
Constructing the Spectrum of Packings and Coverings
for the Complete Graph with Stars with up to Five
Edges

Danny Dyer∗, Sadegheh Haghshenas†, and Nabil Shalaby‡

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s,
Newfoundland, Canada, A1C 5S7

Abstract: The packing and covering problems have been considered for several classes of
graphs. For instance, Bryant et. al. have investigated the packing problem for paths and
cycles, and the packing and covering problems for 3-cubes. The packing and covering prob-
lems were settled for stars with up to six edges by Roditty. In this paper, for every possible
leave graph (excess graph), we find a corresponding maximum packing (minimum covering)
of the complete graph with stars with up to five edges.
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1 Introduction

The graphs in this paper are assumed to have no loops or multiple edges unless otherwise
stated. For any graph G, a G-decomposition of a graph H is a partition of the edge set of
H with graphs all isomorphic to G. The spectrum problem for a graph G is to determine
the set D of all positive integers n such that the complete graph Kn has a G-decomposition
if and only if n ∈ D. In 1972, Hell and Rosa introduced graph decompositions for the first
time in order to attack the spectrum problem for P3, a path on three vertices [7].

The spectrum problem for trees on nine or less vertices was solved by Huang and Rosa
in 1978 [9]. This problem has been completely solved for the stars, an infinite subclass of
trees. Yamamoto solved the spectrum problem for stars with k edges in 1975 [18]. In 1978,
Tarsi [14] solved the problem using a different method.

The packing problem (covering problem) for a graph G is to determine the number of el-
ements in a maximum G-packing (minimum G-covering) of Kn and this number is called
the G-packing number (G-covering number). The packing and covering problems have been
considered for many classes of graphs. These problems were solved for all trees of order seven
or less by Roditty [10], [11], [12], and [13]. In particular, he solved the problems for stars
with up to six edges. In 1999, Adams, Bryant, and El-Zanati [2] solved the packing and
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covering problems for 3-cubes. In 2008, Bryant and Horsley [4] found sufficient conditions
for the existence of a packing of the complete graph with cycles of specific lengths. Bryant
[3] also proved Tarsi’s conjecture [15] on necessary and sufficient conditions for the existence
of a packing of the complete multigraph with paths of specific lengths in 2010. For further
details about decompositions, packings, and coverings, refer to [5].

In 2014, Hoffman solved the packing and covering problems for any k-star [8]. In fact, he

proved that for n ≥ 2k, the number of k-stars in a maximum Sk-packing of Kn is
⌊
n(n−1)

2k

⌋
,

and a star is always achievable as the leave graph.

As mentioned above, Roditty solved the packing and covering problems for stars with up to
six edges; however, he did not achieve all the possible leaves and excesses, which we refer to
as the spectrum problem for packing and covering.

In 2013, Dyer, Haghshenas, and Shalaby solved the spectrum problem for packing and cover-
ing of the complete graph with stars with four edges [6]. In this paper, we solve the problem
for stars with five edges and introduce new methods to shorten the proofs of the main the-
orems. We state these methods in the form of lemmas in the next section. We also believe
these lemmas will help us to achieve results for the general case, stars with k edges, in the
future.

2 Preliminaries

For basic graph definitions, we follow [16]. Certainly, for a G-decomposition of Kn to exist,
the number of vertices of Kn must be more than the number of vertices of G, the number of
edges of G need to divide the number of edges of Kn, and the degree of each vertex in Kn has
to be a multiple of d, the greatest common divisor of all vertex degrees in G. Consequently,
the following are the obvious necessary conditions for the existence of a G-decomposition of
Kn.

• |V (G)| ≤ n for n > 1

• n(n− 1) ≡ 0 (mod 2|E(G)|)

• n−1 ≡ 0 (mod d) where d is the greatest common divisor of the degrees of the vertices
in G

These conditions were proved to be asymptotically sufficient by Wilson in 1975 [17]. How-
ever, in order to solve the spectrum problem thoroughly, it is still necessary to find the
smallest number n such that for all integers greater than or equal to n, these necessary
conditions are sufficient. For results about those classes of graphs for which the spectrum
problem has been solved refer to [1].

A connected graph on k + 1 vertices with one vertex of degree k, called the center, and
k vertices of degree 1, called the leaves, is a k-star and is denoted by Sk. We denote a k-star
with the center x and the leaves y1, y2, . . . , yk by (x; y1, y2, . . . , yk).
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Theorem 1 ([18]). For k ≥ 1, Kn has an Sk-decomposition if and only if n = 1, or n ≥ 2k
and n(n− 1) ≡ 0 (mod 2k).

In the case of the non-existence of a G-decomposition of a graph H, we are interested in
getting as close as possible to a decomposition, from which arise the notions of packing and
covering. A set of subgraphs of H such that each subgraph is isomorphic to G and every
edge of H is contained in at most one subgraph is a G-packing of H. The leave graph is
the graph consisting of those edges of H which are included in none of these subgraphs. A
G-packing is a maximum G-packing if it has the smallest possible number of edges in the
leave graph. A set of subgraphs of H such that each subgraph is isomorphic to G and every
edge of H is contained in at least one subgraph is a G-covering of H. For any G-covering,
C, of H, the excess graph is the multigraph C \H where C is the graph obtained from the
union of all the subgraphs in the covering C. A G-covering is called a minimum G-covering
if it has the smallest possible number of edges in the excess graph.

For any graph G, the number of elements in a maximum G-packing (minimum G-covering)
of a graph H, is the G-packing number (G-covering number) of H.

Theorem 2 ([10], [11], [12], and [13]). For integers n and k, if n ≥ 2k − 1 and k ≤ 6, then

the Sk-packing number of the complete graph Kn is bn(n−1)
2k
c and if n ≥ 2k and k ≤ 6, then

the Sk-covering number of Kn is dn(n−1)
2k
e.

We will use the following lemmas in the proof of the main theorems. These lemmas help us
shorten the proofs in comparison with the proofs given in [6].

Lemma 3. If m, n, and k are positive integers, then the complete bipartite graph Km,kn has
an Sk-decomposition.

Proof. The proof is trivial.

Let m and n be positive integers. The disjoint union of graphs G and H, denoted G + H,
is the union of graphs G and H with disjoint vertex sets. The join of simple graphs G and
H, denoted G∨H is the graph obtained from the disjoint union G+H by adding the edges
{{x, y}|x ∈ V (G), y ∈ V (H)}. Also for any graph G, mG is the graph consisting of m
pairwise disjoint copies of G. Furthermore, we denote the complete multigraph on n vertices
with multiplicity m by Km

n [16].

Lemma 4. If k is a positive integer and s is a positive odd integer, then the graph Ks ∨
(k−1)(s−1)

2
K1 has an Sk-decomposition.

Proof. Let k be a positive integer and s be a positive odd integer. Consider the graph
Ks ∨ (s−1)(k−1)

2
K1. Label the vertices of Ks with the elements of Zs having subscript 1 and

the remaining (k−1)(s−1)
2

vertices with the elements of Z (k−1)(s−1)
2

having the subscript 2. Then,

the following stars form a decomposition for Ks ∨ (k−1)(s−1)
2

K1 with k-stars where i ∈ Zs

and j = 0, 1, . . . , s−3
2

(see Figure 1).

(i1; (i + j + 1)1, ((k − 1)j)2, ((k − 1)j + 1)2, ((k − 1)j + 2)2, . . . , ((k − 1)j + k − 2)2)
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Figure 1: S4-decomposition of K5 ∨ 6K1

Lemma 5. If k is a positive integer, s is a positive odd integer, and k ≥ s−1
2
, then the graph

Ks ∨ 2k−s+1
2

K1 has an Sk-decomposition.

Proof. Let k be a positive integer and s be a positive odd integer such that k ≥ s−1
2

. Label
the vertices of Ks with the elements of Zs having subscript 1 and the remaining 2k−s+1

2

vertices with the elements of Z 2k−s+1
2

having subscript 2. The following stars will form an

Sk-decomposition for the graph Ks ∨ 2k−s+1
2

K1 (see Figure 2).(
i1; (i + 1)1, (i + 2)1, . . . ,

(
i +

(
s− 1

2

))
1

, 02, 12, . . . ,

(
2k − s− 1

2

)
2

)
, i ∈ Zs.

Figure 2: S5-decomposition of K5 ∨ 3K1

Corollary 6. If k ≥ 2 is a positive integer, then the graph K2k−1 has a maximum packing
with k-stars with a single edge as the leave graph.

Proof. For k = 2, K2k−1 is a triangle and the result follows immediately. For k > 2, write
K2k−1 = K2k−3 ∨K2. Letting s = 2k − 3, the result follows by Lemma 5.
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Corollary 7. If n and k are positive integers such that n ≡ 2k − 1 (mod 2k), then Kn has
a maximum packing with k-stars with a single edge as the leave graph.

Proof. Let n be a positive integer such that n ≡ 2k − 1 (mod 2k). Write Kn = K2k−1 ∨
Kn−2k+1. Since n ≡ 2k − 1 (mod 2k), Kn−2k+1 has an Sk-decomposition R by Theorem 1.
Moreover, K2k−1 has a maximum packing S with k-stars with a single edge as the leave,
by Corollary 6. Now, K2k−1,n−2k+1 is a complete bipartite graph with one part of size a
multiple of k and hence, it has an Sk-decomposition T by Lemma 3. Therefore, R ∪ S ∪ T
is a maximum packing of Kn with k-stars with a single edge as the leave graph.

The following lemmas will greatly reduce the number of cases in the proofs of our main
theorems.

Lemma 8. If k is a positive odd integer, n ≥ k+1
2

is an integer, and H is the leave graph
(excess graph) in an Sk-packing (Sk-covering) of the complete graph Kn, then there exists an
Sk-packing (Sk-covering) of Kn+k with H as the leave graph (excess graph).

Proof. Let k be a positive odd integer and n ≥ k+1
2

be a positive integer. Write Kn+k =
Kk ∨ Kn. Let R be an Sk-packing of Kn with the leave H. Label the vertices of Kn with
the elements of Zn having subscript 1 and the vertices of Kk with the elements of Zk having
subscript 2. The vertices 01, 11, . . . , (

2n−k−3
2

)
1
, the vertices 02, 12, . . . , (k − 1)2, and the edges

between these two sets of vertices form a complete bipartite graph with one part of size a
multiple of k. Hence, by Lemma 3, this complete bipartite graph has an Sk-decomposition,
S. Moreover, the vertices (2n−k−1

2
)
1
, (2n−k+1

2
)
1
, . . . , (n− 1)1, the vertices 02, 12, . . . , (k − 1)2,

the edges between these two sets, and the edges between the vertices of the second set form
a Kk ∨ k+1

2
K1. Hence, by Lemma 5, the graph Kk ∨ k+1

2
K1 has an Sk-decomposition, T .

Therefore, R ∪ S ∪ T forms an Sk-packing of Kn+k with H as the leave graph.

The proof is similar for the covering case.

Lemma 9. If k and n are positive integers such that n ≥ 2k, and H is the leave graph
(excess graph) in an Sk-packing (Sk-covering) of the complete graph Kn, then there exists an
Sk-packing (Sk-covering) of Kn+2k with H as the leave graph (excess graph).

Proof. Let k and n be positive integers such that n ≥ 2k. Write Kn+2k = K2k ∨Kn. Let R
be an Sk-packing of Kn with the leave H. The graph K2k has an Sk-decomposition, S, by
Theorem 1. Moreover, the vertices of Kn, the vertices of K2k, and the edges between these
two sets form a complete bipartite graph with one part of size a multiple of k. Hence, this
graph has an Sk-decomposition, T , by Lemma 3. Therefore, R ∪ S ∪ T forms an Sk-packing
of Kn+2k with the leave H.

The proof is similar for the covering case.

Note that the Lemmas 8 and 9 work for maximum packings and minimum coverings as
particular cases, but also work for decompositions.
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2.1 Packing and Covering the Complete Graph with 3-stars

Theorem 10. Let n ≥ 5 be an integer and the leave graph in a maximum packing of the
complete graph Kn with 3-stars have i edges. For any graph H with i edges there exists a
maximum packing of Kn with 3-stars such that the leave graph is isomorphic to H.

Proof. By Lemma 8, it suffices to prove the theorem for n = 5, 6, and 7. For n = 6 or 7, Kn

has an S3-decomposition by Theorem 1. For n = 5, the leave has a single edge by Theorem
2. Therefore, the proof is complete.

Theorem 11. Let n ≥ 6 be an integer and the excess graph in a minimum covering of the
complete graph Kn with 3-stars have i edges. For any graph H with i edges there exists a
minimum covering of Kn with 3-stars such that the excess graph is isomorphic to H.

Proof. By Lemma 8, we only need to prove the theorem for n = 6, 7, and 8. For n = 6 or 7,
Kn has an S3-decomposition by Theorem 1. For n = 8, the excess has two edges by Theorem
2. Hence, the possible excesses are S2, 2K2, and K2

2 . The excess S2 is achieved by Roditty
[10]. In order to obtain the excess K2

2 , write K8 = K3 ∨K5. Label the vertices of K5 with
the elements of Z5 having subscript 1 and the vertices of K3 with the elements of Z3 having
subscript 2. By Theorem 2, K5 has an S3-packing, R, with a single edge, say {31, 41} as
the leave. Moreover, the following stars form a minimum S3-covering, S, for the remaining
graph with two multiple edges {02, 12} as the excess.

(02; 12, 01, 11), (02; 12, 21, 31), (12; 02, 01, 11), (12; 22, 21, 31),

(22; 02, 01, 11), (22; 21, 31, 41), (41; 31, 02, 12).

Therefore, R ∪ S forms a minimum covering for K8 with 3-stars with the excess K2
2 . Now,

substituting the stars (02; 01, 11, 21) and (12; 01, 11, 31) for (02; 12, 01, 11) and (12; 02, 01, 11)
respectively in R ∪ S will result in a minimum covering of K8 with the excess 2K2.

2.2 Packing and Covering the Complete Graph with 4-stars

Theorem 12 ([6]). Let n ≥ 7 be an integer and the leave graph in a maximum packing of
the complete graph Kn with 4-stars have i edges. For any graph H with i edges there exists
a maximum packing of Kn with 4-stars such that the leave graph is isomorphic to H.

Proof. By Lemma 9, it suffices to prove the theorem for n = 7, 8, 9, . . . , 14. The proofs of
these cases are included in the general proofs given in [6].

Theorem 13 ([6]). Let n ≥ 8 be an integer and the excess graph in a minimum covering of
the complete graph Kn with 4-stars have i edges. For any graph H with i edges there exists
a minimum covering of Kn with 4-stars such that the excess graph is isomorphic to H.

Proof. Again by Lemma 9, we only need to prove the theorem for n = 8, 9, 10, . . . , 15. The
proofs of these cases are included in the general proofs given in [6] as well.
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3 Main Results

3.1 All Possible Leave Graphs

In 1986 Roditty solved the problem of packing the complete graph Kn with 5-stars [12].
We prove that we can achieve all the non-isomorphic possible leave graphs, thus solving the
spectrum problem.

Theorem 14. Let n ≥ 9 be an integer and the leave graph in a maximum packing of the
complete graph Kn with 5-stars have i edges. For any graph H with i edges there exists a
maximum packing of Kn with 5-stars such that the leave graph is isomorphic to H.

Proof. The complete graph Kn has an S5-decomposition for n ≡ 0, 1, 5, or 6(mod 10) by
Theorem 1. We show that for the remaining cases we have maximum packings with all the
possible leave graphs.

By Corollary 7 and Lemma 8, the proof is complete for n ≡ 4 and 9 (mod 10). Now,
by Lemma 8, we only need to prove the theorem for the cases when n ≡ 2 and 3 (mod 10).
Again by Lemma 8, it suffices to prove the theorem for n = 12 and n = 13.

Case 1. n = 12

Write K12 = K10 ∨ K2. Label the vertices of K10 with the elements of Z10 having sub-
script 1 and the vertices of K2 with the elements of Z2 having subscript 2. By Theorem 1,
K10 has an S5-decomposition, R. Now, the vertices 01, 11, . . . , 91, the vertices 02, 12, and the
edges between these two sets of vertices form a complete bipartite graph with one part of size
a multiple of 5. Hence, by Lemma 3, this complete bipartite graph has an S5-decomposition,
S. Now, R ∪ S forms a maximum packing of K12 with 5-stars with the single edge {02, 12}
as the leave graph.

Case 2. n = 13

For this case, the leave graph has 3 edges by Theorem 2. Hence, the possible leaves are
K3, S3, P4, 3K2, and S2 +K2. In order to obtain K3, write K13 = K10 ∨K3. The graph K10

has an S5-decomposition, R, by Theorem 1. Moreover, 10 is a multiple of 5 and hence, by
Lemma 3, K3,10 has an S5-decomposition, S. Therefore, R∪S forms a maximum packing of
K13 with 5-stars with a K3 as the leave graph.

In order to obtain S3 as the leave, again write K13 = K10 ∨ K3. Then K10 has an S5-
decomposition, R′, by Theorem 1. Label the vertices of K10 with the elements of Z10 with
subscript 1 and the vertices of K3 with the elements of Z3 with subscript 2. The vertices
01, 11, 21, 31, the vertices 02, 12, 22, the edges between these two sets of vertices, and the edges
between the vertices of the latter set will form a K3∨4K1. By Lemma 4, K3∨4K1 has an S5-
decomposition, S ′. Let S ′ be formed by the stars (02; 12, 01, 11, 21, 31), (12; 22, 01, 11, 21, 31),
and (22; 02, 01, 11, 21, 31). Now, the vertices 41, 51, 61, 71, 81, the vertices 02, 12, 22, and the
edges between these two sets of vertices form a complete bipartite graph with one part of
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size a multiple of 5. Hence, by Lemma 3, this graph has an S5-decomposition, T ′. Let T ′

be formed by the stars (02; 41, 51, 61, 71, 81), (12; 41, 51, 61, 71, 81), and (22; 41, 51, 61, 71, 81).
Therefore, R′ ∪ S ′ ∪ T ′ forms a maximum packing for K13 with the 3-star (91; 02, 12, 22) as
the leave graph.

Substituting the star (02; 41, 51, 61, 71, 91) for (02; 41, 51, 61, 71, 81) in the packing R′ ∪ S ′ ∪ T ′
gives us a maximum packing U of K13 with S2 + K2 as the leave graph.

Substituting the star (12; 22, 01, 11, 21, 91) for (12; 22, 01, 11, 21, 31) in the packing U results
in a maximum packing for K13 with 3K2 as the leave graph.

Finally, considering the packing R′∪S ′∪T ′ and substituting the star (02; 01, 11, 21, 31, 91) for
(02; 12, 01, 11, 21, 31) gives us a maximum packing for K13 with the leave P4. This completes
the proof in this case.

3.2 All Possible Excess Graphs

In the previous subsection, we showed how to achieve all possible leave graphs in packing the
complete graph with 5-stars. Now, we prove that all possible excess graphs in covering the
complete graph with 5-stars are also achievable. Refer to Table 4 at the end of this section
for all possible leaves and excesses in different congruence classes.

Theorem 15. Let n ≥ 10 be an integer let the excess graph in a minimum covering of the
complete graph Kn with 5-stars have i edges. For any graph H with i edges there exists a
minimum covering of Kn with 5-stars such that the excess graph is isomorphic to H, except
for the excess K4

2 which is not achievable for n = 12.

Proof. The complete graph Kn has an S5-decomposition for n ≡ 0, 1, 5, or 6(mod 10) by
Theorem 1. We show that for the remaining cases we have minimum coverings with all the
possible excess graphs.

By Lemma 8, we only need to prove the theorem for the cases when n ≡ 2, 3, and 4 (mod 10).
Also by Lemma 8, it suffices to consider the cases n = 12, n = 13, and n = 14.

Case 1. n = 12. By Theorem 2, the excess graph has 4 edges in this case. Figure 3
shows all possible excesses with 4 edges (Ei demonstrates the ith excess). Let P be a maxi-
mum packing of K12 with 5-stars. Since the leave graph in a maximum S5-packing is a single
edge, if we add a 5-star including that single edge, we obtain E1 as the excess.

In order to achieve E14, write K12 = K3 ∨K9. Label the vertices of K9 with the elements
of Z9 having subscript 1 and the vertices of K3 with the elements of Z3 having subscript 2.
The following stars form a maximum S5-packing, R, for K9 with the single edge {71, 81} as
the leave.

(01; 11, 21, 31, 71, 81), (11; 21, 31, 41, 71, 81), (21; 31, 41, 51, 71, 81), (31; 41, 51, 61, 71, 81),

(41; 51, 61, 01, 71, 81), (51; 61, 01, 11, 71, 81), (61; 01, 11, 21, 71, 81).
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Figure 3: All possible 4-edge excesses

Moreover, the following stars form a minimum S5-covering, S, of the remaining edges with
three multiple edges {02, 12} and the edge {61, 81} as the excess, which forms a graph iso-
morphic to E14.

(02; 12, 01, 11, 21, 31), (12; 02, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 41, 51, 61, 71),

(22; 02, 01, 11, 21, 31), (22; 12, 41, 51, 61, 71), (81; 61, 71, 02, 12, 22).

Therefore, R ∪ S forms a minimum S5-covering for K12 with the excess E14 (see Figure 4,
where each thick line demonstrates a 4-star). Substituting the stars (01; 11, 21, 31, 71, 02) and

Figure 4: Minimum covering of K12 with the excess E14
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(81; 01, 71, 02, 12, 22) for (01; 11, 21, 31, 71, 81) and (81; 61, 71, 02, 12, 22) respectively, leads to a
minimum S5-covering, U , with the excess E13.

Now, we obtain all possible excesses by substitution of some stars with some other ones
in the coverings R ∪ S and U . The substitutions are given in Tables 1 and 2.

New Star(s) Previous Star(s) Excess
(02; 61, 01, 11, 21, 31) and (02; 01, 41, 51, 61, 71) (02; 12, 01, 11, 21, 31) and (02; 12, 41, 51, 61, 71) E2

(02; 41, 01, 11, 21, 31) and (02; 01, 41, 51, 61, 71) (02; 12, 01, 11, 21, 31) and (02; 12, 41, 51, 61, 71) E3

(02; 61, 01, 11, 21, 31) and (12; 81, 01, 11, 21, 31) (02; 12, 01, 11, 21, 31) and (12; 02, 01, 11, 21, 31) E4

(02; 41, 01, 11, 21, 31) and (12; 51, 01, 11, 21, 31) (02; 12, 01, 11, 21, 31) and (12; 02, 01, 11, 21, 31) E5

(02; 61, 01, 11, 21, 31) and (12; 51, 01, 11, 21, 31) (02; 12, 01, 11, 21, 31) and (12; 02, 01, 11, 21, 31) E6

(12; 22, 01, 11, 21, 31) and (02; 22, 41, 51, 61, 71) (12; 02, 01, 11, 21, 31) and (02; 12, 41, 51, 61, 71) E7

(02; 41, 01, 11, 21, 31), (12; 51, 01, 11, 21, 31), (02; 12, 01, 11, 21, 31), (12; 02, 01, 11, 21, 31),
and (12; 22, 41, 51, 61, 71) and (12; 02, 41, 51, 61, 71) E10

(02; 41, 01, 11, 21, 31), (12; 51, 01, 11, 21, 31), (02; 12, 01, 11, 21, 31), (12; 02, 01, 11, 21, 31),
(12; 22, 41, 51, 61, 71), and (22; 31, 41, 51, 61, 71) (12; 02, 41, 51, 61, 71), and (22; 12, 41, 51, 61, 71) E11

(02; 81, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) E17

(02; 21, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) E18

(12; 22, 41, 51, 61, 71) and (22; 31, 41, 51, 61, 71) (12; 02, 41, 51, 61, 71) and (22; 12, 41, 51, 61, 71) E19

(02; 22, 01, 11, 21, 31) and (22; 61, 01, 11, 21, 31) (02; 12, 01, 11, 21, 31) and (22; 02, 01, 11, 21, 31) E20

Table 1: Substitutions in the covering R ∪ S to obtain different excesses for n = 12

New Star(s) Previous Star(s) Excess Number
(12; 22, 01, 11, 21, 31) and (02; 22, 41, 51, 61, 71) (12; 02, 01, 11, 21, 31) and (02; 12, 41, 51, 61, 71) E8

(02; 41, 01, 11, 21, 31), (12; 21, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71),
and (12; 51, 01, 11, 21, 31) and (12; 02, 01, 11, 21, 31) E9

(02; 01, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) E15

(02; 01, 41, 51, 61, 71), (12; 81, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31),
and (12; 81, 41, 51, 61, 71) and (12; 02, 41, 51, 61, 71) E16

(12; 41, 01, 11, 21, 31) (12; 02, 01, 11, 21, 31) E21

(02; 11, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) E22

(12; 01, 41, 51, 61, 71) (12; 02, 41, 51, 61, 71) E23

Table 2: Substitutions in the covering U to obtain different excesses for n = 12

Now, we prove that for n = 12, the excess graph E12 = K4
2 is not achievable. Assume to the

contrary that Q is a minimum covering of K12 with 5-stars with the excess E12. Let x and
y be the end vertices of the four multiple edges of the excess. Since the four multiple edges
form the excess, Q contains five multiple edges {x, y}. We claim that each of the vertices x
and y can be at most the center of two stars of Q containing the edge {x, y}. Assume to the
contrary that x is the center of three such stars. Hence, there exist at least three disjoint
sets of four vertices other than x and y. This contradicts n = 12 and hence, our claim is
true. Therefore, there are at most four multiple edges between x and y in Q, which shows
there is no minimum covering of K12 with 5-stars with the excess E12.

Case 2. n = 13.
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In this case, the excess graph has 2 edges by Theorem 2. Hence, the possible excesses
are S2, 2K2, and K2

2 .

The excess S2 is easily achievable by adding a 5-star to a maximum packing of K13 with the
leave S3.

In order to obtain the excess 2K2, write K13 = K9 ∨ K4. Label the vertices of K9 with
the elements of Z9 having subscript 1, the vertices of K4 with the elements of Z4 having
subscript 2. Let R be a maximum packing of K9 with the single edge {71, 81} as the leave.
Consider the vertices 01, 11, 21, 31, and 41, the vertices 02, 12, 22, and 32, and the edges be-
tween these two sets form a complete bipartite graph with one part of size a multiple of
5. Hence, by Lemma 3, this bipartite graph has an S5-decomposition, S. Furthermore, the
following stars form a minimum covering, T , for the remaining graph with the edges {02, 22}
and {12, 32} as the excess.

(02; 12, 22, 51, 61, 71), (12; 22, 32, 51, 61, 71), (22; 32, 02, 51, 61, 71),

(32; 02, 12, 51, 61, 71), (81; 71, 02, 12, 22, 32).

Therefore, R ∪ S ∪ T forms a minimum covering of K13 with the excess 2K2 (see Figure 5).
In order to achieve the excess K2

2 , partition and label the vertices of K13 as before and let

Figure 5: Minimum covering of K13 with the excess 2K2

R be the same packing of K9 with the same edge as the leave. The following stars form
a minimum covering, R′′, of the remaining graph with two multiple edges {02, 12} as the
excess.

(02; 12, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31), (12; 22, 41, 51, 61, 71),

(22; 02, 01, 11, 21, 31), (22; 32, 41, 51, 61, 71), (32; 02, 01, 11, 21, 31), (32; 12, 41, 51, 61, 71),

(81; 71, 02, 12, 22, 32).

11



Figure 6: Minimum covering of K13 with the excess K2
2

Therefore, R ∪ R′′ forms a minimum covering for K13 with the excess K2
2 (see Figure 6).

Case 3. n = 14

In this case, the excess graph has 4 edges by Theorem 2. Hence, the possible excesses
are the ones shown in Figure 3. Again, since the leave graph in a maximum S5-packing is a
single edge, if we add a 5-star including that single edge, we obtain E1 as the excess.

In order to achieve the excess E12, write K14 = K5 ∨ K9. Label the vertices of K9 with
the elements of Z9 having subscript 1 and the vertices of K5 with the elements of Z5 having
subscript 2. Let R be a maximum packing of K9 with 5-stars and let the leave be the edge
{71, 81}. The following stars form a minimum covering, S, of the remaining edges with four
multiple edges on the vertices 02 and 12 as the excess graph.

(02; 12, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71),

(02; 12, 22, 32, 42, 81), (22; 12, 01, 11, 21, 31), (22; 32, 41, 51, 61, 71), (32; 42, 01, 11, 21, 31),

(32; 12, 41, 51, 61, 71), (42; 12, 01, 11, 21, 31), (42; 22, 41, 51, 61, 71), (81; 71, 12, 22, 32, 42).

Therefore, R ∪ S forms a minimum covering of K14 with the excess E12 (see Figure 7).
Consider the covering R ∪ S. Table 3 shows the star substitutions in R ∪ S needed to
achieve each excess other than excesses 11 and 12. In the following table, the first, second,
and third column demonstrate the new star(s), the previous star(s), and the excess number
respectively.
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Figure 7: Minimum covering of K14 with the excess E12

New Star(s) Previous Star(s) Excess
(02; 01, 41, 51, 61, 71), (02; 41, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31),

and (12; 22, 41, 51, 61, 71) and (12; 02, 41, 51, 61, 71) E2

(02; 01, 41, 51, 61, 71), (02; 41, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31),
(12; 22, 41, 51, 61, 71), and (22; 51, 01, 11, 21, 31) (12; 02, 41, 51, 61, 71), and (22; 12, 01, 11, 21, 31) E3

(02; 01, 41, 51, 61, 71), (02; 41, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31),
(12; 41, 01, 11, 21, 31), and (12; 01, 41, 51, 61, 71) (12; 02, 01, 11, 21, 31), and (12; 02, 41, 51, 61, 71) E4

(02; 01, 41, 51, 61, 71), (02; 41, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31),
(12; 41, 01, 11, 21, 31), (12; 22, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71),

and (22; 51, 01, 11, 21, 31) and (22; 12, 01, 11, 21, 31) E5

(02; 01, 41, 51, 61, 71), (02; 41, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31),
(12; 41, 01, 11, 21, 31), and (12; 81, 41, 51, 61, 71) (12; 02, 01, 11, 21, 31), and (12; 02, 41, 51, 61, 71) E6

(02; 22, 41, 51, 61, 71), (12; 22, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31),
(12; 32, 41, 51, 61, 71), and (32; 42, 41, 51, 61, 71) (12; 02, 41, 51, 61, 71), and (32; 12, 41, 51, 61, 71) E7

(02; 22, 41, 51, 61, 71), (12; 22, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31),
and (12; 32, 41, 51, 61, 71) and (12; 02, 41, 51, 61, 71) E8

(02; 01, 41, 51, 61, 71), (02; 41, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31),
(12; 51, 01, 11, 21, 31), and (12; 11, 41, 51, 61, 71) (12; 02, 01, 11, 21, 31), and (12; 02, 41, 51, 61, 71) E9

(02; 01, 41, 51, 61, 71), (02; 41, 01, 11, 21, 31), (02; 12, 41, 51, 61, 71), (02; 12, 01, 11, 21, 31),
(12; 51, 01, 11, 21, 31), (12; 22, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71),

and (22; 61, 01, 11, 21, 31) and (22; 12, 01, 11, 21, 31) E10

(02; 01, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) E13

(12; 22, 41, 51, 61, 71) and (22; 41, 01, 11, 21, 31) (12; 02, 41, 51, 61, 71) and (22; 12, 01, 11, 21, 31) E14

(02; 01, 41, 51, 61, 71) and (02; 01, 81, 22, 32, 42) (02; 12, 41, 51, 61, 71) and (02; 12, 81, 22, 32, 42) E15

(12; 22, 41, 51, 61, 71), (22; 32, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71), (22; 12, 01, 11, 21, 31),
(12; 32, 01, 11, 21, 31), and (32; 22, 41, 51, 61, 71) (12; 02, 01, 11, 21, 31), and (32; 12, 41, 51, 61, 71) E16

(12; 22, 41, 51, 61, 71), (12; 32, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31),
and (32; 22, 41, 51, 61, 71) and (32; 12, 41, 51, 61, 71) E17

(12; 22, 41, 51, 61, 71), (12; 42, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71), (12; 02, 01, 11, 21, 31),
and (42; 32, 01, 11, 21, 31) and (42; 12, 01, 11, 21, 31) E18

(12; 22, 41, 51, 61, 71), (22; 41, 01, 11, 21, 31), (12; 02, 41, 51, 61, 71), (22; 12, 01, 11, 21, 31),
(12; 42, 01, 11, 21, 31) and (42; 32, 01, 11, 21, 31) (12; 02, 01, 11, 21, 31) and (42; 12, 01, 11, 21, 31) E19

(12; 32, 41, 51, 61, 71), (32; 22, 41, 51, 61, 71), (12; 02, 41, 51, 61, 71), (32; 12, 41, 51, 61, 71),
(12; 42, 01, 11, 21, 31) and (42; 32, 01, 11, 21, 31) (12; 02, 01, 11, 21, 31) and (42; 12, 01, 11, 21, 31) E20

(02; 01, 41, 51, 61, 71) and (12; 41, 01, 11, 21, 31) (02; 12, 41, 51, 61, 71) and (12; 02, 01, 11, 21, 31) E21

(02; 01, 41, 51, 61, 71) and (02; 11, 81, 22, 32, 42) (02; 12, 41, 51, 61, 71) and (02; 12, 81, 22, 32, 42) E22

(02; 01, 41, 51, 61, 71) and (12; 01, 41, 51, 61, 71) (02; 12, 41, 51, 61, 71) and (12; 02, 41, 51, 61, 71) E23

Table 3: Substitutions to obtain different excesses for n = 14
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In order to achieve the excess E11, write K14 = K4 ∨K10. Label the vertices of K10 by the
elements of Z10 having subscript 1 and the vertices of K4 with the elements of Z4 having
subscript 2. The complete graph K10 has an S5-decomposition, U . The vertices 01, 11, 21, 31,
and 41, the vertices 02, 12, 22, and 32, and the edges between these sets form a complete
bipartite graph with one part of size a multiple of 5. Hence, by Lemma 3, this bipartite
graph has an S5-decomposition, V . Moreover, the following stars form a minimum covering,
W , for the remaining graph with the edges {81, 01}, {91, 11}, {02, 22}, and {12, 32} as the
excess.

(02; 12, 22, 51, 61, 71), (12; 22, 32, 51, 61, 71), (22; 32, 02, 51, 61, 71),

(32; 02, 12, 51, 61, 71), (81; 01, 02, 12, 22, 32), (91; 11, 02, 12, 22, 32).

Therefore, U ∪ V ∪W is a minimum covering of K14 with the excess E11 (see Figure 8). In

Figure 8: Minimum covering of K14 with the excess E11

order to achieve the excess E12 for n ≥ 17 where n ≡ 2 (mod 5), it suffices to achieve this
excess for n = 17 by Lemma 8. Let n = 17. Write K17 = K3 ∨K14, label the vertices of K14

with the elements of Z14 having subscript 1 and the vertices of K3 with the elements of Z3

having subscript 2. As shown in case 3, the graph K14 has an S5-covering, R, with the excess
E12. The vertices 01, 11, . . . , 91, the vertices 02, 12, 22, and the edges between these two sets
form a complete bipartite graph with one part of size a multiple of 5. Hence, by Lemma 3, this
complete bipartite graph has an S5-decomposition, S. Now, the vertices 101, 111, 121, 131,
the vertices 02, 12, 22, the edges between these two sets, and the edges within the second set
form a graph K3∨K4, which has an S5-decomposition, T , by Lemma 4. Therefore, R∪S∪T
forms a minimum S5-covering of K17 with the excess E12.
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n (mod 10) Possible Leaves Possible Excesses
0 ∅ ∅
1 ∅ ∅
2 K2 the graphs in Figure 3
3 S3,K3, P4, 3K2, and S2 +K2 S2, 2K2, and K2

2

4 K2 the graphs in Figure 3
5 ∅ ∅
6 ∅ ∅
7 K2 the graphs in Figure 3
8 S3,K3, P4, 3K2, and S2 +K2 S2, 2K2, and K2

2

9 K2 the graphs in Figure 3

Table 4: All possible leaves (excesses) for S5-packings (S5-coverings) of the complete graph

4 Conclusions and Future Directions

In this paper, we have solved the spectrum problem for packings and coverings of the com-
plete graph with stars with up to five edges. It is tempting to investigate for a generalization
of the existing results. As the very next step, we are going to consider the spectrum prob-
lem for packings and coverings of complete graphs on some specific number of vertices with
k-stars for any positive integer k.

Additionally, we are planning to work on the spectrum problem for packings and cover-
ings of the complete graph with all trees with up to five edges. As another direction, we are
interested in investigating different possibilities for leaves and excesses of maximal packings
(minimal coverings) of the complete graph with trees with up to five edges.
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