Long paths and cycles passing through specified vertices under the average degree condition

Binlong Li, Bo Ning and Shenggui Zhang*
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

October 26, 2019

Abstract

Let G be a k-connected graph with $k \geq 2$. In this paper we first prove that: For two distinct vertices x and z in G, it contains a path passing through its any $k-2$ specified vertices with length at least the average degree of the vertices other than x and z. Further, with this result, we prove that: If G has n vertices and m edges, then it contains a cycle of length at least $2 m /(n-1)$ passing through its any $k-1$ specified vertices. Our results generalize a theorem of Fan on the existence of long paths and a classical theorem of Erdös and Gallai on the existence of long cycles under the average degree condition.

Keywords: Long paths, Long cycles, Average degree

1 Introduction

We use Bondy and Murty [2] for terminology and notations not defined here and consider finite simple graphs only.

Let G be a graph and H a subgraph of G. We use $V(H)$ and $E(H)$ to denote the set of vertices and edges of H, respectively, and use $e(H)$ for the number of the edges of H. For a vertex $v \in V(G), N_{H}(v)$ denotes the set, and $d_{H}(v)$ the number, of neighbors of v in H. We call $d_{H}(v)$ the degree of v in H. Let x and z be two distinct vertices of G. A path connecting x and z is called an (x, z)-path. For a subset Y of $V(G)$, an (x, z)-path passing through all the vertices in Y is called an (x, Y, z)-path, and a cycle passing through all the vertices in Y is called a Y-cycle. If Y contains only one vertex y, an $(x,\{y\}, z)$-path and a

[^0]$\{y\}$-cycle are simply denoted by an (x, y, z)-path and a y-cycle, respectively. The distance between x and z in H, denoted by $d_{H}(x, z)$, is the length of a shortest (x, z)-path with all its internal vertices in H. If no such a path exists, we define $d_{H}(x, z)=\infty$. The codistance between x and z in H, denoted by $d_{H}^{*}(x, z)$, is the length of a longest (x, z)-path with all its internal vertices in H. If no such a path exists, we define $d_{H}^{*}(x, z)=0$. When no confusion occurs, we use $N(v), d(v), d(x, z)$ and $d^{*}(x, z)$ instead of $N_{G}(v), d_{G}(v), d_{G}(x, z)$ and $d_{G}^{*}(x, z)$, respectively.

Long path and cycle problems are interesting and important in graph theory and have been deeply studied, see [1, 7. The following Theorem by Erdös and Gallai opened the study on long paths with specified end vertices.

Theorem 1 (Erdös and Gallai [5). Let G be a 2-connected graph and x and z be two distinct vertices of G. If $d(v) \geq d$ for every vertex $v \in V(G) \backslash\{x, z\}$, then G contains an (x, z)-path of length at least d.

In fact, Theorem 1 has a stronger extension due to Enotomo.
Theorem 2 (Enotomo [4). Let G be a 2-connected graph and x and z be two distinct vertices of G. If $d(v) \geq d$ for every vertex in $V(G) \backslash\{x, z\}$, then for every given vertex $y \in V(G) \backslash\{x, z\}, G$ contains an (x, y, z)-path of length at least d.

Another direction of extending Theorem 1 is to weaken the minimum degree condition to an average degree condition. Fan finished this work as follows.

Theorem 3 (Fan [6). Let G be a 2-connected graph and x and z be two distinct vertices of G. If the average degree of the vertices other than x and z is at least r, then G contains an (x, z)-path of length at least r.

The following graph shows that one cannot replace the minimum degree condition in Theorem 2 by the average degree condition. Let H be a complete graph on $n-1$ vertices and $x, z \in V(H)$. Let G be a graph obtained from H by adding a new vertex y and two edges $x y, y z$. Then the length of the longest (x, y, z)-path in G is 2 , less than the average degree of the vertices other than x and z when $n \geq 5$.

In this paper, we first generalize Theorem 3 to k-connected graphs and get the following result.

Theorem 4. Let G be a k-connected graph with $k \geq 2$, and x and z be two distinct vertices of G. If the average degree of the vertices other than x and z is at least r, then for any subset Y of $V(G)$ with $|Y|=k-2, G$ contains an (x, Y, z)-path of length at least r.

We postpone the proof of Theorem 4 to Section 3 .
Now we consider long cycles passing through specified vertices in graphs. Theorem 5 shows the existence of long cycles in 2-connected graph under the minimum degree condition, and Theorem 6 extends Theorem 5 to k-connected graphs.

Theorem 5 (Locke [8]). Let G be a 2-connected graph. If the minimum degree of G is at least d, then for any two vertices y_{1} and y_{2} of G, G contains either a $\left\{y_{1}, y_{2}\right\}$-cycle of length at least $2 d$ or a Hamilton cycle.

Theorem 6 (Egava, Glas and Locke [3). Let G be a k-connected graph with $k \geq 2$. If the minimum degree of G is at least d, then for any subset Y of $V(G)$ with $|Y|=k, G$ contains either a Y-cycle of length at least $2 d$ or a Hamilton cycle.

On the existence of long cycles in graphs with a given number of edges, Erdös and Gallai gave the following result.

Theorem 7 (Erdös and Gallai 5). Let G be a 2-edge-connected graph on n vertices. Then G contains a cycle of length at least $\frac{2 e(G)}{n-1}$.

In this paper, as an application of Theorems 4, we give the following theorem on long cycles passing through specified vertices of graphs with a given number of edges.

Theorem 8. Let G be a k-connected graph on n vertices with $k \geq 2$. Then for any subset Y of $V(G)$ with $|Y|=k-1, G$ contains a Y-cycle of length at least $\frac{2 e(G)}{n-1}$.

In Theorem 8, one cannot expect a cycle passing through k specified vertices of length at least $2 e(G) /(n-1)$. Let H be a complete graph on $n-k$ vertices with $n>3 k$ and $u_{1}, u_{2}, \ldots, u_{k}$ be k vertices of H. Let $Y=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of vertices not in $V(H)$. We construct a graph G with $V(G)=V(H) \cup Y$ and $E(G)=E(H) \cup\left\{u_{i} v_{j}: 1 \leq i, j \leq k\right\}$. Then G is a k-connected graph and the longest Y-cycle has length $2 k$, which is less than

$$
\frac{2 e(G)}{n-1}=\frac{(n-k)(n-k-1)+2 k^{2}}{n-1}
$$

We postpone the proof of Theorem 8 in Section 4.

2 Preliminaries

Let G be a graph and P, H two disjoint subgraphs of G. We use $E(P, H)$ to denote the set, and $e(P, H)$ the number, of edges with one vertex in P and the other in H. If $E(P, H) \neq \emptyset$, then we call P and H are joined. We use $N_{P}(H)$ to denote the set of
vertices in P which are joined to H. If x is a vertex in $G-P$, we say that x is locally k-connected to P (in G) if there are k paths connecting x to vertices in P such that any two of them have only the vertex x in common. We say that H is locally k-connected to P (in G) if for every vertex $x \in V(H), x$ is locally k-connected to P. Note that if H is locally k-connected to P, then H is locally l-connected to P for all $l, 0 \leq l \leq k$; and, if G is k-connected and $|V(P)| \geq k$, then H is locally k-connected to P in G.

The following propositions on local k-connectedness are proved in [6].
Proposition 1 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G. If H is locally k-connected to P in the subgraph induced by $V(H) \cup V(P)$, then $E(P, H)$ contains an independent set of t edges, where $t \geq \min \{k,|V(H)|\}$.

Proposition 2 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G. Let $u \in N_{P}(H)$ and G^{\prime} be the graph obtained from G by deleting all edges from u to H. If H is locally k-connected to P in G, then H is locally $(k-1)$-connected to P in G^{\prime}.

Proposition 3 (Fan [6]). Let H and P be two disjoint subgraphs of a graph G, and B a block of H. Let H^{\prime} be the subgraph obtained from H by contracting B. If H is locally k-connected to P in G, then H^{\prime} is also locally k-connected to P in the resulting graph.

Next we introduce the concept of local maximality for paths.
Let P be a path of a graph G, and $u, v \in V(P)$. We use $P[u, v]$ to denote the segment of P from u to v, and $P(u, v)$ the segment obtained from $P[u, v]$ by deleting the two end vertices u and v. Let H be a component of $G-P$. We say that P is a locally longest path with respect to H if we cannot obtain a longer path than P by replacing the segment $P[u, v]$ by a (u, v)-path with all its internal vertices in H. In other words, P is locally longest with respect to H if, for any $u, v \in V(P)$,

$$
e(P[u, v]) \geq d_{H}^{*}(u, v) .
$$

If P is an (x, Y, z)-path of G, where $x, z \in V(G)$ and $Y \subset V(G)$, then we say that P is a locally longest (x, Y, z)-path with respect to H if we cannot obtain a longer (x, Y, z)-path than P by replacing the segment $P[u, v]$ with $Y \cap V(P(u, v))=\emptyset$ by a (u, v)-path with all its internal vertices in H. Note that if P is a longest path (longest (x, Y, z)-path) in a graph G, then, of course, P is a locally longest path (locally longest (x, Y, z)-path) with respect to any component of $G-P$. If two vertices u and u^{\prime} in $V(P)$ are joined to H by two independent edges, then we call $\left\{u, u^{\prime}\right\}$ a strong attached pair of H to P. A strong attachment of H to $P(\operatorname{in} G)$ is a subset $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\} \subset N_{P}(H)$, where u_{i},
$1 \leq i \leq t$, are in order along P, such that each ordered pair $\left\{u_{i}, u_{i+1}\right\}, 1 \leq i \leq t-1$, is a strong attached pair of H to P. A strong attachment T of H to P is maximum if it has maximum cardinality over all strong attachments of H to P.

Lemma 1 (Fan [6]). Let G be a graph and P a path of G. Suppose that H is a component of $G-P$ and $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ is a maximum strong attachment of H to P. Set $S=N_{P}(H) \backslash T$ and $s=|S|$. Then the following statements are true:
(1) Every vertex in S is joined to exactly one vertex in H.
(2) For each segment $P\left[u_{i}, u_{i+1}\right], 1 \leq i \leq t-1$, suppose that

$$
N_{P}(H) \cap V\left(P\left[u_{i}, u_{i+1}\right]\right)=\left\{a_{0}, a_{1}, \ldots, a_{q}, a_{q+1}\right\}
$$

where $a_{0}=u_{i}, a_{q+1}=u_{i+1}$ and $a_{j}, 0 \leq j \leq q+1$, are in order along P. Then there is a subscript $m, 0 \leq m \leq q$, such that

$$
N_{H}\left(a_{j}\right)=N_{H}\left(a_{0}\right), \text { for } 0 \leq j \leq m
$$

and

$$
N_{H}\left(a_{j}\right)=N_{H}\left(a_{q+1}\right), \text { for } m+1 \leq j \leq q+1
$$

Besides, if

$$
N_{P}(H) \cap V\left(P\left[x, u_{1}\right]\right)=\left\{a_{1}, \ldots, a_{q}, a_{q+1}\right\}
$$

where, $a_{q+1}=u_{1}$, then

$$
N_{H}\left(a_{j}\right)=N_{H}\left(a_{q+1}\right), \text { for } 1 \leq j \leq q+1
$$

and if

$$
N_{P}(H) \cap V\left(P\left[u_{t}, z\right]\right)=\left\{a_{0}, a_{1}, \ldots, a_{q}\right\}
$$

where, $a_{0}=u_{t}$, then

$$
N_{H}\left(a_{j}\right)=N_{H}\left(a_{0}\right), \text { for } 0 \leq j \leq q
$$

(3) If H is locally k-connected to P in G, then

$$
t \geq \min \left\{k, h+d_{2}\right\}
$$

where $h=|V(H)|$ and d_{2} is the number of vertices in $N_{P}(H)$ which has at least two neighbors in H.

Lemma 1 (2) is somewhat different from that in [6], but the proofs of them are similar. For a path P, we use $l(P)$ to denote the length of P.

Lemma 2. Let G be a graph, P an (x, Y, z)-path of G, where $x, z \in V(G)$ and $Y \subset V(G)$, H a component of $G-P$ and $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ a maximum strong attachment of H to P. Set $S=N_{P}(H) \backslash T$ and $s=|S|$. Suppose that P is a locally longest (x, Y, z)-path with respect to H, and $\theta=\left|\{x, z\} \cap N_{P}(H)\right|$. Set

$$
T_{r}=\left\{u_{i} \in T \backslash\left\{u_{t}\right\}: Y \cap V\left(P\left(u_{i}, u_{i+1}\right)\right)=\emptyset\right\} \text { and } t_{r}=\left|T_{r}\right| .
$$

Then

$$
l(P) \geq \sum_{u_{i} \in T_{r}} d_{H}^{*}\left(u_{i}, u_{i+1}\right)+2\left(s+t-t_{r}\right)-\theta .
$$

Proof. If $t=0$, then $s=0$ and the statement is trivially true. Suppose now that $t \geq 1$.
Consider a segment $P\left[u_{i}, u_{i+1}\right], 1 \leq i \leq t-1$. Suppose that

$$
N_{P}(H) \cap V\left(P\left[u_{i}, u_{i+1}\right]\right)=\left\{a_{0}, a_{1}, \ldots, a_{q}, a_{q+1}\right\},
$$

where $q=\left|S \cap V\left(P\left[u_{i}, u_{i+1}\right]\right)\right|, a_{0}=u_{i}, a_{q+1}=u_{i+1}$, and $a_{j}, 0 \leq j \leq q+1$, are in order along P.

If $Y \cap V\left(P\left(u_{i}, u_{i+1}\right)\right)=\emptyset$, then by Lemma 1 (2), there is a subscript $m, 0 \leq m \leq q$, such that

$$
N_{H}\left(a_{0}\right)=N_{H}\left(a_{m}\right) \text { and } N_{H}\left(a_{q+1}\right)=N_{H}\left(a_{m+1}\right) .
$$

Therefore

$$
d_{H}^{*}\left(a_{m}, a_{m+1}\right)=d_{H}^{*}\left(a_{0}, a_{q+1}\right)=d_{H}^{*}\left(u_{i}, u_{i+1}\right) .
$$

Since P is a locally longest (x, Y, z)-path with respect to H, we have

$$
\begin{aligned}
l\left(P\left[u_{i}, u_{i+1}\right]\right) & \geq \sum_{j=0}^{q} d_{H}^{*}\left(a_{j}, a_{j+1}\right)=d_{H}^{*}\left(a_{m}, a_{m+1}\right)+\sum_{\substack{j=0 \\
j \neq m}}^{q} d_{H}^{*}\left(a_{j}, a_{j+1}\right) \\
& =d_{H}^{*}\left(u_{i}, u_{i+1}\right)+\sum_{\substack{j=0 \\
j \neq m}}^{q} d_{H}^{*}\left(a_{j}, a_{j+1}\right) .
\end{aligned}
$$

Note that $d_{H}^{*}\left(a_{j}, a_{j+1}\right) \geq 2$, for every $j, 0 \leq j \leq q$, we have

$$
l\left(P\left[u_{i}, u_{i+1}\right]\right) \geq d_{H}^{*}\left(u_{i}, u_{i+1}\right)+2 q .
$$

If $Y \cap V\left(P\left(u_{i}, u_{i+1}\right)\right) \neq \emptyset$, then noting that $l\left(P\left[a_{j}, a_{j+1}\right]\right) \geq 2$, we have

$$
l\left(P\left[u_{i}, u_{i+1}\right]\right)=\sum_{j=0}^{q} l\left(P\left[a_{j}, a_{j+1}\right]\right) \geq 2 q+2 .
$$

Besides, consider the two segments $P\left[x, u_{1}\right]$ and $P\left[u_{t}, z\right]$. Suppose that

$$
N_{P}(H) \cap V\left(P\left[x, u_{1}\right]\right)=\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}
$$

and

$$
N_{P}(H) \cap V\left(P\left[u_{t}, z\right]\right)=\left\{a_{m+1}, a_{m+2}, \ldots, a_{q+1}\right\},
$$

where $m=\left|S \cap V\left(P\left[x, u_{1}\right]\right)\right|, q-m=\left|S \cap V\left(P\left[u_{t}, z\right]\right)\right|, a_{m}=u_{1}, a_{m+1}=u_{t}$, and a_{j}, $0 \leq j \leq q+1$ are in order along P. Note that $l\left(P\left[x, a_{0}\right]\right)+l\left(P\left[a_{q+1}, z\right]\right) \geq 2-\theta$ and $l\left(P\left[a_{j}, a_{j+1}\right]\right) \geq 2$, for every $0 \leq j \leq q$, and $j \neq m$, we have

$$
l\left(P\left[x, u_{1}\right]\right)+l\left(P\left[u_{t}, z\right]\right) \geq 2 q+2-\theta .
$$

Thus summing over the lengths of all the segments, yields

$$
\begin{aligned}
l(P) & =l\left(P\left[x, u_{1}\right]\right)+\sum_{i=1}^{t-1} l\left(P\left[u_{i}, u_{i+1}\right]\right)+l\left(P\left[u_{t}, z\right]\right) \\
& \geq 2\left(\left|S \cap V\left(P\left[x, u_{1}\right]\right)\right|+\left|S \cap V\left(P\left[u_{t}, z\right]\right)\right|\right)+2-\theta \\
& +\sum_{\substack{i=1 \\
u_{i} \in T_{r}}}^{t-1}\left(d_{H}^{*}\left(u_{i}, u_{i+1}\right)+2\left|S \cap V\left(P\left[u_{i}, u_{i+1}\right]\right)\right|\right)+\sum_{\substack{i=1 \\
u_{i} \notin T_{r}}}^{t-1}\left(2\left|S \cap V\left(P\left[u_{i}, u_{i+1}\right]\right)\right|+2\right) \\
& =\sum_{u_{i} \in T_{r}} d_{H}^{*}\left(u_{i}, u_{i+1}\right)+2\left(s+t-t_{r}\right)-\theta .
\end{aligned}
$$

This ends the proof.
In the following, we call a strong attached pair $\left\{u_{j}, u_{j+1}\right\}$ of H to P in G transitive if $Y \cap V\left(P\left(u_{j}, u_{j+1}\right)\right)=\emptyset$.

Lemma 3. Let G be a graph and P a path of G. Suppose that H is a separable component of $G-P, B$ is an endblock of H, b is the cut vertex of H contained in $B, M=B-b$. Let $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ be a maximum strong attachment of H to P. If H is locally k-connected to P, then
(1) $\left|N_{P}(M) \cap T\right| \geq \min \left\{k-1, m+d_{2}^{\prime}\right\}$; and
(2) there exist at least $\min \left\{k-1, m+d_{2}^{\prime}\right\}$ strong attached pairs which are joined to M, where $m=|V(M)|$ and d_{2}^{\prime} is the number of vertices in $N_{P}(M)$ which has at least two neighbors in H.

Proof. Since H is locally k-connected to $P,|V(P)| \geq k$. It is easy to know that M is locally $(k-1)$-connected to P in the subgraph induced by $V(P) \cup V(M)$. By Proposition 1, there are $\min \{k-1, m\}$ independent edges in $E(P, M)$. Let $v_{i} w_{i}, 1 \leq i \leq \min \{k-1, m\}$ be such edges, where $v_{i} \in V(P)$ and $w_{i} \in V(M)$.

If v_{i} has at least two neighbors in H, then by Lemma 1 (1), $v_{i} \in T$. If v_{i} has only one neighbor w_{i} in H, then by Lemma 1 (2), there exists a vertex $v_{i}^{\prime}\left(\right.$ maybe $\left.=v_{i}\right)$ in T which also has only one neighbor w_{i} in H. This implies that $\left|N_{P}(M) \cap T\right| \geq \min \{k-1, m\}$.

Now, we prove (1) by induction on d_{2}^{\prime}. If $d_{2}^{\prime}=0$, then by the analysis above, the assertion is true. Thus we assume that $d_{2}^{\prime} \geq 1$.

Let u_{j} be a vertex in $N_{P}(M)$ which has at least two neighbors in $H\left(u_{j}\right.$ is of course in T by Lemma 1 (1)). Let G^{\prime} be the graph obtained from G by deleting all edges from u_{j} to H. By Proposition 2, H is locally ($k-1$)-connected to P in G^{\prime}.

If $u_{j}=u_{1}$ or u_{t}, or $\left\{u_{j-1}, u_{j+1}\right\}$ are joined to H by two independent edges, then $T^{\prime}=T \backslash\left\{u_{j}\right\}$ is a strong attachment of H to P in G^{\prime}. Since u_{j} is joined to at least two vertices of H in G, any strong attachment of H to P in G^{\prime} together with u_{j} is a strong attachment of H to P in G. Since $\left|T^{\prime}\right|=t-1$, we see that T^{\prime} is a maximum strong attachment of H to P in G^{\prime}. By the induction hypothesis,

$$
\left|N_{P}(M) \cap T^{\prime}\right| \geq \min \left\{k-2, m+d_{2}^{\prime}-1\right\} .
$$

Therefore

$$
\left|N_{P}(M) \cap T\right| \geq \min \left\{k-1, m+d_{2}^{\prime}\right\},
$$

as required.
If $u_{j} \in\left\{u_{2}, \ldots, u_{t-1}\right\}$, and $\left\{u_{j-1}, u_{j+1}\right\}$ are not joined to H by two independent edges, i.e.,

$$
N_{H}\left(u_{j-1}\right)=N_{H}\left(u_{j+1}\right)=\{w\},
$$

for some $w \in V(H)$, then

$$
T^{\prime}=T \backslash\left\{u_{j}, u_{j+1}\right\}=\left\{u_{1}, \ldots, u_{j-1}, u_{j+2}, \ldots, u_{t}\right\}
$$

is a strong attachment of H to P in G^{\prime}. We prove now that T^{\prime} is maximum by showing that any strong attachment of H to G^{\prime} has cardinality at most $t-2=\left|T^{\prime}\right|$.

Let $v_{1}, v_{2}\left(\neq u_{j}\right)$ be the two vertices in $N_{P}(H)$ which are closest to u_{j} on P, say v_{1} preceding, and v_{2} following, u_{j} on P (but not necessarily adjacent to u_{j} on P). Since $\left|N_{H}\left(u_{j}\right)\right| \geq 2$ and by Lemma 1 (2),

$$
N_{H}\left(v_{1}\right)=N_{H}\left(u_{j-1}\right)=\{w\}=N_{H}\left(u_{j+1}\right)=N_{H}\left(v_{2}\right) .
$$

By the choice of v_{1} and v_{2}, for any maximum strong attachment $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ of H to P in G^{\prime}, there is an integer $l, 0 \leq l \leq p$, such that $v_{1}, v_{2} \in V\left(P\left[a_{l}, a_{l+1}\right]\right)$, where $a_{0}=x$ and $a_{p+1}=z$. Since $N_{H}\left(v_{1}\right)=\{w\}=N_{H}\left(v_{2}\right)$, it follows from Lemma 1 (2) that either $N_{H}\left(a_{l}\right)$ or $N_{H}\left(a_{l+1}\right)=\{w\}$. The former implies a strong attachment $\left\{a_{1}, \ldots, a_{l}, u_{j}, v_{2}, a_{l+1}, \ldots, a_{p}\right\}$, the latter a strong attachment $\left\{a_{1}, \ldots, a_{l}, v_{1}, u_{j}, a_{l+1}, \ldots, a_{p}\right\}$, of H to P in G; in either case we have that $p+2 \leq t$, that is, $p \leq t-2=\left|T^{\prime}\right|$. This shows
that T^{\prime} is a maximum strong attachment of H to P in G^{\prime}, as claimed. As before, by the induction hypothesis,

$$
\left|N_{P}(M) \cap T^{\prime}\right| \geq \min \left\{k-2, m+d_{2}^{\prime}-1\right\}
$$

Consequently

$$
\left|N_{P}(M) \cap T\right| \geq \min \left\{k-1, m+d_{2}^{\prime}\right\}
$$

which completes the proof of (1).
Now we prove (2). Clearly for every vertex $u_{j} \in N_{P}(M) \cap T \backslash\left\{u_{t}\right\}$, the strong attached pair $\left\{u_{j}, u_{j+1}\right\}$ is joined to M. If $\left|N_{P}(M) \cap T \backslash\left\{u_{t}\right\}\right| \geq \min \left\{k-1, m+d_{2}^{\prime}\right\}$, then the assertion is true. By (1), we assume that $\left|N_{P}(M) \cap T\right|=\min \left\{k-1, m+d_{2}^{\prime}\right\}$ and $u_{t} \in N_{P}(M) \cap T$.

By Lemma $1(3), t \geq \min \left\{k, h+d_{2}\right\} \geq \min \left\{k-1, m+d_{2}^{\prime}\right\}+1$. This implies that there exists at least one vertex in $T \backslash N_{P}(M)$. We chose a vertex $u_{i} \in T \backslash N_{P}(M)$ such that $u_{i+1} \in N_{P}(M) \cap T$. Then $\left\{u_{i}, u_{i+1}\right\}$ together with $\left\{u_{j}, u_{j+1}\right\}$ for $u_{j} \in N_{P}(M) \cup T \backslash\left\{u_{t}\right\}$ are $\min \left\{k-1, m+d_{2}^{\prime}\right\}$ strong attached pairs joined to M.

In the following, we call a strong attached pair which is joined to M a good pair (with respect to $M)$. Let $\left\{u_{j}, u_{j+1}\right\}$ be a strong attached pair. If one of the vertices in $\left\{u_{j}, u_{j+1}\right\}$ is joined to M, and the other to $H-M$, then we call it a better pair (with respect to M); and if one of the vertices in $\left\{u_{j}, u_{j+1}\right\}$ is joined to M, and the other to $H-B$, then we call it a best pair (with respect to M).

3 Proof of Theorem 4

In order to prove the theorem, we chose a longest (x, Y, z)-path P in G. Clearly $|V(P)| \geq k$. Moreover, by the k-connectedness of G, for each component H of $G-P, H$ is locally k connected to P, and P is a locally longest (x, Y, z)-path with respect to H. So it is sufficient to prove that:

Proposition 4. Let G be a graph, P an (x, Y, z)-path of G, where $x, z \in V(G), Y \subset V(G)$, and $|Y|=k-2$. Suppose that the average degree of vertices in $V(G) \backslash\{x, z\}$ is r. If for each component H of $G-P, H$ is locally k-connected to P, and P is a locally longest (x, Y, z)-path with respect to H, then $l(P) \geq r$.

Proof. We prove this proposition by induction on $|V(G-P)|$. If $V(G-P)=\emptyset$, note that $r \leq|V(G)|-1$, the result is trivially true. So we assume that $V(G-P) \neq \emptyset$. Let H be a component of $G-P$.

Let $d=\left|N_{P}(H)\right|, \theta=\left|\{x, z\} \cap N_{P}(H)\right|$ and $N_{P}(H)=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$, where v_{i}, $1 \leq i \leq d$, are in order along P. Then, we have

$$
l(P)=l\left(P\left[x, v_{1}\right]\right)+\sum_{i=1}^{d-1} l\left(P\left[v_{i}, v_{i+1}\right]\right)+l\left(P\left[v_{d}, z\right]\right) .
$$

It is easy to know that $l\left(P\left[x, v_{1}\right]\right)+l\left(P\left[v_{d}, z\right]\right) \geq 2-\theta$ and $l\left(P\left[v_{i}, v_{i+1}\right]\right) \geq 2$ for $1 \leq i \leq d-1$. Thus, we have

$$
l(P) \geq 2 d-\theta .
$$

Note that $d \geq k$ by the local k-connectedness of H to P and clearly $\theta \leq 2$. If $r \leq 2 k-2$, then we have $l(P) \geq 2 k-2 \geq r$, and the proof is complete. Thus we assume that

$$
\begin{equation*}
r>2 k-2 . \tag{1}
\end{equation*}
$$

Besides, if $d \geq(r+\theta) / 2$, then $l(P) \geq r$, and we complete the proof. Thus, we assume that

$$
\begin{equation*}
d<(r+\theta) / 2 . \tag{2}
\end{equation*}
$$

Let $T=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ be a maximum strong attachment of H to P. Set $S=$ $N_{P}(H) \backslash T$ and $s=|S|($ note that $s+t=d)$. Let $T_{r}=\left\{u_{i} \in T \backslash\left\{u_{t}\right\}: Y \cap V\left(P\left(u_{i}, u_{i+1}\right)\right)=\right.$ $\emptyset\}$ and $t_{r}=\left|T_{r}\right|$.

Clearly, for every transitive strong attached pair $\left\{u_{j}, u_{j+1}\right\}$, where $u_{j} \in T_{r}$, we have

$$
\begin{equation*}
d_{H}^{*}\left(u_{j}, u_{j+1}\right) \geq 2 . \tag{3}
\end{equation*}
$$

We distinguish two cases:
Case 1. H is nonseparable.
Let $h=|V(H)|$ and r^{\prime} the average degree of vertices in $V(H)$. If $r^{\prime} h+e(P-\{x, z\}, H) \leq$ $r h$, then we consider the graph G^{\prime} obtained from G by deleting the component H. Note that

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime}\right) \backslash\{x, z\}} d_{G^{\prime}}(v) & =r(|V(G)|-2)-r^{\prime} h-e(P-\{x, z\}, H) \\
& \geq r(|V(G)|-2)-r h \\
& =r\left(\left|V\left(G^{\prime}\right)\right|-2\right) .
\end{aligned}
$$

By the induction hypothesis, we have $l(P) \geq r$, and the proof is complete. Thus we assume that

$$
\begin{equation*}
r^{\prime} h+e(P-\{x, z\}, H)>r h \tag{4}
\end{equation*}
$$

We use d_{1} to denote the number of vertices in $N_{P}(H)$ which have only one neighbor in $V(H), d_{2}=d-d_{1}, \theta_{1}$ to denote the number of vertices in $\{x, z\}$ which have only one neighbor in $V(H)$ and $\theta_{2}=\theta-\theta_{1}$.

Clearly,

$$
r^{\prime} h \leq h\left(h-1+d_{2}\right)+d_{1} \text { and } e(P-\{x, z\}, H) \leq h\left(d_{2}-\theta_{2}\right)+d_{1}-\theta_{1} .
$$

Thus, by (4), we have

$$
h\left(h-1+2 d_{2}-\theta_{2}\right)+2 d_{1}-\theta_{1} \geq r^{\prime} h+e(P-\{x, z\}, H)>r h .
$$

Note that $d_{1}=d-d_{2}$ and $\theta_{1}=\theta-\theta_{2}$, we have

$$
h\left(h-1+2 d_{2}-\theta_{2}\right)+2 d-2 d_{2}-\theta+\theta_{2} \geq r h .
$$

By (2), we have

$$
h\left(h-1+2 d_{2}-\theta_{2}\right)+(r+\theta)-2 d_{2}-\theta+\theta_{2}>r h .
$$

Thus

$$
(h-1)\left(h+2 d_{2}-r-\theta_{2}\right)>0 .
$$

This implies that $h \geq 2$ and $h+2 d_{2}>r+\theta_{2} \geq r$, and then $2 h+2 d_{2}>r+2$. By (1), we have $2 h+2 d_{2}>2 k$, that is

$$
\begin{equation*}
h+d_{2}>k . \tag{5}
\end{equation*}
$$

By (5) and Lemma 1 (3), $t \geq k$. Since $|Y| \leq k-2$, there exists at least one transitive strong attached pair $\left(u_{p}, u_{p+1}\right)$ in T, where $u_{p} \in T_{r}$.

Let G^{\prime} be the subgraph induced by $V(H) \cup\left\{u_{p}, u_{p+1}\right\}$. If $u_{p} u_{p+1} \notin E(G)$, we add the edge $u_{p} u_{p+1}$ in G^{\prime}. Thus G^{\prime} is 2-connected and

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, u_{p+1}\right\}} d_{G^{\prime}}(v) & =\sum_{v \in V(H)} d(v)-e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, H\right) \\
& =r^{\prime} h-e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, H\right) \\
& \geq r h-e(P-\{x, z\}, H)-e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, H\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& e(P-\{x, z\}, H) \leq(s+t-\theta) h, \text { and } \\
& e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, H\right) \leq(s+t-2) h,
\end{aligned}
$$

we have

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, u_{p+1}\right\}} d_{G^{\prime}}(v) & \geq r h-(s+t-\theta) h-(s+t-2) h \\
& =(r-2 s-2 t+\theta+2) h .
\end{aligned}
$$

By Theorem 3, G^{\prime} contains a $\left(u_{p}, u_{p+1}\right)$-path of length at least $r-2 s-2 t+\theta+2$, which implies that

$$
\begin{equation*}
d_{H}^{*}\left(u_{p}, u_{p+1}\right) \geq r-2 s-2 t+\theta+2 . \tag{6}
\end{equation*}
$$

Substituting (6) for $d_{H}^{*}\left(u_{p}, u_{p+1}\right)$ in Lemma 2 and (3) for the other terms, we have

$$
l(P) \geq(r-2 s-2 t+\theta+2)+2\left(t_{r}-1\right)+2\left(s+t-t_{r}\right)-\theta \geq r .
$$

Case 2. H is separable.
Let B be an endblock of H, b the cut vertex of H contained in $B, M=B-b$, $m=|V(M)|$, and $r^{\prime \prime}$ the average degree of the vertices in $V(M)$.

If $r^{\prime \prime} m+e(P-\{x, z\}, M)+d_{M}(b) \leq r m$, then we consider the graph G^{\prime} obtained from G by contracting B. Let H^{\prime} be the component of $G^{\prime}-P$ obtained from H by contracting B. By Proposition $3, H^{\prime}$ is locally k-connected to P. Clearly P is a locally longest (x, Y, z)-path with respect to H^{\prime}, and

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime} \backslash\{x, z\}\right.} d_{G^{\prime}}(v) & \geq \sum_{v \in V(G) \backslash\{x, z\}} d(v)-r^{\prime \prime} m-e(P-\{x, z\}, M)-d_{M}(b) \\
& \geq r(|V(G)|-2)-r m \\
& =r\left(\left|V\left(G^{\prime}\right)\right|-2\right) .
\end{aligned}
$$

By the induction hypothesis, $l(P) \geq r$, and the proof is complete. Thus we assume that

$$
\begin{equation*}
r^{\prime \prime} m+e(P-\{x, z\}, M)+d_{M}(b)>r m . \tag{7}
\end{equation*}
$$

Let $d_{0}^{\prime}=\left|N_{P}(H) \backslash N_{P}(M)\right|, d_{1}^{\prime}$ be the number of vertices in $N_{P}(M)$ which have only one neighbor in $V(H), d_{2}^{\prime}=d-d_{0}^{\prime}-d_{1}^{\prime} ; \theta_{0}^{\prime}=\left|\{x, z\} \cap N_{P}(H) \backslash N_{P}(M)\right|, \theta_{1}^{\prime}$ be the number of vertices in $\{x, z\} \cap N_{P}(M)$ which have only one neighbor in $V(H)$ and $\theta_{2}^{\prime}=\theta-\theta_{0}^{\prime}-\theta_{1}^{\prime}$.

Now we prove that

$$
\begin{equation*}
m+d_{2}^{\prime} \geq k-1 . \tag{8}
\end{equation*}
$$

Let B^{\prime} be an endblock of H other than B, b^{\prime} the cut vertex of H contained in B^{\prime}, $M^{\prime}=B^{\prime}-b^{\prime}$ and $m^{\prime}=\left|V\left(M^{\prime}\right)\right|$.

By the local k-connectedness of H to $P,\left|N_{P}\left(M^{\prime}\right)\right| \geq k-1$. If $\left|N_{P}\left(M^{\prime}\right) \backslash N_{P}(M)\right| \leq m$, then $d_{2}^{\prime} \geq\left|N_{P}(M) \cap N_{P}\left(M^{\prime}\right)\right| \geq k-1-m$, and $m+d_{2}^{\prime} \geq k-1$, and (8) holds. Thus we assume that $\left|N_{P}\left(M^{\prime}\right) \backslash N_{P}(M)\right| \geq m+1$. So we have

$$
\begin{equation*}
d_{0}^{\prime} \geq m+1 \tag{9}
\end{equation*}
$$

Clearly,

$$
\begin{aligned}
& r^{\prime \prime} m \leq m\left(m+d_{2}^{\prime}\right)+d_{1}^{\prime}, \\
& e(P-\{x, z\}, M) \leq m\left(d_{2}^{\prime}-\theta_{2}^{\prime}\right)+d_{1}^{\prime}-\theta_{1}^{\prime}, \text { and } \\
& d_{M}(b) \leq m .
\end{aligned}
$$

Thus, by (7),

$$
m\left(m+2 d_{2}^{\prime}+1-\theta_{2}^{\prime}\right)+2 d_{1}^{\prime}-\theta_{1}^{\prime} \geq r^{\prime \prime} m+e(P-\{x, z\}, M)+d_{M}(b)>r m
$$

Note that $d_{1}^{\prime}=d-d_{0}^{\prime}-d_{2}^{\prime}$ and $\theta_{1}^{\prime}=\theta-\theta_{0}^{\prime}-\theta_{2}^{\prime}$, we have

$$
m\left(m+2 d_{2}^{\prime}+1-\theta_{2}^{\prime}\right)+2 d-2 d_{0}^{\prime}-2 d_{2}^{\prime}-\theta+\theta_{0}^{\prime}+\theta_{2}^{\prime}>r m
$$

By (2) and (9), we have

$$
m\left(m+2 d_{2}^{\prime}+1-\theta_{2}^{\prime}\right)+(r+\theta)-2(m+1)-2 d_{2}^{\prime}-\theta+\theta_{0}^{\prime}+\theta_{2}^{\prime}>r m
$$

Thus

$$
(m-1)\left(m+2 d_{2}^{\prime}-r-\theta_{2}^{\prime}\right)>2-\theta_{0}^{\prime} \geq 0 .
$$

This implies that $m \geq 2$ and $m+2 d_{2}^{\prime}>r+\theta_{2}^{\prime} \geq r$, and then $2 m+2 d_{2}^{\prime}>r+2$. By (1), $2 m+2 d_{2}^{\prime}>2 k$, that is $m+d_{2}^{\prime}>k$, and (8) holds.

By Lemma 3 (2), there exist at least $k-1$ good pairs with respect to M. Since $|Y|=k-2$, there exists at least one transitive good pair $\left\{u_{p}, u_{p+1}\right\}$ with respect to M. Similarly there exists at least one transitive good pair $\left\{u_{q}, u_{q+1}\right\}$ with respect to M^{\prime}.

First we assume that there is a transitive best pair with respect to M or M^{\prime}. Without loss of generality, we assume that $\left\{u_{p}, u_{p+1}\right\}$ is a best pair, where $u_{p} \in N_{P}(M)$ and $u_{p+1} \in N_{P}(H-B)$. Consider the subgraph G^{\prime} induced by $V(B) \cup\left\{u_{p}\right\}$. If $u_{p} b \notin E(G)$, we add the edge $u_{p} b$ in G^{\prime}. Thus G^{\prime} is 2 -connected and

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, b\right\}} d_{G^{\prime}}(v) & =\sum_{v \in V(M)} d(v)-e\left(N_{P}(H) \backslash\left\{u_{p}\right\}, M\right) \\
& =r^{\prime \prime} m-e\left(N_{P}(H) \backslash\left\{u_{p}\right\}, M\right) \\
& \geq r m-e(P-\{x, z\}, M)-d_{M}(b)-e\left(N_{P}(H) \backslash\left\{u_{p}\right\}, M\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& e(P-\{x, z\}, M) \leq(s+t-\theta) m, \\
& d_{M}(b) \leq m, \text { and } \\
& e\left(N_{P}(H) \backslash\left\{u_{p}\right\}, M\right) \leq(s+t-1) m,
\end{aligned}
$$

we have

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, b\right\}} d_{G^{\prime}}(v) & \geq r m-(s+t-\theta) m-m-(s+t-1) m \\
& =(r-2 s-2 t+\theta) m .
\end{aligned}
$$

By Theorem 3, G^{\prime} contains a $\left(u_{p}, b\right)$-path of length at least $r-2 s-2 t+\theta$. It is clear that there is a $\left(b, u_{p+1}\right)$-path in $H-B$ of length at least 2 , which implies that

$$
\begin{equation*}
d_{H}^{*}\left(u_{p}, u_{p+1}\right) \geq r-2 s-2 t+\theta+2 \tag{10}
\end{equation*}
$$

Substituting (10) for $d_{H}^{*}\left(u_{p}, u_{p+1}\right)$ in Lemma 2 and (3) for the other terms, we have

$$
l(P) \geq(r-2 s-2 t+\theta+2)+2\left(t_{r}-1\right)+2\left(s+t-t_{r}\right)-\theta \geq r
$$

as required.
So, we assume that there are no transitive best pairs with respect to M or M^{\prime}.
Now we assume that there is a transitive better pair (but not best pair) with respect to M or M^{\prime}. Without loss of generality, we assume that $\left\{u_{p}, u_{p+1}\right\}$ is a better pair, where $u_{p} \in N_{P}(M)$ and $u_{p+1} \in N_{P}(b)$. Consider the subgraph G^{\prime} induced by $V(B) \cup\left\{u_{p}\right\}$. If $u_{p} b \notin E(G)$, we add the edge $u_{p} b$ in G^{\prime}. Thus G^{\prime} is 2 -connected and

$$
\sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, b\right\}} d_{G^{\prime}}(v) \geq r m-e(P-\{x, z\}, M)-d_{M}(b)-e\left(N_{P}(H) \backslash\left\{u_{p}\right\}, M\right) .
$$

Note that

$$
\begin{aligned}
& e(P-\{x, z\}, M) \leq(s+t-\theta) m, \text { and } \\
& d_{M}(b) \leq m,
\end{aligned}
$$

and since at least one vertex of u_{q} and u_{q+1} is not joined to M (otherwise, $\left\{u_{q}, u_{q+1}\right\}$ will be a best pair), we have

$$
e\left(N_{P}(H) \backslash\left\{u_{p}\right\}, M\right) \leq(s+t-2) m
$$

Thus we have

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, b\right\}} d_{G^{\prime}}(v) & \geq r m-(s+t-\theta) m-m-(s+t-2) m \\
& =(r-2 s-2 t+\theta+1) m .
\end{aligned}
$$

By Theorem 3, G^{\prime} contains a $\left(u_{p}, b\right)$-path of length at least $r-2 s-2 t+\theta+1$, and then, by $b u_{p+1} \in E(G)$,

$$
d_{H}^{*}\left(u_{p}, u_{p+1}\right) \geq r-2 s-2 t+\theta+2 .
$$

Thus we also have $l(P) \geq r$.
So, we assume that there are no transitive better pairs with respect to M or M^{\prime}. Thus $\left\{u_{p}, u_{p+1}\right\}$ and $\left\{u_{q}, u_{q+1}\right\}$ are two distinct strong attached pairs.

If $m=1$, then $\left\{u_{p}, u_{p+1}\right\}$ will be a better pair with respect to M. Thus we assume that $m \geq 2$.

If $m=2$, then B is a triangle, and $d_{H}^{*}\left(u_{p}, u_{p+1}\right)=4$. Since $\left\{u_{p}, u_{p+1}\right\}$ is not a better pair, we have that $u_{p} \in N_{P}(M)$. Similar to the analysis above, we have $d_{H}^{*}\left(u_{p}, b\right) \geq$ $r-2 s-2 t+\theta+1$. But $d_{H}^{*}\left(u_{p}, b\right)=3$, we have

$$
d_{H}^{*}\left(u_{p}, u_{p+1}\right)=4 \geq r-2 s-2 t+\theta+2 .
$$

Then $l(P) \geq r$.
So we assume that

$$
\begin{equation*}
m \geq 3, \text { and similarly, } m^{\prime} \geq 3 \tag{11}
\end{equation*}
$$

It is easy to know that $d_{H}^{*}\left(u_{p}, u_{p+1}\right) \geq 4$. Thus if $r-2 s-2 t+\theta \leq 2$, we will have

$$
d_{H}^{*}\left(u_{p}, u_{p+1}\right) \geq r-2 s-2 t+\theta+2,
$$

and then $l(P) \geq r$. So we assume that

$$
\begin{equation*}
r-2 s-2 t+\theta \geq 2 \tag{12}
\end{equation*}
$$

Note that u_{p} and u_{p+1} are joined to B by two independent edges. Consider the subgraph G^{\prime} induced by $V(B) \cup\left\{u_{p}, u_{p+1}\right\}$. If $u_{p} u_{p+1} \notin E(G)$, we add the edge $u_{p} u_{p+1}$ in
G^{\prime}. Thus G^{\prime} is 2-connected and

$$
\begin{aligned}
& \sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, u_{p+1}\right\}} d_{G^{\prime}}(v) \\
& =\sum_{v \in V(M)} d(v)-e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, M\right)+d_{M}(b)+\left|\left\{u_{p}, u_{p+1}\right\} \cap N(b)\right| \\
& =r^{\prime \prime} m+d_{M}(b)-e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, M\right)+\left|\left\{u_{p}, u_{p+1}\right\} \cap N(b)\right| \\
& \geq r m-e(P-\{x, z\}, M)-e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, M\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& e(P-\{x, z\}, M) \leq(s+t-\theta) m, \text { and } \\
& e\left(N_{P}(H) \backslash\left\{u_{p}, u_{p+1}\right\}, M\right) \leq(s+t-2) m,
\end{aligned}
$$

we have

$$
\begin{aligned}
\sum_{v \in V\left(G^{\prime}\right) \backslash\left\{u_{p}, u_{p+1}\right\}} d_{G^{\prime}}(v) & \geq r m-(s+t-\theta) m-(s+t-2) m \\
& =(r-2 s-2 t+\theta+2) m
\end{aligned}
$$

By Theorem 3, G^{\prime} contains a $\left(u_{p}, u_{p+1}\right)$-path of length at least $(r-2 s-2 t+\theta+$ 2) $m /(1+m)$, which implies that

$$
\begin{aligned}
d_{H}^{*}\left(u_{p}, u_{p+1}\right) & \geq(r-2 s-2 t+\theta+2) \frac{m}{1+m} \\
& \geq \frac{3}{4}(r-2 s-2 t+\theta+2)
\end{aligned}
$$

(note that $m \geq 3$), and similarly,

$$
d_{H}^{*}\left(u_{q}, u_{q+1}\right) \geq \frac{3}{4}(r-2 s-2 t+\theta+2)
$$

Then by (12),

$$
\begin{aligned}
d_{H}^{*}\left(u_{p}, u_{p+1}\right) & +d_{H}^{*}\left(u_{q}, u_{q+1}\right) \\
& \geq \frac{3}{2}(r-2 s-2 t+\theta+2) \\
& =(r-2 s-2 t+\theta+2)+\frac{1}{2}(r-2 s-2 t+\theta+2) \\
& \geq r-2 s-2 t+\theta+4
\end{aligned}
$$

Thus, by Lemma 2, we have

$$
l(P) \geq(r-2 s-2 t+\theta+4)+2\left(t_{r}-2\right)+2\left(s+t-t_{r}\right)-\theta \geq r
$$

The proof is complete.

4 Proof of Theorem 8

By the k-connectedness of G, it contains a Y-cycle. If $2 e(G) /(n-1) \leq 3$, then the result is trivially true. Thus we assume that $2 e(G) /(n-1)>3$.

We chose a vertex $y \in Y$, and construct a graph G^{\prime} such that $V\left(G^{\prime}\right)=V(G) \cup\left\{y^{\prime}\right\}$, where $y^{\prime} \notin V(G)$ and $E\left(G^{\prime}\right)=E(G) \cup\left\{v y^{\prime}: v \in N_{G}(y)\right\}$. Clearly, G^{\prime} is k-connected. Besides, we have that

$$
e\left(G^{\prime}\right)=e(G)+d_{G}(y) \text { and } d_{G^{\prime}}(y)=d_{G^{\prime}}\left(y^{\prime}\right)=d_{G}(y),
$$

and the order of G^{\prime} is $n+1$. Now, by Theorem 4, there exists a $\left(y, Y \backslash\{y\}, y^{\prime}\right)$-path P of length at least

$$
\frac{2 e\left(G^{\prime}\right)-d_{G^{\prime}}(y)-d_{G^{\prime}}\left(y^{\prime}\right)}{(n+1)-2}=\frac{2\left(e(G)+d_{G}(y)\right)-2 d_{G}(y)}{n-1}=\frac{2 e(G)}{n-1} .
$$

Let $u y^{\prime}$ be the last edge of P, then $u y \in E(G)$ and $C=P[y, u] u y$ is a cycle of G passing through all the vertices in Y of length at least $2 e(G) /(n-1)$, which completes the proof.

References

[1] J.A. Bondy, Basic graph theory - paths and cycles, in: R.L. Graham, M. Grötschel and L. Lovász, eds., Handbook of Combinatorics, North-Holland, Amsterdam (1995) 3-110.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan London and Elsevier, New York (1976).
[3] Y. Egava, R. Glas and S.C. Locke, Cycles and paths through specified vertices in k-connected graphs, J. Combin. Theory B 52 (1991) 20-29.
[4] H. Enomoto, Long paths and large cycles in finite graphs, J. Graph Theory 8 (1984) 287-301.
[5] P. Erdös and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar. 10 (1959) 337-356.
[6] G. Fan, Long cycles and the codiameter of a graph, I, J. Combin. Theory B 49 (1990) 151-180.
[7] R.J. Gould, Advances on the Hamiltonian problem - a survey, Graphs and Combinatorics 19 (2003) 7-52.
[8] S.C. Locke, A generalization of Dirac's theorem, Combinatorica 5 (2) (1985) 149-159.

[^0]: *Corresponding author. E-mail address: sgzhang@nwpu.edu.cn (S. Zhang).

