
ar
X

iv
:1

40
9.

33
25

v2
  [

m
at

h.
C

O
] 

 2
 S

ep
 2

01
5

Solution to a problem on hamiltonicity of graphs under

Ore- and Fan-type heavy subgraph conditions∗

Bo Ning†, Shenggui Zhang‡and Binlong Li§

Abstract

A graph G is called claw-o-heavy if every induced claw (K1,3) of G has two end-

vertices with degree sum at least |V (G)|. For a given graph S, G is called S-f-heavy if

for every induced subgraph H of G isomorphic to S and every pair of vertices u, v ∈

V (H) with dH(u, v) = 2, there holds max{d(u), d(v)} ≥ |V (G)|/2. In this paper,

we prove that every 2-connected claw-o-heavy and Z3-f -heavy graph is hamiltonian

(with two exceptional graphs), where Z3 is the graph obtained by identifying one end-

vertex of P4 (a path with 4 vertices) with one vertex of a triangle. This result gives

a positive answer to a problem proposed in [B. Ning, S. Zhang, Ore- and Fan-type

heavy subgraphs for Hamiltonicity of 2-connected graphs, Discrete Math. 313 (2013)

1715–1725], and also implies two previous theorems of Faudree et al. and Chen et al.,

respectively.

Keywords: Induced subgraphs; Claw-o-heavy graphs; f -Heavy subgraphs; Hamil-

tonicity

AMS Subject Classification (2000): 05C38, 05C45

1 Introduction

Throughout this paper, the graphs considered are simple, finite and undirected. For

terminology and notation not defined here, we refer the reader to Bondy and Murty [2].

Let G be a graph. For a vertex v ∈ V (G), we use NG(v) to denote the set, and dG(v)

the number, of neighbors of v in G. When there is no danger of ambiguity, we use N(v)
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and d(v) instead of NG(v) and dG(v). If H and H ′ are two subgraphs of G, then we set

NH(H ′) = {v ∈ V (H) : NG(v) ∩ V (H ′) 6= ∅}. For two vertices u, v ∈ V (H), the distance

between u and v in H, denoted by dH(u, v), is the length of a shortest path connecting

u and v in H. In particular, when we use the notation G to denote a graph, then for

some subgraph H of G, we set NH(v) = NG(v) ∩ V (H) and dH(v) = |NH(v)| (so, if G′ is

another graph defined on the same vertex set V (G) and H is a subgraph of G′, we will

not use NH(v) to denote NG′(v) ∩ V (H)).

We call H an induced subgraph of G, if for every x, y ∈ V (H), xy ∈ E(G) implies that

xy ∈ E(H). For a given graph S, G is called S-free if G contains no induced subgraph

isomorphic to S. Following [8], G is called S-o-heavy if every induced subgraph of G

isomorphic to S contains two nonadjacent vertices with degree sum at least |V (G)| in

G. Following [9], G is called S-f-heavy if for every induced subgraph H isomorphic to S

and any two vertices u, v ∈ V (H) such that dH(u, v) = 2, there holds max{d(u), d(v)} ≥

|V (G)|/2. Note that an S-free graph is S-o-heavy (S-f -heavy).

The claw is the bipartite graph K1,3. Note that a claw-f -heavy graph is also claw-o-

heavy. Further graphs that will be often considered as forbidden subgraphs are shown in

Fig. 1.

v1 v2 v3 vi−1 vi

Pi (Path)
C3 (Triangle)

v1

vi−1

vi

Zi B (Bull) N (Net) W (Wounded)

Fig. 1. Graphs Pi, C3, Zi, B,N and W .

Bedrossian [1] characterized all connected forbidden pairs for a 2-connected graph to

be hamiltonian.

Theorem 1. (Bedrossian [1]) Let G be a 2-connected graph and let R and S be connected

graphs other than P3. Then G being R-free and S-free implies G is hamiltonian if and

only if (up to symmetry) R = K1,3 and S = C3, P4, P5, P6, Z1, Z2, B,N or W .

Faudree and Gould [6] extended Bedrossian’s result by giving a proof of the ‘only if ’

part based on infinite families of non-hamiltonian graphs.
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Theorem 2. (Faudree and Gould [6]) Let G be a 2-connected graph of order at least 10 and

let R and S be connected graphs other than P3. Then G being R-free and S-free implies G is

hamiltonian if and only if (up to symmetry) R = K1,3 and S = C3, P4, P5, P6, Z1, Z2, Z3, B,N

or W .

Li et al. [8] extended Bedrossian’s result by restricting Ore’s condition to pairs of

induced subgraphs of a graph. Ning and Zhang [9] gave another extension of Bedrossian’s

theorem by restricting Ore’s condition to induced claws and Fan’s condition to other

induced subgraphs of a graph.

Theorem 3. (Ning and Zhang [9]) Let G be a 2-connected graph and S be a connected

graph other than P3. Suppose that G is claw-o-heavy. Then G being S-f-heavy implies G

is hamiltonian if and only if S = P4, P5, P6, Z1, Z2, B,N or W .

Motivated by Theorems 2 and 3, Ning and Zhang [9] proposed the following problem.

Problem 1. (Ning and Zhang [9]) Is every claw-o-heavy and Z3-f -heavy graph of order

at least 10 hamiltonian?

The main goal of this paper is to give an affirmative solution to this problem. Our

answer is the following theorem, where the graphs L1 and L2 are shown in Fig. 2.

Theorem 4. Let G be a 2-connected graph. If G is claw-o-heavy and Z3-f-heavy, then G

is either hamiltonian or isomorphic to L1 or L2.

L1 L2

Fig. 2. Graphs L1 and L2.

Theorem 4 extends the following two previous theorems.

Theorem 5. (Faudree et al. [7]) If G is a 2-connected claw-free and Z3-free graph, then

G is either hamiltonian or isomorphic to L1 or L2.

Theorem 6. (Chen et al. [5]) If G is a 2-connected claw-f-heavy and Z3-f-heavy graph,

then G is either hamiltonian or isomorphic to L1 or L2.
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We remark that there are infinite 2-connected claw-o-heavy and Z3-o-heavy graphs

which are non-hamiltonian, see [8].

Together with Theorem 3 and Theorem 4, we can obtain the following result which

generalizes Theorem 2.

Theorem 7. Let G be a 2-connected graph of order at least 10 and S be a connected

graph other than P3. Suppose that G is claw-o-heavy. Then G being S-f-heavy implies G

is hamiltonian if and only if S = P4, P5, P6, Z1, Z2, Z3, B,N or W .

2 Preliminaries

In this section, we will list some necessary preliminaries. First, we will introduce the

closure theory of claw-o-heavy graphs proposed by Čada [4], which is an extension of the

closure theory of claw-free graphs due to Ryjáček [10].

Let G be a graph of order n. A vertex x ∈ V (G) is called heavy if d(x) ≥ n/2;

otherwise, it is called light. A pair of nonadjacent vertices {x, y} ⊂ V (G) is called a heavy

pair of G if d(x) + d(y) ≥ n.

Let G be a graph and x ∈ V (G). Define Bo
x(G) = {uv : {u, v} ⊂ N(x), d(u) + d(v) ≥

|V (G)|}. Let Go
x be a graph with vertex set V (Go

x) = V (G) and edge set E(Go
x) =

E(G) ∪ Bo
x(G). Suppose that Go

x[N(x)] consists of two disjoint cliques C1 and C2. For a

vertex y ∈ V (G)\(N(x) ∪ {x}), if {x, y} is a heavy pair in G and there are two vertices

x1 ∈ C1 and x2 ∈ C2 such that x1y, x2y ∈ E(G), then y is called a join vertex of x in G.

If N(x) is not a clique and Go
x[N(x)] is connected, or Go

x[N(x)] consists of two disjoint

cliques and there is some join vertex of x, then the vertex x is called an o-eligible vertex

of G. The locally completion of G at x, denoted by G′
x, is the graph with vertex set

V (G′
x) = V (G) and edge set E(G′

x) = E(G) ∪ {uv : u, v ∈ N(x)}.

Let G be a claw-o-heavy graph. The closure of G, denoted by clo(G), is the graph

such that:

(1) there is a sequence of graphs G1, G2, . . . , Gt such that G = G1, Gt = clo(G), and for

any i ∈ {1, 2, . . . , t − 1}, there is an o-eligible vertex xi of Gi, such that Gi+1 = (Gi)
′
xi
;

and

(2) there is no o-eligible vertex in Gt.

Theorem 8. (Čada [4]) Let G be a claw-o-heavy graph. Then

(1) the closure clo(G) is uniquely determined;

(2) there is a C3-free graph H such that clo(G) is the line graph of H; and

(3) the circumferences of clo(G) and G are equal.
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Now we introduce some new terminology and notations. Let G be a claw-o-heavy

graph and C be a maximal clique of clo(G). We call G[C] a region of G. For a vertex

v of G, we call v an interior vertex if it is contained in only one region, and a frontier

vertex if it is contained in two distinct regions. For two vertices u, v ∈ V (G), we say u

and v are associated if u, v are contained in a common region of G; otherwise u and v are

dissociated. For a region R of G, we denote by IR the set of interior vertices of R, and by

FR the set of frontier vertices of R.

From the definition of the closure, it is not difficult to get the following lemma.

Lemma 1. Let G be a claw-o-heavy graph. Then

(1) every vertex is either an interior vertex of a region or a frontier vertex of two regions;

(2) every two regions are either disjoint or have only one common vertex; and

(3) every pair of dissociated vertices have degree sum less than |V (G)| in clo(G) (and in

G).

Proof. In the proof of the lemma, we let G′ = clo(G).

(1) Let v be an arbitrary vertex of G. Since G′ is closed, NG′(v) is either a clique or

a disjoint union of two cliques in G′. Thus v is contained in one or two regions of G, and

the assertion is true.

(2) Let R and R′ be two regions of G, and C and C ′ be the two maximal cliques of

G′ corresponding to R and R′, respectively. If C and C ′ have two common vertices, say

u and v, then u and v will be o-eligible vertices of G′, contradicting the definition of the

closure of G. This implies that C and C ′ (and then, R and R′) have at most one common

vertex.

(3) Let u, v be two nonadjacent vertices with dG′(u)+ dG′(v) ≥ n = |V (G)|. Then u, v

have at least two common neighbors in G′. Suppose that u and v are not in a common

clique of G′. Let x be a common neighbor of u and v in G′. Since NG′(x) is not a clique

in G′, it is the disjoint union of two cliques, one containing u and the other containing v.

Since uv ∈ Bo
x(G

′), x is an o-eligible vertex of G′, a contradiction. Thus we conclude that

u, v are in a common clique of G′, i.e., u and v are associated.

The next lemma provides some structural information on regions.

Lemma 2. Let G be a claw-o-heavy graph and R be a region of G. Then

(1) R is nonseparable;

(2) if v is a frontier vertex of R, then v has an interior neighbor in R or R is complete

and has no interior vertices;

(3) for any two vertices u, v ∈ R, there is an induced path of G from u to v such that every
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internal vertex of the path is an interior vertex of R; and

(4) for two vertices u, v in R, if {u, v} is a heavy pair of G, then u, v have two common

neighbors in IR.

Proof. Let G1, G2, . . . , Gt be the sequence of graphs, and x1, x2, . . . , xt−1 the sequence of

vertices in the definition of clo(G).

(1) Suppose that R has a cut-vertex y. We prove by induction that y would be a cut-

vertex of Gi[V (R)] for all i ∈ [1, t]. Since y is a cut-vertex of G1[V (R)] = R, we assume

that 2 ≤ i ≤ t. By the induction hypothesis, y is a cut-vertex of Gi−1[V (R)]. Let R′ and

R′′ be two components of Gi−1[V (R)] − y, u be a vertex of R′ and v be a vertex of R′′.

Then u and v have at most one common neighbor y in R. Note that each two maximal

cliques of clo(G) is either disjoint or have only one common vertex (see Lemma 1 (1)).

This implies that u and v have no common neighbors in Gi−1 − V (R). Hence {u, v} is

not a heavy pair of G. Note that an o-eligible vertex of Gi−1 will be an interior vertex of

clo(G). This implies that y is not an o-eligible vertex of Gi−1. Thus xi−1 6= y. Note that

xi−1 has no neighbors in R′ or has no neighbors in R′′. This implies that there are no new

edges in Gi between R′ and R′′. Thus y is also a cut-vertex of Gi[V (R)]. By induction,

we can see that y is a cut-vertex of clo(G)[V (R)], contradicting the fact that V (R) is a

clique in clo(G).

(2) Note that clo(G)[V (R)] is complete. If R has no interior vertex, then R contains

no o-eligible vertex of G. Since the locally completion of G at every o-eligible vertex does

not add an edge in R, R = clo(G)[V (R)] is complete.

Now we assume that R has at least one interior vertex. Suppose that v has no interior

neighbors in R, i.e., N(v) ∩ IR = ∅. Using induction, we will prove that NGi
(v) ∩ IR =

∅. Since NG1
(v) ∩ IR = ∅, we assume that 2 ≤ i ≤ t. By the induction hypothesis,

NGi−1
(v) ∩ IR = ∅. Note that xi−1 is either nonadjacent to v or nonadjacent to every

vertex in NGi−1
(v)∩ V (R). This implies that there are no new edges of Gi between v and

Gi[V (R)]− v. Hence NGi
(v)∩ IR = ∅. Thus by the induction hypothesis, we can see that

Nclo(G)(v) ∩ IR = ∅, a contradiction.

(3) We use induction on t − i (t is the subscript of Gt = clo(G)) to prove that there

is an induced path of Gi[V (R)] from u to v such that every internal vertex of the path is

an interior vertex of R. Note that uv is an edge in Gt[V (R)]. We are done if i = t. Now

suppose that there is an induced path P of Gi[V (R)] from u to v such that every internal

vertex of the path is an interior vertex of R. We will prove that there is an induced path

of Gi−1[V (R)] from u to v such that every internal vertex of the path is an interior vertex

of R. If P is also a path of Gi−1[V (R)], then we are done. So we assume that there is an
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edge u′v′ ∈ E(P ) such that u′v′ /∈ E(Gi−1). This implies that u′, v′ ∈ N(xi−1). Since P

is an induced path of Gi, xi−1 has the only two neighbors u′, v′ on P . We also note that

xi−1 ∈ V (R) is an interior vertex. Thus P ′ = (P −u′v′)∪u′xv′ (with the obvious meaning)

is an induced path of Gi−1[V (R)] from u to v such that every internal vertex of the path

is an interior vertex of R. Thus by the induction hypothesis, the proof is complete.

(4) Since every vertex in FR has at least one neighbor in G − R and every vertex

in G − R has at most one neighbor in FR, we have |NG−R(FR\{u, v})| ≥ |FR\{u, v}|.

Furthermore, we have n = |IR\{u, v}| + |FR\{u, v}| + |V (G−R)|+ 2. Thus, we get

n ≤ d(u) + d(v)

= dIR(u) + dIR(v) + dFR
(u) + dFR

(v) + dG−R(u) + dG−R(v)

≤ dIR(u) + dIR(v) + 2|FR\{u, v}| + dG−R(u) + dG−R(v)

≤ dIR(u) + dIR(v) + |FR\{u, v}| + |NG−R(FR\{u, v})| + |NG−R(u)|+ |NG−R(v)|

= dIR(u) + dIR(v) + |FR\{u, v}| + |NG−R(FR)|

≤ dIR(u) + dIR(v) + |FR\{u, v}| + |V (G−R)|,

and

dIR(u) + dIR(v) ≥ n− |FR\{u, v}| − |V (G−R)| = |IR\{u, v}| + 2.

This implies that u, v have two common neighbors in IR.

Let G be a graph and Z be an induced copy of Z3 in G. We denote the vertices of Z

as in Fig. 3, and say that Z is center-heavy in G if a1 is a heavy vertex of G. If every

induced copy of Z3 in G is center-heavy, then we say that G is Z3-center-heavy.

b

c

a a1 a2 a3

Fig. 3. The Graph Z3.

Lemma 3. Let G be a claw-o-heavy and Z3-f-heavy graph. Then clo(G) is Z3-center-heavy.

Proof. Let Z be an arbitrary induced copy of Z3 in G′ = clo(G). We denote the vertices

of Z as in Fig. 3, and will prove that a1 is heavy in G′.

Let R be the region of G containing {a, b, c}. Recall that IR is the set of interior

vertices of R, and FR is the set of frontier vertices of R.

Claim 1. |NR(a2) ∪NR(a3)| ≤ 1.
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Proof. Note that every vertex in G − R has at most one neighbor in R. If NR(a2) = ∅,

then the assertion is obviously true. Now we assume that NR(a2) 6= ∅. Let x be the vertex

in NR(a2). Clearly x 6= a and a1x /∈ E(G′). If a3x /∈ E(G′), then {a2, a1, a3, x} induces a

claw in G′, a contradiction. This implies that a3x ∈ E(G′), and x is the unique vertex in

NG′(a3) ∩ V (R). Thus NR(a2) ∪NR(a3) = {x}.

Claim 2. Let x, y be two vertices in IR ∪ {a}. If xy ∈ E(G) and d(x) + d(y) ≥ n, then

x, y have a common neighbor in IR.

Proof. Note that every vertex in FR has at least one neighbor in G−R and every vertex

in G−R has at most one neighbor in R. By Claim 1, |V (G−R)| ≥ |FR|+ 1. Moreover,

since a is not the neighbor of a2 and a3 in R, |V (G−R)| ≥ |FR\{a}| + |NG−R(a)| + 1.

If x, y ∈ IR, then

n ≤ d(x) + d(y)

= dIR(x) + dIR(y) + dFR
(x) + dFR

(y)

≤ dIR(x) + dIR(y) + 2|FR|

≤ dIR(x) + dIR(y) + |FR|+ |V (G−R)| − 1,

and

dIR(x) + dIR(y) ≥ n− |FR| − |V (G−R)|+ 1 = |IR|+ 1.

This implies that x, y have a common neighbor in IR.

If one of x, y, say y is a, then

n ≤ d(x) + d(a)

= dIR(x) + dIR(a) + dFR
(x) + dFR

(a) + dG−R(a)

≤ dIR(x) + dIR(a) + |FR|+ |FR\{a}| + dG−R(a)

≤ dIR(x) + dIR(a) + |FR|+ |V (G−R)| − 1,

and

dIR(x) + dIR(a) ≥ n− |FR| − |V (G−R)|+ 1 = |IR|+ 1.

This implies that x, a have a common neighbor in IR.

By Lemma 2 (3), G has an induced path P from a to a3 such that every vertex of P

is either in {a, a1, a2, a3} or an interior vertex outside R. Let a, a′1, a
′
2, a

′
3 be the first four

vertices of P .
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Note that a′1 is either a1 or an interior vertex in the region containing {a, a1}. This

implies that dG′(a1) ≥ dG′(a′1) ≥ d(a′1). If a
′
1 is heavy in G, then a1 is heavy in G′ and we

are done. So we assume that a′1 is not heavy in G.

If abca is also a triangle in G, then the subgraph induced by {a, b, c, a′1, a
′
2, a

′
3} is a Z3.

Since G is Z3-f -heavy and a′1 is not heavy in G, b and a′3 are heavy in G. By Lemma 1 (3),

b and a′3 are associated, a contradiction. Thus we conclude that one edge of {ab, ac, bc} is

not in E(G).

Note that R is not complete. By Lemma 2 (2), a has a neighbor in IR.

Claim 3. dIR(a) = 1.

Proof. Suppose that dIR(a) ≥ 2. Let x, y be two arbitrary vertices in NIR(a). If xy ∈

E(G), then {a, x, y, a′1, a
′
2, a

′
3} induces a Z3 in G. Note that a′1 is not heavy in G. Thus x

and a′3 are heavy in G. Note that x and a′3 are dissociated, a contradiction. This implies

that NIR(a) is an independent set.

Since {a, x, y, a′1} induces a claw in G, and {a′1, x}, {a
′
1, y} are not heavy pairs of G by

Lemma 1 (3), we have {x, y} is a heavy pair of G. We assume without loss of generality

that x is heavy in G.

If a is also heavy in G, then by Claim 2, a, x have a common neighbor in IR, contra-

dicting the fact that NIR(a) is an independent set. So we conclude that a is not heavy in

G.

Since {x, y} is a heavy pair of G, by Lemma 2 (4), x, y have two common neighbors in

IR. Let x
′, y′ be two vertices in NIR(x)∩NIR(y). Clearly ax′, ay′ /∈ E(G). If x′y′ ∈ E(G),

then {x, x′, y′, a, a′1, a
′
2} induces a Z3 in G. Since a is light, x′, a′2 are heavy. Note that x′

and a′2 are dissociated, a contradiction. Thus we obtain that x′y′ /∈ E(G).

Note that {x, x′, y′, a} induces a claw in G, and a is light in G. So one vertex of

{x′, y′}, say x′, is heavy in G. By Claim 2, x, x′ have a common neighbor x′′ in IR.

Clearly ax′′ /∈ E(G). Thus {x, x′, x′′, a, a′1, a
′
2} induces a Z3. Since a is not heavy in G,

x′, a′2 are heavy in G, a contradiction.

Now let NIR(a) = {x}.

Claim 4. NR(a) = V (R)\{a}.

Proof. Suppose that V (R)\({a} ∪NR(a)) 6= ∅. By Lemma 2 (1), R− x is connected. Let

y be a vertex in V (R)\({a} ∪NR(a)) such that a, y have a common neighbor z in R− x.

Note that z is a frontier vertex of R. Let z′ be a vertex in NG−R(z). Then {z, y, a, z′}

induces a claw in G. Since {a, z′}, {y, z′} are not heavy pairs of G, {a, y} is a heavy

9



pair of G. By Lemma 2 (4), a, y have two common neighbors in IR, contradicting Claim

3.

By Claims 3 and 4, we can see that |IR| = 1. Recall that one edge of {ab, bc, ac} is

not in E(G). By Claim 4, ab, ac ∈ E(G). This implies that bc /∈ E(G), and {a, b, c, a′1}

induces a claw in G. Since {b, a′1}, {c, a
′
1} are not heavy pairs of G, {b, c} is a heavy pair

of G. By Lemma 2 (4), b and c have two common neighbors in IR, contradicting the fact

that |IR| = 1.

Following [3], we define P to be the class of graphs obtained by taking two vertex-

disjoint triangles a1a2a3a1, b1b2b3b1 and by joining every pair of vertices {ai, bi} by a path

Pki = aic
1
i c

2
i · · · c

ki−2
i bi, for ki ≥ 3 or by a triangle aibiciai. We denote the graphs in P by

Pl1,l2,l3 , where li = ki if ai, bi are joined by a path Pki , and li = T if ai, bi are joined by a

triangle. Note that L1 = PT,T,T and L2 = P3,T,T .

Theorem 9. (Brousek [3]) Every non-hamiltonian 2-connected claw-free graph contains

an induced subgraph H ∈ P.

3 Proof of Theorem 4

Let G′ = clo(G). If G′ is hamiltonian, then so is G by Theorem 8, and we are done. Now

we assume that G′ is not hamiltonian. By Theorem 9, G′ contains an induced subgraph

H = Pl1,l2,l3 ∈ P. We denote the vertices of H by ai, bi, ci and cji as in Section 2. By

Lemma 3, G′ is Z3-center-heavy.

Claim 1. For i ∈ {1, 2, 3}, li = 3 or T ; and at most one of {l1, l2, l3} is 3.

Proof. If one of {l1, l2, l3} is at least 4, say l1 ≥ 4, then the subgraph of G′ induced by

{a1, a2, a3, c
1
1, c

2
1, c

3
1} is a Z3 (we set c31 = b1 if l1 = 4). Thus c11 is heavy in G′. If l2 = T ,

then the subgraph of G′ induced by {a2, a1, a3, b2, b1, c
l1−2
1 } is a Z3, implying b2 is heavy

in G′. But c11 and b2 are dissociated, a contradiction. If l2 6= T , then the subgraph of G′

induced by {a2, a1, a3, c
1
2, . . . , c

l2−2
2 , b2, b1} is a Zr with r ≥ 3, implying c12 is heavy in G′.

But c11 and c12 are dissociated, a contradiction again. Thus we conclude that li = 3 or T

for all i = 1, 2, 3.

If two of {l1, l2, l3} equal 3, say l1 = l2 = 3, then the subgraphs of G′ induced by

{a1, a2, a3, c
1
1, b1, b2} and by {a2, a1, a3, c

1
2, b2, b1} are Z3’s. This implies that c11 and c12 are

heavy in G′. But c11 and c12 are dissociated, a contradiction. Thus we conclude that at

most one of {l1, l2, l3} is 3.
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By Claim 1, we assume without loss of generality that l2 = l3 = T and l1 = 3 or T . If

G′ has only the nine vertices in H, then G′ = L1 or L2, and G has no o-eligible vertices.

This implies that G = L1 or L2. Now we assume that G′ has a tenth vertex.

Let A be the region containing {a1, a2, a3} and B be the region containing {b1, b2, b3}.

For li = T , let Ci be the region containing {ai, bi, ci}; and if l1 = 3, then let C1
1 and C2

1

be the regions containing {a1, c
1
1} and {b1, c

1
1}, respectively.

Claim 2. |V (A)| = |V (B)| = |V (Ci)| = 3; and if l1 = 3, then |V (C1
1 )| = |V (C2

1 )| = 2.

Proof. Suppose that |V (A)| ≥ 4. Let x be a vertex in V (A)\{a1, a2, a3}. Then the

subgraphs of G′ induced by {a2, a1, x, b2, b3, c3} and by {a3, a1, x, b3, b2, c2} are Z3’s. This

implies that b2 and b3 are heavy in G′. Since there are two vertices a1, x nonadjacent to b2

and b3, b2 and b3 have at least two common neighbors in G′. Let y be a common neighbor

of b2 and b3 in G′ other than b1. Then y ∈ V (B), and the subgraphs of G′ induced by

{b2, b1, y, a2, a3, c3} is a Z3. Thus a2 is heavy in G′. By Lemma 1 (3), a2 and b3 are

associated, a contradiction. Thus we conclude that |V (A)| = 3, and similarly, |V (B)| = 3.

Suppose that |V (Ci)| ≥ 4 for li = T . We assume up to symmetry that |V (C2)| ≥ 4. Let

x be a vertex in V (C2)\{a2, b2, c2}. Then the subgraph ofG′ induced by {a2, c2, x, a3, b3, b1}

is a Z3, implying that a3 is heavy in G. If l1 = T , then the subgraph of G′ induced by

{b2, c2, x, b1, a1, a3} is a Z3; if l1 = 3, then the subgraph ofG′ induced by {b2, c2, x, b1, c1, a1}

is a Z3. In any case, we have b1 is heavy in G′. But a3 and b1 are dissociated in G, a

contradiction.

Suppose that l1 = 3 and |V (C1
1 )| ≥ 3. Let x be a vertex in V (C1

1 )\{a1, c
1
1}. Then the

subgraphs of G′ induced by {a1, c
1
1, x, a2, b2, b3} and by {c11, a1, x, b1, b2, c2} are Z3’s. This

implies that a2 and b1 are heavy in G′. But a2 and b1 are dissociated, a contradiction.

Thus we conclude that |V (C1
1 )| = 2, and similarly, |V (C2

1 )| = 2.

In the following, we set S = {v ∈ V (G′) : NG′(v) ∩ V (H) 6= ∅}.

Claim 3. l1 = 3, and for x ∈ S, xc2, xc3 ∈ E(G′).

Proof. By Claim 2, all the neighbors of a1, a2, a3, b1, b2, b3 and c11 (if l1 = 3) are in H. Note

that G′ has at least 10 vertices. The vertices a1, a2, a3, b1, b2, b3 and c11 (if l1 = 3) are not

heavy in G′.

Let x be a vertex in S. Suppose that l1 = T . Note that x cannot be adjacent to all the

three vertices c1, c2, c3. We assume up to symmetry that xc1 ∈ E(G′) and xc2 /∈ E(G′).

Then the subgraph of G′ induced by {a2, b2, c2, a1, c1, x} is a Z3, implying a1 is heavy in

G′, a contradiction. Thus we conclude that l1 = 3.
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Suppose that one edge of xc2, xc3 is not in E(G′), say xc2 /∈ E(G′). Then the subgraph

of G′ induced by {a2, b2, c2, a3, c3, x} is a Z3, implying a3 is heavy in G′, a contradiction.

Thus we conclude that xc2, xc3 ∈ E(G′).

Let x be a vertex in S. By Claim 3, xc2, xc3 ∈ E(G′). If G′ has only ten vertices,

then C = a1a2a3c3xc2b2b3b1c
1
1a1 is a Hamilton cycle of G′, a contradiction. Suppose now

that G′ has an eleventh vertex. Since G′ is 2-connected, let x′ be a vertex in S\{x}. By

Claim 3, x′c2, x
′c3 ∈ E(G′). Thus xx′ ∈ E(G′). Note that NG′(x) is neither a clique nor

a disjoint union of two cliques of G′. This implies that x is an o-eligible vertex of G′, a

contradiction.

The proof is complete.

References

[1] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditons for Hamiltonic-

ity, Ph.D. Thesis, Memphis State University (1991)

[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan London and

Elsevier, New York (1976)

[3] J. Brousek, Minimal 2-connected non-hamiltonian claw-free graphs, Discrete Math.

191, 57–64 (1998)
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