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Abstract

Let G be a k-connected graph with k£ > 2. In this paper we first prove that: For
two distinct vertices « and z in G, it contains a path passing through its any k — 2
specified vertices with length at least the average degree of the vertices other than x
and z. Further, with this result, we prove that: If G has n vertices and m edges, then
it contains a cycle of length at least 2m/(n — 1) passing through its any k — 1 specified
vertices. Our results generalize a theorem of Fan on the existence of long paths and a
classical theorem of Erdos and Gallai on the existence of long cycles under the average

degree condition.
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1 Introduction

We use Bondy and Murty [2] for terminology and notations not defined here and consider
finite simple graphs only.

Let G be a graph and H a subgraph of G. We use V(H) and E(H) to denote the set
of vertices and edges of H, respectively, and use e(H) for the number of the edges of H.
For a vertex v € V(G), Ny (v) denotes the set, and dy(v) the number, of neighbors of v in
H. We call dg(v) the degree of v in H. Let x and z be two distinct vertices of G. A path
connecting x and z is called an (z, z)-path. For a subset Y of V(G), an (z, z)-path passing
through all the vertices in Y is called an (x,Y), z)-path, and a cycle passing through all the

vertices in Y is called a Y-cycle. If Y contains only one vertex y, an (z, {y}, z)-path and a
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{y}-cycle are simply denoted by an (z,y, z)-path and a y-cycle, respectively. The distance
between z and z in H, denoted by dg(x, z), is the length of a shortest (x, z)-path with all
its internal vertices in H. If no such a path exists, we define dg(z, z) = co. The codistance
between x and z in H, denoted by dj;(z,z2), is the length of a longest (z,z)-path with
all its internal vertices in H. If no such a path exists, we define dj;(x,z) = 0. When no
confusion occurs, we use N (v), d(v), d(x, z) and d*(z, z) instead of Ng(v), dg(v), da(z, z)
and df(x, z), respectively.

Long path and cycle problems are interesting and important in graph theory and have
been deeply studied, see [II, [7]. The following Theorem by Erdés and Gallai opened the

study on long paths with specified end vertices.

Theorem 1 (Erdos and Gallai [5]). Let G be a 2-connected graph and x and z be two
distinct vertices of G. If d(v) > d for every vertex v € V(G)\{z, z}, then G contains an
(x, z)-path of length at least d.

In fact, Theorem 1 has a stronger extension due to Enotomo.

Theorem 2 (Enotomo [4]). Let G be a 2-connected graph and x and z be two distinct
vertices of G. If d(v) > d for every vertex in V(G)\{x,z}, then for every given vertex
y € V(G)\{z, 2z}, G contains an (x,y, z)-path of length at least d.

Another direction of extending Theorem 1 is to weaken the minimum degree condition

to an average degree condition. Fan finished this work as follows.

Theorem 3 (Fan [6]). Let G be a 2-connected graph and x and z be two distinct vertices
of G. If the average degree of the vertices other than x and z is at least r, then G contains

an (x, z)-path of length at least r.

The following graph shows that one cannot replace the minimum degree condition in
Theorem 2 by the average degree condition. Let H be a complete graph on n — 1 vertices
and z,z € V(H). Let G be a graph obtained from H by adding a new vertex y and two
edges zy,yz. Then the length of the longest (x,y, z)-path in G is 2, less than the average
degree of the vertices other than x and z when n > 5.

In this paper, we first generalize Theorem 3 to k-connected graphs and get the following

result.

Theorem 4. Let G be a k-connected graph with k > 2, and x and z be two distinct vertices
of G. If the average degree of the vertices other than x and z is at least r, then for any

subset Y of V(G) with |Y| =k —2, G contains an (z,Y, z)-path of length at least r.



We postpone the proof of Theorem 4 to Section 3.
Now we consider long cycles passing through specified vertices in graphs. Theorem
5 shows the existence of long cycles in 2-connected graph under the minimum degree

condition, and Theorem 6 extends Theorem 5 to k-connected graphs.

Theorem 5 (Locke [8]). Let G be a 2-connected graph. If the minimum degree of G is
at least d, then for any two vertices y1 and yy of G, G contains either a {y1,y2}-cycle of
length at least 2d or a Hamilton cycle.

Theorem 6 (Egava, Glas and Locke [3]). Let G be a k-connected graph with k > 2. If
the minimum degree of G is at least d, then for any subset Y of V(G) with |Y| =k, G

contains either a 'Y -cycle of length at least 2d or a Hamilton cycle.

On the existence of long cycles in graphs with a given number of edges, Erdos and

Gallai gave the following result.

Theorem 7 (Erdés and Gallai [5]). Let G be a 2-edge-connected graph on n wvertices.

. 2e(G)
Then G contains a cycle of length at least ——=.

In this paper, as an application of Theorems 4, we give the following theorem on long

cycles passing through specified vertices of graphs with a given number of edges.

Theorem 8. Let G be a k-connected graph on n vertices with k > 2. Then for any subset

) ; 2e(G
Y of V(G) with |Y| =k —1, G contains a Y -cycle of length at least 245},

In Theorem 8, one cannot expect a cycle passing through k specified vertices of length
at least 2¢(G)/(n — 1). Let H be a complete graph on n — k vertices with n > 3k and
Ui, Uz, ..., up be k vertices of H. Let Y = {v1,v9,...,v} be a set of vertices not in V(H).
We construct a graph G with V(G) = V(H)UY and E(G) = E(H)U{uv; : 1 <i,5 < k}.

Then G is a k-connected graph and the longest Y-cycle has length 2k, which is less than

2¢(G)  (n—k)(n—k—1)+ 2k

n—1 n—1

We postpone the proof of Theorem 8 in Section 4.

2 Preliminaries

Let G be a graph and P, H two disjoint subgraphs of G. We use E(P, H) to denote
the set, and e(P, H) the number, of edges with one vertex in P and the other in H. If
E(P,H) # (), then we call P and H are joined. We use Np(H) to denote the set of



vertices in P which are joined to H. If x is a vertex in G — P, we say that x is locally
k-connected to P (in G) if there are k paths connecting z to vertices in P such that any
two of them have only the vertex x in common. We say that H is locally k-connected to
P (in G) if for every vertex x € V(H), x is locally k-connected to P. Note that if H is
locally k-connected to P, then H is locally [-connected to P for all [, 0 <[ < k; and, if G
is k-connected and |V (P)| > k, then H is locally k-connected to P in G.

The following propositions on local k-connectedness are proved in [6].

Proposition 1 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G. If H is
locally k-connected to P in the subgraph induced by V(H) UV (P), then E(P,H) contains
an independent set of t edges, where t > min{k, |V (H)|}.

Proposition 2 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G. Let
u € Np(H) and G' be the graph obtained from G by deleting all edges from u to H. If H
is locally k-connected to P in G, then H is locally (k — 1)-connected to P in G'.

Proposition 3 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G, and B
a block of H. Let H' be the subgraph obtained from H by contracting B. If H is locally
k-connected to P in G, then H' is also locally k-connected to P in the resulting graph.

Next we introduce the concept of local maximality for paths.

Let P be a path of a graph G, and u,v € V(P). We use P|u,v] to denote the segment
of P from u to v, and P(u,v) the segment obtained from P[u,v] by deleting the two end
vertices v and v. Let H be a component of G — P. We say that P is a locally longest
path with respect to H if we cannot obtain a longer path than P by replacing the segment
Plu,v] by a (u,v)-path with all its internal vertices in H. In other words, P is locally

longest with respect to H if, for any u,v € V(P),
e(Plu,v]) > diy(u,v).

If Pisan (z,Y, 2)-path of G, where x,z € V(G) and Y C V(G), then we say that P is a
locally longest (x,Y, z)-path with respect to H if we cannot obtain a longer (z,Y, z)-path
than P by replacing the segment Plu,v] with Y NV (P(u,v)) = () by a (u,v)-path with
all its internal vertices in H. Note that if P is a longest path (longest (z,Y),z)-path)
in a graph G, then, of course, P is a locally longest path (locally longest (x,Y,z)-path)
with respect to any component of G — P. If two vertices v and «’ in V(P) are joined to
H by two independent edges, then we call {u,u’'} a strong attached pair of H to P. A
strong attachment of H to P (in G) is a subset T = {uy,ua,...,us} C Np(H), where u;,



1 <4 <t, are in order along P, such that each ordered pair {u;, u;41}, 1 <i<t—1,isa
strong attached pair of H to P. A strong attachment 1" of H to P is maximum if it has

maximum cardinality over all strong attachments of H to P.

Lemma 1 (Fan [6]). Let G be a graph and P a path of G. Suppose that H is a component
of G — P and T = {uy,ug,...,us} is a mazimum strong attachment of H to P. Set
S = Np(H)\T and s = |S|. Then the following statements are true:

(1) Every vertex in S is joined to exactly one vertex in H.

(2) For each segment Pluj,u;t1], 1 <i <t —1, suppose that
Np(H) NV (Plu;,uit1]) = {ao, a1, - . ., aq, ag1},

where ag = u;, agy1 = w1 and aj, 0 < j < g+ 1, are in order along P. Then there is a

subscript m, 0 < m < q, such that
Nu(aj) = Nu(ao), for 0 <j<m,

and

Nu(aj) = Nu(agy1), form+1<j<qg+1.

Besides, if
Np(H)NV(Plz,u]) ={a1,...,aq, ag41},

where, agi1 = uy, then
Nu(aj) = Nu(ag+1), for1 <j <q+1;

and if
Np(H)NV(Plu, z]) = {ag,a1,...,aq},

where, ag = ug, then

Nu(aj) = Nu(ao), for 0 <j<q.
(8) If H s locally k-connected to P in G, then
t > min{k, h + da},

where h = |V(H)| and da is the number of vertices in Np(H) which has at least two

neighbors in H.

Lemma 1 (2) is somewhat different from that in [6], but the proofs of them are similar.

For a path P, we use [(P) to denote the length of P.



Lemma 2. Let G be a graph, P an (z,Y, z)-path of G, where x,z € V(G) andY C V(G),
H a component of G— P and T = {uy,us,...,us} a maximum strong attachment of H to
P. Set S = Np(H)\T and s = |S|. Suppose that P is a locally longest (x,Y, z)-path with
respect to H, and 0 = [{z,z} N Np(H)|. Set

T ={u; € T\{us} : Y NV (P(uj,uir1)) = 0} and t, = |T,|.

Then

Py > Y dy(ui,uin) +2(s +t—t,) — 6.
uiETT

Proof. If t =0, then s = 0 and the statement is trivially true. Suppose now that ¢t > 1.

Consider a segment Plu;,u;11], 1 <1i <t — 1. Suppose that

Np(H) NV (Plug,ui1]) = {ao, a1, ..., aq,aq11},

where ¢ = |S NV (Pluj, uit1])], ao = i, ag41 = wit1, and aj, 0 < j < ¢+ 1, are in order
along P.
If Y NV(P(u;,uiy1)) = 0, then by Lemma 1 (2), there is a subscript m, 0 < m < ¢,
such that
Nr(ao) = Nu(am) and Ng(agr1) = Nu(am1).
Therefore
dpr(am, ami1) = di(ao, ag+1) = dp (us, uir).

Since P is a locally longest (x,Y, z)-path with respect to H, we have

q

q
l( uzauz—l—l > Z aj7a]+1 —dH(amaam—f—l +ZdH ajaaj—i—l)
:O 7=0
Jj#m

q
= djy(ui uir) + Y di(aj, aj51).
=0
j#EmM

Note that dj;(aj,a;4+1) > 2, for every j, 0 < j < ¢, we have

l(P[ui,qu]) > d}(ui,uiﬂ) + 2q.

Y NV(P(u;, uit1)) # 0, then noting that I(Pla;, aj41]) > 2, we have

M-

<
Il
o

U(Pui,uipa]) = ) U(Plaj,aj11]) = 2q + 2.

Besides, consider the two segments Plx,u1] and Plu, z]. Suppose that

Np(H)NV(P[z,u1]) = {ao,a1,...,am}



and
Np(H) NV (Plug, 2]) = {am41, ami2; - - - ag41},

where m = |S NV (Plz,w])|, ¢ — m = [SNV(Plu, 2])|, am = w1, ams1 = u, and a;,
0 < j < ¢+ 1 are in order along P. Note that I(P[z,a¢]) + I(Plag+1,2]) > 2 — 6 and

l(Plaj,aj4+1]) > 2, for every 0 < j < ¢, and j # m, we have
I(Plx,u1]) + (Plug, z]) > 2+ 2 — 6.
Thus summing over the lengths of all the segments, yields
t—1
U(P) = U(P[z,w]) + Y 1W(Pluisuis]) + U(Pluy, 2])
i=1

> 2(1S N V(Pla,w])| + |S NV (Plug, 2])]) +2 — 0

t—1 i—1
+ ) (i (uiyuign) + 218 N V(Plug, uiga ) + Y (218 N V(Plui, uiga])] + 2)
= e,
= Y di(uiui) +2(s +t—t,) — 0.
u; €T
This ends the proof. O

In the following, we call a strong attached pair {u;,u;1} of H to P in G transitive if

Y N V(P(uj,ujtr)) = 0.

Lemma 3. Let G be a graph and P a path of G. Suppose that H is a separable component
of G — P, B is an endblock of H, b is the cut vertex of H contained in B, M = B — b.
Let T = {uy,ug,...,ut} be a mazimum strong attachment of H to P. If H s locally
k-connected to P, then

(1) INp(M)NT| > min{k — 1,m + d,}; and

(2) there exist at least min{k — 1,m + dy} strong attached pairs which are joined to M,
where m = |V(M)| and d} is the number of vertices in Np(M) which has at least two

neighbors in H.

Proof. Since H is locally k-connected to P, |V(P)| > k. It is easy to know that M is
locally (k — 1)-connected to P in the subgraph induced by V(P)UV(M). By Proposition
1, there are min{k — 1, m} independent edges in E(P, M). Let vyw;, 1 <i < min{k—1,m}
be such edges, where v; € V(P) and w; € V(M).

If v; has at least two neighbors in H, then by Lemma 1 (1), v; € T. If v; has only one
neighbor w; in H, then by Lemma 1 (2), there exists a vertex v; (maybe = v;) in 7" which

also has only one neighbor w; in H. This implies that |Np(M) N T| > min{k — 1,m}.



Now, we prove (1) by induction on d. If d;, = 0, then by the analysis above, the
assertion is true. Thus we assume that d > 1.

Let u; be a vertex in Np(M) which has at least two neighbors in H (u; is of course in
T by Lemma 1 (1)). Let G’ be the graph obtained from G by deleting all edges from u;
to H. By Proposition 2, H is locally (k — 1)-connected to P in G’.

If wj = uy or uy, or {u;j_1,ujs1} are joined to H by two independent edges, then
T' = T\{u;} is a strong attachment of H to P in G’. Since u; is joined to at least two
vertices of H in G, any strong attachment of H to P in G’ together with u; is a strong
attachment of H to P in G. Since |T'| = t — 1, we see that T’ is a maximum strong

attachment of H to P in G’. By the induction hypothesis,
INp(M)NT'| > min{k —2,m +dy — 1}.

Therefore
INp(M)NT| > min{k — 1,m + db},

as required.
If uj € {ug, ..., u—1}, and {uj_1,u;41} are not joined to H by two independent edges,
ie.,

Ny (uj—1) = Ny (uji1) = {w},

for some w € V(H), then
T/ = T\{U,j,u]'_H} = {ul, ey Uj—1, U2, - ,ut}

is a strong attachment of H to P in G'. We prove now that 7" is maximum by showing
that any strong attachment of H to G’ has cardinality at most t — 2 = |T”|.

Let v1,v2 (# uj) be the two vertices in Np(H) which are closest to u; on P, say vy
preceding, and vy following, u; on P (but not necessarily adjacent to u; on P). Since

|Ng(u;)] > 2 and by Lemma 1 (2),
Ny (v1) = Np(uj—1) = {w} = Ng(ujy1) = Nu(v2).

By the choice of v; and vy, for any maximum strong attachment {ai,as,...,a,} of H
to P in G’, there is an integer I, 0 < [ < p, such that vy,vo € V(P[a;,a;11]), where
ap = = and apy; = z. Since Ny(v1) = {w} = Ng(vg), it follows from Lemma 1

(2) that either Ng(a;) or Ny(ajr1) = {w}. The former implies a strong attachment

{a1,...,a;,u;,v2,a141,...,a,}, the latter a strong attachment {a, ..., a;, v1,uj, aj41,...,ap},

of H to P in G; in either case we have that p+2 < ¢, that is, p <t —2 = |T”|. This shows



that 7" is a maximum strong attachment of H to P in G’, as claimed. As before, by the

induction hypothesis,
INp(M)NT'| > min{k —2,m +d, — 1}.

Consequently
INp(M)NT| > min{k — 1,m + dy},

which completes the proof of (1).

Now we prove (2). Clearly for every vertex u; € Np(M)NT\{u;}, the strong attached
pair {u;j, w41} is joined to M. If [Np(M)NT\{u:}| > min{k—1, m+d,}, then the assertion
is true. By (1), we assume that |[Np(M)NT| = min{k — 1,m +d5} and uy € Np(M)NT.

By Lemma 1 (3), ¢ > min{k,h + da} > min{k — 1,m + d,} + 1. This implies that
there exists at least one vertex in T\ Np(M). We chose a vertex u; € T\Np(M) such that
uit1 € Np(M)NT. Then {u;, uiy1} together with {uj,uji1} for uj € Np(M) U T\{u;}

are min{k — 1,m + dj,} strong attached pairs joined to M. O

In the following, we call a strong attached pair which is joined to M a good pair (with
respect to M). Let {u;,u;41} be a strong attached pair. If one of the vertices in {u;, u;41}
is joined to M, and the other to H — M, then we call it a better pair (with respect to M);
and if one of the vertices in {u;,u;41} is joined to M, and the other to H — B, then we

call it a best pair (with respect to M).

3 Proof of Theorem 4

In order to prove the theorem, we chose a longest (x,Y, z)-path P in G. Clearly |V (P)| > k.
Moreover, by the k-connectedness of G, for each component H of G — P, H is locally k-
connected to P, and P is a locally longest (z,Y,z)-path with respect to H. So it is

sufficient to prove that:

Proposition 4. Let G be a graph, P an (x,Y, z)-path of G, where x,z € V(G), Y C V(G),
and |Y| = k — 2. Suppose that the average degree of vertices in V(G)\{x,z} is r. If for
each component H of G — P, H is locally k-connected to P, and P is a locally longest
(x,Y, z)-path with respect to H, then I[(P) > r.

Proof. We prove this proposition by induction on |V (G — P)|. If V(G — P) = (), note that
r < |V(G)| — 1, the result is trivially true. So we assume that V(G — P) # (. Let H be a

component of G — P.



Let d = |Np(H)|, 8 = |[{z,2} N Np(H)| and Np(H) = {v1,v2,...,v4}, where v;,

1 < < d, are in order along P. Then, we have
d—1
I(P) = U(Plz,v1]) + > U(P[vi, vit1]) + U(Plug, 2]).
i=1

It is easy to know that I(P[z, v1])+I(Pvg, z]) > 2—0 and [(P[v;, vi41]) > 2for 1 < i < d—1.
Thus, we have

I(P) > 2d— 6.

Note that d > k by the local k-connectedness of H to P and clearly 6 < 2. If r < 2k—2,

then we have [(P) > 2k — 2 > r, and the proof is complete. Thus we assume that
r>2k—2. (1)
Besides, if d > (r 4 0)/2, then [(P) > r, and we complete the proof. Thus, we assume
that

d<(r+0)/2. (2)

Let T = {uj,ug,...,u} be a maximum strong attachment of H to P. Set S =
Np(H)\T and s = |S]| (note that s+t =d). Let T, = {u; € T\{ws} : YNV (P(ui,uiy1)) =
0} and t, = |T}|.

Clearly, for every transitive strong attached pair {u;,u;1}, where u; € T, we have
dig (ujy wjr1) > 2. (3)
We distinguish two cases:

Case 1. H is nonseparable.

Let h = |V(H)| and 7’ the average degree of vertices in V(H). If r'h+e(P—{z,z}, H) <
rh, then we consider the graph G’ obtained from G by deleting the component H. Note
that

Y o) =r(V(G) —2) —r'h—e(P — {x,2},H)
veV(G)\{z,z}

> r([V(G)| - 2) —rh
=r((V(&)] - 2).

By the induction hypothesis, we have [(P) > r, and the proof is complete. Thus we assume

that

vh+e(P —{x,z},H) >rh (4)

10



We use d; to denote the number of vertices in Np(H) which have only one neighbor in
V(H), do = d — dy, 6, to denote the number of vertices in {z,z} which have only one
neighbor in V(H) and 6, = 0 — 6.

Clearly,

r'h < h(h—1+dy) +dy and e(P — {z, 2}, H) < h(ds — 03) + d1 — ;.
Thus, by (4), we have
h(h —1+2dy — 03) +2dy — 6y > r'h +e(P —{x,2},H) > rh.
Note that dy = d — dy and 67 = 6 — 05, we have
h(h — 1+ 2dy — 62) + 2d — 2dy — 0 + 6 > rh.
By (2), we have
h(h —142dy — 02) + (r+6) —2dy — 0 + 03 > rh.

Thus
(h—=1)(h+2dy —r —69) > 0.

This implies that h > 2 and h + 2dy > r + 0 > r, and then 2h + 2dy > r + 2. By (1), we
have 2h + 2dy > 2k, that is

h+dy > k. (5)

By (5) and Lemma 1 (3), ¢t > k. Since |Y| < k — 2, there exists at least one transitive
strong attached pair (up,up41) in T', where u, € T;.
Let G’ be the subgraph induced by V(H) U {up, upt1}. If upu,i1 ¢ E(G), we add the

edge upupy1 in G'. Thus G’ is 2-connected and

S de) = Y dw) — e(Np(H)\fup upir}, H)

veV(G)\{up,up+1} veV (H)
=1'h — e(Np(H)\{up, ups1}, H)

>rh—e(P — {.%',Z},H) - e(NP(H)\{up7up+1}7H)'
Note that

e(P—A{z,z},H) < (s+t—0)h, and

e(Np(H)\{up, upi1 }, H) < (s +t — 2)h,

11



we have

Z de(v) >rh—(s+t—0)h— (s+t—2)h
veV(G)\{up,upt1}
=(r—2s—2t+0+2)h.
By Theorem 3, G’ contains a (up, upt1)-path of length at least r — 2s — 2t + 60 + 2,
which implies that

d(up,upp1) >r—2s —2t+ 60+ 2. (6)
Substituting (6) for d};(up, up+1) in Lemma 2 and (3) for the other terms, we have
(P)>(r—2s—=2t+0+2)+2(t, — 1)+ 2(s+t—1t,)—0>r.
Case 2. H is separable.

Let B be an endblock of H, b the cut vertex of H contained in B, M = B — b,
m = |V(M)|, and r” the average degree of the vertices in V(M).

If v"m +e(P —{x,z}, M) + dp(b) < rm, then we consider the graph G’ obtained
from G by contracting B. Let H' be the component of G’ — P obtained from H by
contracting B. By Proposition 3, H' is locally k-connected to P. Clearly P is a locally
longest (z,Y), z)-path with respect to H', and

Z der(v) > Z d(w) —r"m —e(P — {x,z}, M) — dps ()

veV(G)\{z,z} veV(G)\{z,z}
>r(|[V(G)] —2)—rm
=7r([V(G)| - 2).

By the induction hypothesis, [(P) > r, and the proof is complete. Thus we assume that
'm+e(P —{x,z}, M) + dp(b) > rm. (7)

Let dy = [Np(H)\Np(M)|, d} be the number of vertices in Np(M) which have only
one neighbor in V(H), dy = d—dy—dy; 0) = {z, 2z} " Np(H)\Np(M)|, 0] be the number
of vertices in {z, 2} N Np(M) which have only one neighbor in V(H) and 6, = 6 — 6 — 0.

Now we prove that
m+dy>k—1. (8)

Let B’ be an endblock of H other than B, b the cut vertex of H contained in B’,
M' =B —b and m' = |V(M')].
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By the local k-connectedness of H to P, [Np(M')| > k—1. If INp(M")\Np(M)| < m,
then d > |[Np(M) N Np(M')| > k—1—m, and m+d, > k — 1, and (8) holds. Thus we
assume that |[Np(M")\Np(M)| > m + 1. So we have

dy >m+1. (9)
Clearly,
r'm < m(m+dy) + dj,
e(P—{x,z}, M) <m(dy — 05) +dy — 0], and
Thus, by (7),

m(m +2dy + 1 —65) +2d}, — 0] > r"m+e(P — {z,z}, M) + dp(b) > rm.
Note that d} = d — dj, — d and 0] = 0 — 0}, — 6}, we have
m(m + 2dy + 1 — 604) + 2d — 2dj, — 2dy — 0 + 0 + 04 > rm.
By (2) and (9), we have
m(m +2dy +1—05) + (r+0) —2(m+1) — 2dy — 0 + 0y + 05 > rm.

Thus
(m—1)(m +2dy —r — 65) >2— 6 > 0.

This implies that m > 2 and m + 2d5 > r + 65 > r, and then 2m + 2d, > r + 2. By (1),
2m + 2d, > 2k, that is m + d, > k, and (8) holds.

By Lemma 3 (2), there exist at least & — 1 good pairs with respect to M. Since
|Y| = k — 2, there exists at least one transitive good pair {u,, u,y1} with respect to M.
Similarly there exists at least one transitive good pair {u,, ug+1} with respect to M.

First we assume that there is a transitive best pair with respect to M or M’. Without
loss of generality, we assume that {u,,up+1} is a best pair, where u, € Np(M) and
up+1 € Np(H — B). Consider the subgraph G’ induced by V(B) U {u,}. If upyb ¢ E(G),
we add the edge upb in G’. Thus G’ is 2-connected and

Yoo dow)= Y dv) —e(Np(H)\{up}, M)
veV(G")\{up,b} veV (M)
=r"m — e(Np(H)\{up}, M)

>rm—e(P —{xz,z}, M) —dp(b) — e(Np(H)\{up}, M).
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Note that

IN

e(P_ {.%',Z},M) (3+t_6)m7
dyr(b) <'m, and

e(Np(H)\{up}, M)

IN

(s+t—1)m,
we have

Z dar(v) >rm—(s+t—0m—m—(s+t—1)m
veV(G")\{up,b}

=(r—2s—2t+0)m.

By Theorem 3, G’ contains a (uy,b)-path of length at least r — 2s — 2t + 0. It is clear
that there is a (b, upy1)-path in H — B of length at least 2, which implies that

dy(up,upp1) >r—2s —2t+ 60+ 2. (10)
Substituting (10) for dj;(up, up41) in Lemma 2 and (3) for the other terms, we have
I(P)>(r—2s—=2t+0+2)+2(t, —1)+2(s+t—t,) —0 >,

as required.

So, we assume that there are no transitive best pairs with respect to M or M’.

Now we assume that there is a transitive better pair (but not best pair) with respect
to M or M’. Without loss of generality, we assume that {u,, up+1} is a better pair, where
up € Np(M) and upt1 € Np(b). Consider the subgraph G’ induced by V(B) U {u,}. If
upb ¢ E(G), we add the edge upb in G'. Thus G’ is 2-connected and

> de () =rm—e(P - {x,2}, M) — dy(b) — e(Np(H)\{up}, M).
veV(G")\{up,b}

Note that

e(P—{x,z},M) < (s+t—0)m, and

and since at least one vertex of u, and w441 is not joined to M (otherwise, {ug, ug+1} will

be a best pair), we have

e(Np(H)\{uy}, M) < (s +t — 2)m.
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Thus we have

Z der(v) >rm—(s+t—0m—m—(s+t—2)m
veV(G")\{up,b}

=(r—2s—2t+60+1)m.

By Theorem 3, G’ contains a (u,,b)-path of length at least r» — 2s — 2t + 6 + 1, and
then, by buy1 € E(G),

dy(up,upp1) >1r —2s — 2t + 0 + 2.

Thus we also have [(P) > r.

So, we assume that there are no transitive better pairs with respect to M or M’. Thus
{up, upt1} and {ug, ugq1} are two distinct strong attached pairs.

If m =1, then {up,u,11} will be a better pair with respect to M. Thus we assume
that m > 2.

If m = 2, then B is a triangle, and dj; (up, upy1) = 4. Since {up, up11} is not a better
pair, we have that u, € Np(M). Similar to the analysis above, we have dj;(up,b) >

r—2s—2t+ 60+ 1. But dj;(up, b) = 3, we have
dy(up, upp1) =4>r—25s =2t +60+2.

Then [(P) > r.

So we assume that
m >3, and similarly, m’ > 3. (11)
It is easy to know that dj;(up, upi1) > 4. Thus if r — 2s — 2t 4+ 0 < 2, we will have
dy(up,upp1) >r —2s — 2t + 60+ 2,
and then [(P) > r. So we assume that
r—2s—2t+0>2. (12)

Note that u, and wu,41 are joined to B by two independent edges. Consider the

subgraph G’ induced by V(B) U {up, upt1}. If upu,i1 ¢ E(G), we add the edge upuptq in
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G'. Thus & is 2-connected and

> der (v)

VeV (G)\{upups1}

= Z d(v) — e(Np(H)\{up, up+1}, M) + dar(b) + [{up, upt1} NN (b)]
veV (M)

=1"m +dp (b) — e(Np(H)\{tp, up+1}, M) + {up, ups1} NN (b))

>rm—e(P —{z,z}, M) — e(Np(H)\{tp, ups1}, M).
Note that
e(P — {,2}, M) < (s +1t — 0)m, and
e(Np(H)\{up, ups1}, M) < (s +1t —2)m,

we have

Z der(v) >rm —(s+t—0)m— (s+t—2)m
veV(G)\{up,up+1}

=(r—2s—2t+60+2)m.

By Theorem 3, G’ contains a (up,upt+1)-path of length at least (r — 2s — 2t + 60 +
2)m/(1 4+ m), which implies that
y m
dH(up,up+1) 2 (T' — 25— 2t + 0 + Q)H-—m

3
21(7“—25—%—{—9—!—2).

(note that m > 3), and similarly,

(r—2s—2t+60+2).

e~ w

dr (g ug+1) >

Then by (12),

:(r—25—2t+9+2)+%(T—25—2t+9+2)
>r—2s—2t+60+4.
Thus, by Lemma 2, we have
I(P)>(r—2s—2t+0+4)+2(t, —2)+2(s+t—t,) —0 >r.

The proof is complete. 0
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4 Proof of Theorem 8

By the k-connectedness of G, it contains a Y-cycle. If 2e(G)/(n — 1) < 3, then the result
is trivially true. Thus we assume that 2e(G)/(n — 1) > 3.

We chose a vertex y € Y, and construct a graph G’ such that V(G') = V(G) U {y'},
where ¥ ¢ V(G) and E(G') = E(G) U{vy' : v € Ng(y)}. Clearly, G’ is k-connected.

Besides, we have that
e(G') = e(G) + da(y) and da/(y) = der(y') = da(y),

and the order of G’ is n 4+ 1. Now, by Theorem 4, there exists a (y,Y \{y},v)-path P of

length at least

2¢(G') —dar(y) —dar(y) _ 2(e(G) +da(y)) — 2da(y) _ 26(G)

(n+1)—2 n—1 n—1"

Let uy’ be the last edge of P, then uy € F(G) and C = Ply,uluy is a cycle of G
passing through all the vertices in Y of length at least 2¢(G)/(n — 1), which completes the
proof. O
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