3t

i=1 βi + δ; 3, 7).

We are now ready to prove the main theorem of this paper.

Proof of Theorem 2 As noted earlier, the condition n ≡ 21 (mod 42) is nec-
essary, we now prove sufficiency. Let n = 42t+21, the case t = 0 (i.e. n = 21)
is solved by Lemma 13.

For the case t > 0, let r = 7a+ b, where 0 ≤ b < 7. For the existence of an
HW (n; r, s; 3, 7), we only need to assign a proper value to each of {γ, αi | i =
1, 2, . . . , 3t} in Lemma 15. Note that if a = 3t+ 1, then b < 3 (the case b = 3
is the case s = 0, which is covered by Theorem 1).

If b = 0 and a < 3t+ 1, then let γ = 0 and αi =

{

7, for 1 ≤ i ≤ a,

0, for a < i ≤ 3t.

If b = 0 and a = 3t+ 1, then let γ = 7 and αi = 7 for i = 1, 2, . . . , 3t.

If b = 1 and a < 3t+ 1, then let γ = 1 and αi =

{

7, for 1 ≤ i ≤ a,

0, for a < i ≤ 3t.

If b = 1 and a = 3t+ 1, then let γ = 8 and αi = 7 for i = 1, 2, . . . , 3t.

If b = 2 and a < 3t, then let γ = 1 and αi =











1, for i = 1,

7, for 2 ≤ i ≤ a+ 1,

0, for a+ 1 < i ≤ 3t.

If b = 2 and a = 3t, then let γ = 9 and αi =

{

1, for i = 1,

7, for 2 ≤ i ≤ 3t.

If b = 2 and a = 3t+ 1, then let γ = 8 and αi = 7 for i = 1, 2, . . . , 3t.
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If b = 3, then let γ = 3 and αi =

{

7, for 1 ≤ i ≤ a,

0, for a < i ≤ 3t.

If b = 4 and a < 3t, then let γ = 3 and αi =











1, for i = 1,

7, for 2 ≤ i ≤ a+ 1,

0, for a+ 1 < i ≤ 3t.

If b = 4 and a = 3t, then let γ = 8 and αi =

{

3, for i = 1,

7, for 1 < i ≤ 3t.

If b = 5, then let γ = 5 and αi =

{

7, for 1 ≤ i ≤ a,

0, for a < i ≤ 3t.

If b = 6 and a < 3t, then let γ = 1 and αi =











5, for i = 1,

7, for 2 ≤ i ≤ a+ 1,

0, for a+ 1 < i ≤ 3t.

If b = 6 and a = 3t, then let γ = 8 and αi =

{

5, for i = 1,

7, for 1 < i ≤ 3t.
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