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Abstract

Let G be a k-connected graph with k ≥ 2. In this paper we first prove that: For

two distinct vertices x and z in G, it contains a path passing through its any k − 2

specified vertices with length at least the average degree of the vertices other than x

and z. Further, with this result, we prove that: If G has n vertices and m edges, then

it contains a cycle of length at least 2m/(n−1) passing through its any k−1 specified

vertices. Our results generalize a theorem of Fan on the existence of long paths and a

classical theorem of Erdös and Gallai on the existence of long cycles under the average

degree condition.
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1 Introduction

We use Bondy and Murty [2] for terminology and notations not defined here and consider

finite simple graphs only.

Let G be a graph and H a subgraph of G. We use V (H) and E(H) to denote the set

of vertices and edges of H, respectively, and use e(H) for the number of the edges of H.

For a vertex v ∈ V (G), NH(v) denotes the set, and dH(v) the number, of neighbors of v in

H. We call dH(v) the degree of v in H. Let x and z be two distinct vertices of G. A path

connecting x and z is called an (x, z)-path. For a subset Y of V (G), an (x, z)-path passing

through all the vertices in Y is called an (x, Y, z)-path, and a cycle passing through all the

vertices in Y is called a Y -cycle. If Y contains only one vertex y, an (x, {y}, z)-path and a

∗Corresponding author. E-mail address: sgzhang@nwpu.edu.cn (S. Zhang).
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{y}-cycle are simply denoted by an (x, y, z)-path and a y-cycle, respectively. The distance

between x and z in H, denoted by dH(x, z), is the length of a shortest (x, z)-path with all

its internal vertices in H. If no such a path exists, we define dH(x, z) = ∞. The codistance

between x and z in H, denoted by d∗H(x, z), is the length of a longest (x, z)-path with

all its internal vertices in H. If no such a path exists, we define d∗H(x, z) = 0. When no

confusion occurs, we use N(v), d(v), d(x, z) and d∗(x, z) instead of NG(v), dG(v), dG(x, z)

and d∗G(x, z), respectively.

Long path and cycle problems are interesting and important in graph theory and have

been deeply studied, see [1, 7]. The following Theorem by Erdös and Gallai opened the

study on long paths with specified end vertices.

Theorem 1 (Erdös and Gallai [5]). Let G be a 2-connected graph and x and z be two

distinct vertices of G. If d(v) ≥ d for every vertex v ∈ V (G)\{x, z}, then G contains an

(x, z)-path of length at least d.

In fact, Theorem 1 has a stronger extension due to Enotomo.

Theorem 2 (Enotomo [4]). Let G be a 2-connected graph and x and z be two distinct

vertices of G. If d(v) ≥ d for every vertex in V (G)\{x, z}, then for every given vertex

y ∈ V (G)\{x, z}, G contains an (x, y, z)-path of length at least d.

Another direction of extending Theorem 1 is to weaken the minimum degree condition

to an average degree condition. Fan finished this work as follows.

Theorem 3 (Fan [6]). Let G be a 2-connected graph and x and z be two distinct vertices

of G. If the average degree of the vertices other than x and z is at least r, then G contains

an (x, z)-path of length at least r.

The following graph shows that one cannot replace the minimum degree condition in

Theorem 2 by the average degree condition. Let H be a complete graph on n− 1 vertices

and x, z ∈ V (H). Let G be a graph obtained from H by adding a new vertex y and two

edges xy, yz. Then the length of the longest (x, y, z)-path in G is 2, less than the average

degree of the vertices other than x and z when n ≥ 5.

In this paper, we first generalize Theorem 3 to k-connected graphs and get the following

result.

Theorem 4. Let G be a k-connected graph with k ≥ 2, and x and z be two distinct vertices

of G. If the average degree of the vertices other than x and z is at least r, then for any

subset Y of V (G) with |Y | = k − 2, G contains an (x, Y, z)-path of length at least r.
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We postpone the proof of Theorem 4 to Section 3.

Now we consider long cycles passing through specified vertices in graphs. Theorem

5 shows the existence of long cycles in 2-connected graph under the minimum degree

condition, and Theorem 6 extends Theorem 5 to k-connected graphs.

Theorem 5 (Locke [8]). Let G be a 2-connected graph. If the minimum degree of G is

at least d, then for any two vertices y1 and y2 of G, G contains either a {y1, y2}-cycle of

length at least 2d or a Hamilton cycle.

Theorem 6 (Egava, Glas and Locke [3]). Let G be a k-connected graph with k ≥ 2. If

the minimum degree of G is at least d, then for any subset Y of V (G) with |Y | = k, G

contains either a Y -cycle of length at least 2d or a Hamilton cycle.

On the existence of long cycles in graphs with a given number of edges, Erdös and

Gallai gave the following result.

Theorem 7 (Erdös and Gallai [5]). Let G be a 2-edge-connected graph on n vertices.

Then G contains a cycle of length at least 2e(G)
n−1 .

In this paper, as an application of Theorems 4, we give the following theorem on long

cycles passing through specified vertices of graphs with a given number of edges.

Theorem 8. Let G be a k-connected graph on n vertices with k ≥ 2. Then for any subset

Y of V (G) with |Y | = k − 1, G contains a Y -cycle of length at least 2e(G)
n−1 .

In Theorem 8, one cannot expect a cycle passing through k specified vertices of length

at least 2e(G)/(n − 1). Let H be a complete graph on n − k vertices with n > 3k and

u1, u2, . . . , uk be k vertices of H. Let Y = {v1, v2, . . . , vk} be a set of vertices not in V (H).

We construct a graph G with V (G) = V (H)∪Y and E(G) = E(H)∪{uivj : 1 ≤ i, j ≤ k}.

Then G is a k-connected graph and the longest Y -cycle has length 2k, which is less than

2e(G)

n− 1
=

(n− k)(n − k − 1) + 2k2

n− 1
.

We postpone the proof of Theorem 8 in Section 4.

2 Preliminaries

Let G be a graph and P , H two disjoint subgraphs of G. We use E(P,H) to denote

the set, and e(P,H) the number, of edges with one vertex in P and the other in H. If

E(P,H) 6= ∅, then we call P and H are joined. We use NP (H) to denote the set of
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vertices in P which are joined to H. If x is a vertex in G − P , we say that x is locally

k-connected to P (in G) if there are k paths connecting x to vertices in P such that any

two of them have only the vertex x in common. We say that H is locally k-connected to

P (in G) if for every vertex x ∈ V (H), x is locally k-connected to P . Note that if H is

locally k-connected to P , then H is locally l-connected to P for all l, 0 ≤ l ≤ k; and, if G

is k-connected and |V (P )| ≥ k, then H is locally k-connected to P in G.

The following propositions on local k-connectedness are proved in [6].

Proposition 1 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G. If H is

locally k-connected to P in the subgraph induced by V (H) ∪ V (P ), then E(P,H) contains

an independent set of t edges, where t ≥ min{k, |V (H)|}.

Proposition 2 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G. Let

u ∈ NP (H) and G′ be the graph obtained from G by deleting all edges from u to H. If H

is locally k-connected to P in G, then H is locally (k − 1)-connected to P in G′.

Proposition 3 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G, and B

a block of H. Let H ′ be the subgraph obtained from H by contracting B. If H is locally

k-connected to P in G, then H ′ is also locally k-connected to P in the resulting graph.

Next we introduce the concept of local maximality for paths.

Let P be a path of a graph G, and u, v ∈ V (P ). We use P [u, v] to denote the segment

of P from u to v, and P (u, v) the segment obtained from P [u, v] by deleting the two end

vertices u and v. Let H be a component of G − P . We say that P is a locally longest

path with respect to H if we cannot obtain a longer path than P by replacing the segment

P [u, v] by a (u, v)-path with all its internal vertices in H. In other words, P is locally

longest with respect to H if, for any u, v ∈ V (P ),

e(P [u, v]) ≥ d∗H(u, v).

If P is an (x, Y, z)-path of G, where x, z ∈ V (G) and Y ⊂ V (G), then we say that P is a

locally longest (x, Y, z)-path with respect to H if we cannot obtain a longer (x, Y, z)-path

than P by replacing the segment P [u, v] with Y ∩ V (P (u, v)) = ∅ by a (u, v)-path with

all its internal vertices in H. Note that if P is a longest path (longest (x, Y, z)-path)

in a graph G, then, of course, P is a locally longest path (locally longest (x, Y, z)-path)

with respect to any component of G − P . If two vertices u and u′ in V (P ) are joined to

H by two independent edges, then we call {u, u′} a strong attached pair of H to P . A

strong attachment of H to P (in G) is a subset T = {u1, u2, . . . , ut} ⊂ NP (H), where ui,
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1 ≤ i ≤ t, are in order along P , such that each ordered pair {ui, ui+1}, 1 ≤ i ≤ t− 1, is a

strong attached pair of H to P . A strong attachment T of H to P is maximum if it has

maximum cardinality over all strong attachments of H to P .

Lemma 1 (Fan [6]). Let G be a graph and P a path of G. Suppose that H is a component

of G − P and T = {u1, u2, . . . , ut} is a maximum strong attachment of H to P . Set

S = NP (H)\T and s = |S|. Then the following statements are true:

(1) Every vertex in S is joined to exactly one vertex in H.

(2) For each segment P [ui, ui+1], 1 ≤ i ≤ t− 1, suppose that

NP (H) ∩ V (P [ui, ui+1]) = {a0, a1, . . . , aq, aq+1},

where a0 = ui, aq+1 = ui+1 and aj, 0 ≤ j ≤ q + 1, are in order along P . Then there is a

subscript m, 0 ≤ m ≤ q, such that

NH(aj) = NH(a0), for 0 ≤ j ≤ m,

and

NH(aj) = NH(aq+1), for m+ 1 ≤ j ≤ q + 1.

Besides, if

NP (H) ∩ V (P [x, u1]) = {a1, . . . , aq, aq+1},

where, aq+1 = u1, then

NH(aj) = NH(aq+1), for 1 ≤ j ≤ q + 1;

and if

NP (H) ∩ V (P [ut, z]) = {a0, a1, . . . , aq},

where, a0 = ut, then

NH(aj) = NH(a0), for 0 ≤ j ≤ q.

(3) If H is locally k-connected to P in G, then

t ≥ min{k, h + d2},

where h = |V (H)| and d2 is the number of vertices in NP (H) which has at least two

neighbors in H.

Lemma 1 (2) is somewhat different from that in [6], but the proofs of them are similar.

For a path P , we use l(P ) to denote the length of P .
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Lemma 2. Let G be a graph, P an (x, Y, z)-path of G, where x, z ∈ V (G) and Y ⊂ V (G),

H a component of G−P and T = {u1, u2, . . . , ut} a maximum strong attachment of H to

P . Set S = NP (H)\T and s = |S|. Suppose that P is a locally longest (x, Y, z)-path with

respect to H, and θ = |{x, z} ∩NP (H)|. Set

Tr = {ui ∈ T\{ut} : Y ∩ V (P (ui, ui+1)) = ∅} and tr = |Tr|.

Then

l(P ) ≥
∑

ui∈Tr

d∗H(ui, ui+1) + 2(s + t− tr)− θ.

Proof. If t = 0, then s = 0 and the statement is trivially true. Suppose now that t ≥ 1.

Consider a segment P [ui, ui+1], 1 ≤ i ≤ t− 1. Suppose that

NP (H) ∩ V (P [ui, ui+1]) = {a0, a1, . . . , aq, aq+1},

where q = |S ∩ V (P [ui, ui+1])|, a0 = ui, aq+1 = ui+1, and aj, 0 ≤ j ≤ q + 1, are in order

along P .

If Y ∩ V (P (ui, ui+1)) = ∅, then by Lemma 1 (2), there is a subscript m, 0 ≤ m ≤ q,

such that

NH(a0) = NH(am) and NH(aq+1) = NH(am+1).

Therefore

d∗H(am, am+1) = d∗H(a0, aq+1) = d∗H(ui, ui+1).

Since P is a locally longest (x, Y, z)-path with respect to H, we have

l(P [ui, ui+1]) ≥

q∑

j=0

d∗H(aj , aj+1) = d∗H(am, am+1) +

q∑

j=0

j 6=m

d∗H(aj, aj+1)

= d∗H(ui, ui+1) +

q∑

j=0

j 6=m

d∗H(aj , aj+1).

Note that d∗H(aj , aj+1) ≥ 2, for every j, 0 ≤ j ≤ q, we have

l(P [ui, ui+1]) ≥ d∗H(ui, ui+1) + 2q.

If Y ∩ V (P (ui, ui+1)) 6= ∅, then noting that l(P [aj , aj+1]) ≥ 2, we have

l(P [ui, ui+1]) =

q∑

j=0

l(P [aj , aj+1]) ≥ 2q + 2.

Besides, consider the two segments P [x, u1] and P [ut, z]. Suppose that

NP (H) ∩ V (P [x, u1]) = {a0, a1, . . . , am}
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and

NP (H) ∩ V (P [ut, z]) = {am+1, am+2, . . . , aq+1},

where m = |S ∩ V (P [x, u1])|, q − m = |S ∩ V (P [ut, z])|, am = u1, am+1 = ut, and aj,

0 ≤ j ≤ q + 1 are in order along P . Note that l(P [x, a0]) + l(P [aq+1, z]) ≥ 2 − θ and

l(P [aj , aj+1]) ≥ 2, for every 0 ≤ j ≤ q, and j 6= m, we have

l(P [x, u1]) + l(P [ut, z]) ≥ 2q + 2− θ.

Thus summing over the lengths of all the segments, yields

l(P ) = l(P [x, u1]) +

t−1∑

i=1

l(P [ui, ui+1]) + l(P [ut, z])

≥ 2(|S ∩ V (P [x, u1])|+ |S ∩ V (P [ut, z])|) + 2− θ

+
t−1∑

i=1
ui∈Tr

(d∗H(ui, ui+1) + 2|S ∩ V (P [ui, ui+1])|) +
t−1∑

i=1
ui /∈Tr

(2|S ∩ V (P [ui, ui+1])|+ 2)

=
∑

ui∈Tr

d∗H(ui, ui+1) + 2(s + t− tr)− θ.

This ends the proof.

In the following, we call a strong attached pair {uj , uj+1} of H to P in G transitive if

Y ∩ V (P (uj , uj+1)) = ∅.

Lemma 3. Let G be a graph and P a path of G. Suppose that H is a separable component

of G − P , B is an endblock of H, b is the cut vertex of H contained in B, M = B − b.

Let T = {u1, u2, . . . , ut} be a maximum strong attachment of H to P . If H is locally

k-connected to P , then

(1) |NP (M) ∩ T | ≥ min{k − 1,m+ d′2}; and

(2) there exist at least min{k − 1,m+ d′2} strong attached pairs which are joined to M ,

where m = |V (M)| and d′2 is the number of vertices in NP (M) which has at least two

neighbors in H.

Proof. Since H is locally k-connected to P , |V (P )| ≥ k. It is easy to know that M is

locally (k− 1)-connected to P in the subgraph induced by V (P )∪ V (M). By Proposition

1, there are min{k−1,m} independent edges in E(P,M). Let viwi, 1 ≤ i ≤ min{k−1,m}

be such edges, where vi ∈ V (P ) and wi ∈ V (M).

If vi has at least two neighbors in H, then by Lemma 1 (1), vi ∈ T . If vi has only one

neighbor wi in H, then by Lemma 1 (2), there exists a vertex v′i (maybe = vi) in T which

also has only one neighbor wi in H. This implies that |NP (M) ∩ T | ≥ min{k − 1,m}.
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Now, we prove (1) by induction on d′2. If d′2 = 0, then by the analysis above, the

assertion is true. Thus we assume that d′2 ≥ 1.

Let uj be a vertex in NP (M) which has at least two neighbors in H (uj is of course in

T by Lemma 1 (1)). Let G′ be the graph obtained from G by deleting all edges from uj

to H. By Proposition 2, H is locally (k − 1)-connected to P in G′.

If uj = u1 or ut, or {uj−1, uj+1} are joined to H by two independent edges, then

T ′ = T\{uj} is a strong attachment of H to P in G′. Since uj is joined to at least two

vertices of H in G, any strong attachment of H to P in G′ together with uj is a strong

attachment of H to P in G. Since |T ′| = t − 1, we see that T ′ is a maximum strong

attachment of H to P in G′. By the induction hypothesis,

|NP (M) ∩ T ′| ≥ min{k − 2,m+ d′2 − 1}.

Therefore

|NP (M) ∩ T | ≥ min{k − 1,m+ d′2},

as required.

If uj ∈ {u2, . . . , ut−1}, and {uj−1, uj+1} are not joined to H by two independent edges,

i.e.,

NH(uj−1) = NH(uj+1) = {w},

for some w ∈ V (H), then

T ′ = T\{uj , uj+1} = {u1, . . . , uj−1, uj+2, . . . , ut}

is a strong attachment of H to P in G′. We prove now that T ′ is maximum by showing

that any strong attachment of H to G′ has cardinality at most t− 2 = |T ′|.

Let v1, v2 (6= uj) be the two vertices in NP (H) which are closest to uj on P , say v1

preceding, and v2 following, uj on P (but not necessarily adjacent to uj on P ). Since

|NH(uj)| ≥ 2 and by Lemma 1 (2),

NH(v1) = NH(uj−1) = {w} = NH(uj+1) = NH(v2).

By the choice of v1 and v2, for any maximum strong attachment {a1, a2, . . . , ap} of H

to P in G′, there is an integer l, 0 ≤ l ≤ p, such that v1, v2 ∈ V (P [al, al+1]), where

a0 = x and ap+1 = z. Since NH(v1) = {w} = NH(v2), it follows from Lemma 1

(2) that either NH(al) or NH(al+1) = {w}. The former implies a strong attachment

{a1, . . . , al, uj , v2, al+1, . . . , ap}, the latter a strong attachment {a1, . . . , al, v1, uj , al+1, . . . , ap},

of H to P in G; in either case we have that p+2 ≤ t, that is, p ≤ t− 2 = |T ′|. This shows

8



that T ′ is a maximum strong attachment of H to P in G′, as claimed. As before, by the

induction hypothesis,

|NP (M) ∩ T ′| ≥ min{k − 2,m+ d′2 − 1}.

Consequently

|NP (M) ∩ T | ≥ min{k − 1,m+ d′2},

which completes the proof of (1).

Now we prove (2). Clearly for every vertex uj ∈ NP (M)∩T\{ut}, the strong attached

pair {uj , uj+1} is joined toM . If |NP (M)∩T\{ut}| ≥ min{k−1,m+d′2}, then the assertion

is true. By (1), we assume that |NP (M)∩ T | = min{k− 1,m+ d′2} and ut ∈ NP (M) ∩ T .

By Lemma 1 (3), t ≥ min{k, h + d2} ≥ min{k − 1,m + d′2} + 1. This implies that

there exists at least one vertex in T\NP (M). We chose a vertex ui ∈ T\NP (M) such that

ui+1 ∈ NP (M) ∩ T . Then {ui, ui+1} together with {uj , uj+1} for uj ∈ NP (M) ∪ T\{ut}

are min{k − 1,m+ d′2} strong attached pairs joined to M .

In the following, we call a strong attached pair which is joined to M a good pair (with

respect to M). Let {uj , uj+1} be a strong attached pair. If one of the vertices in {uj , uj+1}

is joined to M , and the other to H −M , then we call it a better pair (with respect to M);

and if one of the vertices in {uj , uj+1} is joined to M , and the other to H − B, then we

call it a best pair (with respect to M).

3 Proof of Theorem 4

In order to prove the theorem, we chose a longest (x, Y, z)-path P in G. Clearly |V (P )| ≥ k.

Moreover, by the k-connectedness of G, for each component H of G− P , H is locally k-

connected to P , and P is a locally longest (x, Y, z)-path with respect to H. So it is

sufficient to prove that:

Proposition 4. Let G be a graph, P an (x, Y, z)-path of G, where x, z ∈ V (G), Y ⊂ V (G),

and |Y | = k − 2. Suppose that the average degree of vertices in V (G)\{x, z} is r. If for

each component H of G − P , H is locally k-connected to P , and P is a locally longest

(x, Y, z)-path with respect to H, then l(P ) ≥ r.

Proof. We prove this proposition by induction on |V (G−P )|. If V (G−P ) = ∅, note that

r ≤ |V (G)| − 1, the result is trivially true. So we assume that V (G− P ) 6= ∅. Let H be a

component of G− P .
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Let d = |NP (H)|, θ = |{x, z} ∩ NP (H)| and NP (H) = {v1, v2, . . . , vd}, where vi,

1 ≤ i ≤ d, are in order along P . Then, we have

l(P ) = l(P [x, v1]) +

d−1∑

i=1

l(P [vi, vi+1]) + l(P [vd, z]).

It is easy to know that l(P [x, v1])+l(P [vd, z]) ≥ 2−θ and l(P [vi, vi+1]) ≥ 2 for 1 ≤ i ≤ d−1.

Thus, we have

l(P ) ≥ 2d− θ.

Note that d ≥ k by the local k-connectedness of H to P and clearly θ ≤ 2. If r ≤ 2k−2,

then we have l(P ) ≥ 2k − 2 ≥ r, and the proof is complete. Thus we assume that

r > 2k − 2. (1)

Besides, if d ≥ (r + θ)/2, then l(P ) ≥ r, and we complete the proof. Thus, we assume

that

d < (r + θ)/2. (2)

Let T = {u1, u2, . . . , ut} be a maximum strong attachment of H to P . Set S =

NP (H)\T and s = |S| (note that s+ t = d). Let Tr = {ui ∈ T\{ut} : Y ∩V (P (ui, ui+1)) =

∅} and tr = |Tr|.

Clearly, for every transitive strong attached pair {uj , uj+1}, where uj ∈ Tr, we have

d∗H(uj , uj+1) ≥ 2. (3)

We distinguish two cases:

Case 1. H is nonseparable.

Let h = |V (H)| and r′ the average degree of vertices in V (H). If r′h+e(P−{x, z},H) ≤

rh, then we consider the graph G′ obtained from G by deleting the component H. Note

that

∑

v∈V (G′)\{x,z}

dG′(v) = r(|V (G)| − 2)− r′h− e(P − {x, z},H)

≥ r(|V (G)| − 2)− rh

= r(|V (G′)| − 2).

By the induction hypothesis, we have l(P ) ≥ r, and the proof is complete. Thus we assume

that

r′h+ e(P − {x, z},H) > rh (4)
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We use d1 to denote the number of vertices in NP (H) which have only one neighbor in

V (H), d2 = d − d1, θ1 to denote the number of vertices in {x, z} which have only one

neighbor in V (H) and θ2 = θ − θ1.

Clearly,

r′h ≤ h(h − 1 + d2) + d1 and e(P − {x, z},H) ≤ h(d2 − θ2) + d1 − θ1.

Thus, by (4), we have

h(h − 1 + 2d2 − θ2) + 2d1 − θ1 ≥ r′h+ e(P − {x, z},H) > rh.

Note that d1 = d− d2 and θ1 = θ − θ2, we have

h(h− 1 + 2d2 − θ2) + 2d− 2d2 − θ + θ2 ≥ rh.

By (2), we have

h(h − 1 + 2d2 − θ2) + (r + θ)− 2d2 − θ + θ2 > rh.

Thus

(h− 1)(h + 2d2 − r − θ2) > 0.

This implies that h ≥ 2 and h+ 2d2 > r + θ2 ≥ r, and then 2h+ 2d2 > r + 2. By (1), we

have 2h+ 2d2 > 2k, that is

h+ d2 > k. (5)

By (5) and Lemma 1 (3), t ≥ k. Since |Y | ≤ k − 2, there exists at least one transitive

strong attached pair (up, up+1) in T , where up ∈ Tr.

Let G′ be the subgraph induced by V (H) ∪ {up, up+1}. If upup+1 /∈ E(G), we add the

edge upup+1 in G′. Thus G′ is 2-connected and

∑

v∈V (G′)\{up,up+1}

dG′(v) =
∑

v∈V (H)

d(v) − e(NP (H)\{up, up+1},H)

= r′h− e(NP (H)\{up, up+1},H)

≥ rh− e(P − {x, z},H) − e(NP (H)\{up, up+1},H).

Note that

e(P − {x, z},H) ≤ (s+ t− θ)h, and

e(NP (H)\{up, up+1},H) ≤ (s+ t− 2)h,
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we have

∑

v∈V (G′)\{up,up+1}

dG′(v) ≥ rh− (s+ t− θ)h− (s+ t− 2)h

= (r − 2s− 2t+ θ + 2)h.

By Theorem 3, G′ contains a (up, up+1)-path of length at least r − 2s − 2t + θ + 2,

which implies that

d∗H(up, up+1) ≥ r − 2s− 2t+ θ + 2. (6)

Substituting (6) for d∗H(up, up+1) in Lemma 2 and (3) for the other terms, we have

l(P ) ≥ (r − 2s − 2t+ θ + 2) + 2(tr − 1) + 2(s+ t− tr)− θ ≥ r.

Case 2. H is separable.

Let B be an endblock of H, b the cut vertex of H contained in B, M = B − b,

m = |V (M)|, and r′′ the average degree of the vertices in V (M).

If r′′m + e(P − {x, z},M) + dM (b) ≤ rm, then we consider the graph G′ obtained

from G by contracting B. Let H ′ be the component of G′ − P obtained from H by

contracting B. By Proposition 3, H ′ is locally k-connected to P . Clearly P is a locally

longest (x, Y, z)-path with respect to H ′, and

∑

v∈V (G′)\{x,z}

dG′(v) ≥
∑

v∈V (G)\{x,z}

d(v)− r′′m− e(P − {x, z},M) − dM (b)

≥ r(|V (G)| − 2)− rm

= r(|V (G′)| − 2).

By the induction hypothesis, l(P ) ≥ r, and the proof is complete. Thus we assume that

r′′m+ e(P − {x, z},M) + dM (b) > rm. (7)

Let d′0 = |NP (H)\NP (M)|, d′1 be the number of vertices in NP (M) which have only

one neighbor in V (H), d′2 = d− d′0− d′1; θ
′
0 = |{x, z}∩NP (H)\NP (M)|, θ′1 be the number

of vertices in {x, z}∩NP (M) which have only one neighbor in V (H) and θ′2 = θ− θ′0− θ′1.

Now we prove that

m+ d′2 ≥ k − 1. (8)

Let B′ be an endblock of H other than B, b′ the cut vertex of H contained in B′,

M ′ = B′ − b′ and m′ = |V (M ′)|.

12



By the local k-connectedness of H to P , |NP (M
′)| ≥ k− 1. If |NP (M

′)\NP (M)| ≤ m,

then d′2 ≥ |NP (M) ∩NP (M
′)| ≥ k − 1−m, and m+ d′2 ≥ k − 1, and (8) holds. Thus we

assume that |NP (M
′)\NP (M)| ≥ m+ 1. So we have

d′0 ≥ m+ 1. (9)

Clearly,

r′′m ≤ m(m+ d′2) + d′1,

e(P − {x, z},M) ≤ m(d′2 − θ′2) + d′1 − θ′1, and

dM (b) ≤ m.

Thus, by (7),

m(m+ 2d′2 + 1− θ′2) + 2d′1 − θ′1 ≥ r′′m+ e(P − {x, z},M) + dM (b) > rm.

Note that d′1 = d− d′0 − d′2 and θ′1 = θ − θ′0 − θ′2, we have

m(m+ 2d′2 + 1− θ′2) + 2d− 2d′0 − 2d′2 − θ + θ′0 + θ′2 > rm.

By (2) and (9), we have

m(m+ 2d′2 + 1− θ′2) + (r + θ)− 2(m+ 1)− 2d′2 − θ + θ′0 + θ′2 > rm.

Thus

(m− 1)(m+ 2d′2 − r − θ′2) > 2− θ′0 ≥ 0.

This implies that m ≥ 2 and m+ 2d′2 > r + θ′2 ≥ r, and then 2m + 2d′2 > r + 2. By (1),

2m+ 2d′2 > 2k, that is m+ d′2 > k, and (8) holds.

By Lemma 3 (2), there exist at least k − 1 good pairs with respect to M . Since

|Y | = k − 2, there exists at least one transitive good pair {up, up+1} with respect to M .

Similarly there exists at least one transitive good pair {uq, uq+1} with respect to M ′.

First we assume that there is a transitive best pair with respect to M or M ′. Without

loss of generality, we assume that {up, up+1} is a best pair, where up ∈ NP (M) and

up+1 ∈ NP (H − B). Consider the subgraph G′ induced by V (B) ∪ {up}. If upb /∈ E(G),

we add the edge upb in G′. Thus G′ is 2-connected and

∑

v∈V (G′)\{up,b}

dG′(v) =
∑

v∈V (M)

d(v)− e(NP (H)\{up},M)

= r′′m− e(NP (H)\{up},M)

≥ rm− e(P − {x, z},M) − dM (b)− e(NP (H)\{up},M).
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Note that

e(P − {x, z},M) ≤ (s+ t− θ)m,

dM (b) ≤ m, and

e(NP (H)\{up},M) ≤ (s+ t− 1)m,

we have

∑

v∈V (G′)\{up,b}

dG′(v) ≥ rm− (s+ t− θ)m−m− (s + t− 1)m

= (r − 2s− 2t+ θ)m.

By Theorem 3, G′ contains a (up, b)-path of length at least r − 2s− 2t+ θ. It is clear

that there is a (b, up+1)-path in H −B of length at least 2, which implies that

d∗H(up, up+1) ≥ r − 2s− 2t+ θ + 2. (10)

Substituting (10) for d∗H(up, up+1) in Lemma 2 and (3) for the other terms, we have

l(P ) ≥ (r − 2s − 2t+ θ + 2) + 2(tr − 1) + 2(s+ t− tr)− θ ≥ r,

as required.

So, we assume that there are no transitive best pairs with respect to M or M ′.

Now we assume that there is a transitive better pair (but not best pair) with respect

to M or M ′. Without loss of generality, we assume that {up, up+1} is a better pair, where

up ∈ NP (M) and up+1 ∈ NP (b). Consider the subgraph G′ induced by V (B) ∪ {up}. If

upb /∈ E(G), we add the edge upb in G′. Thus G′ is 2-connected and

∑

v∈V (G′)\{up,b}

dG′(v) ≥ rm− e(P − {x, z},M) − dM (b)− e(NP (H)\{up},M).

Note that

e(P − {x, z},M) ≤ (s+ t− θ)m, and

dM (b) ≤ m,

and since at least one vertex of uq and uq+1 is not joined to M (otherwise, {uq, uq+1} will

be a best pair), we have

e(NP (H)\{up},M) ≤ (s+ t− 2)m.
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Thus we have

∑

v∈V (G′)\{up,b}

dG′(v) ≥ rm− (s+ t− θ)m−m− (s + t− 2)m

= (r − 2s− 2t+ θ + 1)m.

By Theorem 3, G′ contains a (up, b)-path of length at least r − 2s − 2t + θ + 1, and

then, by bup+1 ∈ E(G),

d∗H(up, up+1) ≥ r − 2s− 2t+ θ + 2.

Thus we also have l(P ) ≥ r.

So, we assume that there are no transitive better pairs with respect to M or M ′. Thus

{up, up+1} and {uq, uq+1} are two distinct strong attached pairs.

If m = 1, then {up, up+1} will be a better pair with respect to M . Thus we assume

that m ≥ 2.

If m = 2, then B is a triangle, and d∗H(up, up+1) = 4. Since {up, up+1} is not a better

pair, we have that up ∈ NP (M). Similar to the analysis above, we have d∗H(up, b) ≥

r − 2s− 2t+ θ + 1. But d∗H(up, b) = 3, we have

d∗H(up, up+1) = 4 ≥ r − 2s− 2t+ θ + 2.

Then l(P ) ≥ r.

So we assume that

m ≥ 3, and similarly, m′ ≥ 3. (11)

It is easy to know that d∗H(up, up+1) ≥ 4. Thus if r − 2s− 2t+ θ ≤ 2, we will have

d∗H(up, up+1) ≥ r − 2s− 2t+ θ + 2,

and then l(P ) ≥ r. So we assume that

r − 2s − 2t+ θ ≥ 2. (12)

Note that up and up+1 are joined to B by two independent edges. Consider the

subgraph G′ induced by V (B)∪ {up, up+1}. If upup+1 /∈ E(G), we add the edge upup+1 in
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G′. Thus G′ is 2-connected and

∑

v∈V (G′)\{up,up+1}

dG′(v)

=
∑

v∈V (M)

d(v)− e(NP (H)\{up, up+1},M) + dM (b) + |{up, up+1} ∩N(b)|

= r′′m+ dM (b)− e(NP (H)\{up, up+1},M) + |{up, up+1} ∩N(b)|

≥ rm− e(P − {x, z},M) − e(NP (H)\{up, up+1},M).

Note that

e(P − {x, z},M) ≤ (s+ t− θ)m, and

e(NP (H)\{up, up+1},M) ≤ (s+ t− 2)m,

we have

∑

v∈V (G′)\{up,up+1}

dG′(v) ≥ rm− (s + t− θ)m− (s+ t− 2)m

= (r − 2s− 2t+ θ + 2)m.

By Theorem 3, G′ contains a (up, up+1)-path of length at least (r − 2s − 2t + θ +

2)m/(1 +m), which implies that

d∗H(up, up+1) ≥ (r − 2s − 2t+ θ + 2)
m

1 +m

≥
3

4
(r − 2s− 2t+ θ + 2).

(note that m ≥ 3), and similarly,

d∗H(uq, uq+1) ≥
3

4
(r − 2s− 2t+ θ + 2).

Then by (12),

d∗H(up, up+1) + d∗H(uq, uq+1)

≥
3

2
(r − 2s− 2t+ θ + 2)

= (r − 2s − 2t+ θ + 2) +
1

2
(r − 2s − 2t+ θ + 2)

≥ r − 2s− 2t+ θ + 4.

Thus, by Lemma 2, we have

l(P ) ≥ (r − 2s − 2t+ θ + 4) + 2(tr − 2) + 2(s+ t− tr)− θ ≥ r.

The proof is complete.
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4 Proof of Theorem 8

By the k-connectedness of G, it contains a Y -cycle. If 2e(G)/(n − 1) ≤ 3, then the result

is trivially true. Thus we assume that 2e(G)/(n − 1) > 3.

We chose a vertex y ∈ Y , and construct a graph G′ such that V (G′) = V (G) ∪ {y′},

where y′ /∈ V (G) and E(G′) = E(G) ∪ {vy′ : v ∈ NG(y)}. Clearly, G′ is k-connected.

Besides, we have that

e(G′) = e(G) + dG(y) and dG′(y) = dG′(y′) = dG(y),

and the order of G′ is n + 1. Now, by Theorem 4, there exists a (y, Y \{y}, y′)-path P of

length at least

2e(G′)− dG′(y)− dG′(y′)

(n+ 1)− 2
=

2(e(G) + dG(y))− 2dG(y)

n− 1
=

2e(G)

n − 1
.

Let uy′ be the last edge of P , then uy ∈ E(G) and C = P [y, u]uy is a cycle of G

passing through all the vertices in Y of length at least 2e(G)/(n−1), which completes the

proof. �
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