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A CONSTRUCTION OF SMOOTH TRAVEL GROUPOIDS ON

FINITE GRAPHS

DIOGO KENDY MATSUMOTO AND ATSUHIKO MIZUSAWA

Abstract. A travel groupoid is an algebraic system related with graphs. In
this paper, we give an algorithm to construct smooth travel groupoids for any
finite graph. This algorithm gives an answer of L. Nebeský’s question, “Does
there exists a connected graph G such that G has no smooth travel groupoid?”,
in finite cases.

1. Introduction

Through the study of the algebraic characterization of geodetic graphs [3, 5] and
trees [4], L. Nebeský introduced an algebraic system called a travel groupoid in
2006 [6]. A geodetic graph means a connected graph G with a unique shortest u-v
path in G for all u, v ∈ V (G). In this paper, graphs have no multiple edges or
loops.

Definition 1.1 (travel groupoid). Let (V, ∗) be a groupoid, which is a pair of a
non-empty set V and a binary operation ∗ : V × V → V on V . A groupoid (V, ∗)
is called a travel groupoid if it satisfies the following two conditions:
(t1) (u ∗ v) ∗ u = u (for all u, v ∈ V );
(t2) If (u ∗ v) ∗ v = u, then u = v (for all u, v ∈ V ).

See Proposition 1 for some relations of travel groupoids. Let (V, ∗) be a travel
groupoid and G = (V (G), E(G)) a graph. We say that (V, ∗) is on G or that G has
(V, ∗) if V (G) = V and

E(G) = {{u, v} |u, v ∈ V and u 6= u ∗ v = v}.

For u, v ∈ V , we define u ∗0 v = u and u ∗i+1 v = (u ∗i v) ∗ v for every i ≥ 0. For
a travel groupoid (V, ∗) on a graph G, u, v ∈ V , and k ≥ 1, the sequence

(1) u ∗0 v, · · · , u ∗k−1 v, u ∗k v

is a walk in G. This means the travel groupoid has information of the connections
of vertices and the choice of walks.

The aim of this paper is to give an algorithm to construct a smooth travel
groupoid.

Definition 1.2 (smooth). A travel groupoid (V, ∗) is called smooth if it satisfies
the condition
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(t4) if u ∗ v = u ∗ w, then u ∗ (w ∗ v) = u ∗ v (for any u, v, w ∈ V ).
(We use the numberings of the conditions in [6].)

If (V, ∗) is a smooth travel groupoid, there is k ≥ 1 such that u ∗k v = v and the
sequence (1) is a u-v path in G. See Proposition 3 and Proposition 5.

In [6], L. Nebeský proposed three questions about a travel groupoid. The third
question is recently solved in [2]. Our construction provides an answer to the second
question, which is as follows, in the finite case.

Question 1.3. Does there exist a connected graph G such that G has no smooth
travel groupoid?

The organization of this paper is as follows. In Section 2, we introduce properties
of travel groupoids and some important results about travel groupoids. In Section
3, we present an algorithm to construct smooth travel groupoids and exhibit it with
some example.

2. Definitions

In this section, we review definitions of some notations and results related to
groupoids and graphs for later use.

Definition 2.1 (simple). A travel groupoid (V, ∗) is called simple if it satisfies the
condition
(t3) if v ∗ u 6= u, then u ∗ (v ∗ u) = u ∗ v, for all u, v ∈ V .

Definition 2.2 (non-confusing). Let (V, ∗) be a travel groupoid, and take u, v ∈ V

such that u 6= v. If there exists i ≥ 3 such that u ∗i v = u, then we call the ordered
pair (u, v) a confusing pair in (V, ∗). If (V, ∗) has no confusing pair, then we call it
a non-confusing travel groupoid.

We list some results for travel groupoids.

Proposition 2.3 ([6]). Let (V, ∗) be a travel groupoid. Then the conditions (t1)
and (t2) imply that
(1) u ∗ u = u for all u ∈ V ,
(2) u ∗ v = v if and only if v ∗ u = u for all u, v ∈ V ,
(3) u ∗ v = u if and only if u = v for all u, v ∈ V and
(4) u ∗ (u ∗ v) = u ∗ v for all u, v ∈ V .

Proposition 2.4 ([6]). Let (V, ∗) be a simple travel groupoid and let k ≥ 1. For
x, y ∈ V , if x ∗k−1 y 6= y and x ∗k y = y, then y ∗k−1 x 6= x and y ∗j x = x ∗k−j y,
where 0 ≤ j ≤ k.

Proposition 2.5 ([6]). Let (V, ∗) be a finite travel groupoid on a graph G. Then
(V, ∗) is non-confusing if and only if the following statement holds for all distinct
u, v ∈ V : there exists k ≥ 1 such that the sequence

u ∗0 v, · · · , u ∗k−1 v, u ∗k v

is an u-v path in G.

Proposition 2.6 ([6]). If G has a non-confusing travel groupoid, then G is con-
nected.

Proposition 2.7 ([6]). A smooth travel groupoid is non-confusing.



A CONSTRUCTION OF SMOOTH TRAVEL GROUPOIDS ON FINITE GRAPHS 3

Proposition 2.8. Let (V, ∗) be a travel groupoid. Then (V, ∗) is smooth if and only
if, for any u, v ∈ V , the set Vu,v = {w ∈ V |u ∗ w = v} is a subgroupoid of (V, ∗).

Proof. Let (V, ∗) be smooth. If w,w′ ∈ Vu,v, then u ∗ w = u ∗ w′ = v. From (t4),
u ∗ (w ∗ w′) = u ∗ w = u ∗ w′ = v. Therefore w ∗ w′ ∈ Vu,v. On the other hand,
let Vu,v be a subgroupoid of (V, ∗). If u ∗ w = u ∗ w′ = v, then w,w′ ∈ Vu,v and
w ∗ w′ ∈ Vu,v. Thus u ∗ (w ∗ w′) = v. �

The conditions have relationships shown in Figure 1.

simple

non-confusing

smooth

Figure 1. Relationships among the conditions.

Theorem 2.9 ([6]). For every finite connected graph G there exists a simple non-
confusing travel groupoid on G.

Definition 2.10 (v-spanning tree). Let G be a graph and let v be a vertex of G.
We say that a spanning tree T of G is a v-spanning tree if T contains all incident
edges of v. A v-spanning tree is called a v-tree in [1].

In [1], the number of non-confusing travel groupoids (V, ∗) on a finite connected
graph G = (V,E) was determined by the product of the numbers of v-spanning
trees of G for all vertex v ∈ V .

Let G = (V,E) be a geodetic graph; a tree for example. For u, v(6= u) ∈ V ,
there is a unique vertex AG(u, v) such that d(u,AG(u, v)) = 1 and d(AG(u, v), v) =
d(u, v)− 1, where d( · , · ) is the distance function.

3. Main result

In this section, we first present an algorithm which constructs a travel groupoid
from a given finite connected graph. Then we show an example of a travel groupoid
on a graph according to the algorithm, which is smooth. Finally, as the main
theorem, we prove that travel groupoids constructed by the algorithm are smooth
and answer Question 1.3 for the finite graph case.

3.1. Algorithm. Let G = (V,E) be a finite connected graph with no multiple
edges and no loops. We construct a groupoid (V, ∗) on G and prove that (V, ∗) is a
travel groupoid.

(Step 1) Fix a vertex o ∈ V and fix an o-spanning tree To of G. We define a
binary operation by o ∗ v = ATo

(o, v) for any v(6= o) ∈ V and o ∗ o = o.
(Step 2) For any vertex u(6= o) ∈ V , we construct a u-spanning tree Tu from

To. Let S(u) be the set of all the edges incident to u. Consider the set L(u) =
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(E \ E(To)) ∩ S(u) of edges, where E(To) is the set of edges of To. Add an edge
e in L(u) to To, then To ∪ {e} has a cycle. We then remove the edge on the cycle
which is incident with the edge e at the incident vertex of e other than u. By this,
we obtain a new tree. Now repeat this operation with the new tree in the place of
To for every edge in L(u). Then, we will finally arrive at a u-spanning tree, and we
define Tu to be this tree.

(Step 3) We define a binary operation by u ∗ v = ATu
(u, v) for any v(6= u) ∈ V

and u ∗ u = u.

Remark 3.1. For any vertex u (6= o) ∈ V , the u-spanning tree Tu derived from To

in the Step 2 is determined uniquely.

Proposition 3.2. Let G = (V,E) be a finite connected graph. Then, groupoids
constructed by the algorithm are travel groupoids on G.

Proof. Fix a vertex o ∈ V and an o-spanning tree To. Then we construct a travel
groupoid (V, ∗) according to the algorithm. We check that (V, ∗) satisfies the con-
ditions (t1) and (t2).

(t1) For any vertex u, v ∈ V , by the definition of (V, ∗), u ∗ v is an adjacent
vertex of u. So, the u ∗ v-spanning tree Tu∗v contains the edge connecting u and
u ∗ v. This implies (u ∗ v) ∗ u = u.

(t2) Take u, v ∈ V such that u 6= v. We show that (u ∗ v) ∗ v 6= u. Consider the
unique u-v path P on Tu. u ∗ v is on P . If P is preserved in the change of spanning
trees from Tu to Tu∗v via To, (u ∗ v) ∗ v = ATu∗v

(u ∗ v, v) is on P and (u ∗ v) ∗ v 6= u.
We consider the case where P is not preserved in the change of spanning trees from
Tu to Tu∗v via To. In the change from Tu to To the part of the path P between
u ∗ v and v is preserved because the removed edges under the change are adjacent
to u. Even though the edge between u and u ∗ v was removed, this edge will be
recovered after the change from To to Tu∗v because u is adjacent to u ∗ v. Since P

is not contained in Tu∗v, some edges on P between u ∗ v and v are not on Tu∗v and
P ∩ Tu∗v consists of at least two disjoint parts. This implies that there are edges,
outside of P , which connects u ∗ v to some vertices on P beside u. Then one of
those vertices is (u ∗ v) ∗ v because v is on P and one of the new edges connects
u ∗ v to the part of P on which v lies. Hence, (u ∗ v) ∗ v 6= u. �

Remark 3.3. For a fixed graph G = (V,E), and v-spanning trees on G for each
vertex v, there are two ways to construct groupoids. We call these ways a downward
construction and an upward construction. The downward construction defines the
binary operations of a groupoid (V, ∗) by u ∗ v = ATv

(u, v) for any u(6= v) ∈ V and
v ∗ v = v. The upward construction defines the binary operations of a groupoid
(V, ∗′) by u ∗′ v = ATu

(u, v) for any u(6= v) ∈ V and v ∗′ v = v. The downward
construction is used in [1], and we use the upward construction in the algorithm in
the subsection 3.1. A groupoid constructed by the downward construction is always
a travel groupoid ([1]). On the other hand, in general, a groupoid constructed by
the upward construction without using our algorithm may not be a travel groupoid
(see Example 3.7 below).

3.2. Example. We show an example of a smooth travel groupoid (V, ∗) on a finite
connected graph G1 = (V,E) in Figure 2 constructed by the algorithm in the
subsection 3.1.



A CONSTRUCTION OF SMOOTH TRAVEL GROUPOIDS ON FINITE GRAPHS 5

a1 a2 a3

a4
a5 a6

a7 a8 a9

Figure 2. A graph G1.

Example 3.4. For every vertex v ∈ V of G1, we prepare a v-spanning tree. We
first fix a vertex a1 as o in the algorithm and an a1-spanning tree and then construct
ai-spanning trees for other vertices ai following the algorithm as in Figure 3. Here,

a1 a3

a6

a2

a4

a5

a7

a8 a9

Figure 3. v-spanning trees for (V, ∗).

a tree graph represents an ai-spanning tree if the figure includes the letter of the
vertex ai i.e. a1, a3 and a6 have the same v-spanning tree. The travel groupoid
(V, ∗) constructed from the spanning trees has the binary operation in Table 1. We
can check that for any u, v, w ∈ V , if u∗v = u∗w, then u∗(v∗w) = u∗v. For example,
if we put u = a1, then for i = 2, 3, 5, 6, 8, 9, a1∗ai = a2. We focus on the intersection
of ai-rows and aj-columns of the table, where i, j = 2, 3, 5, 6, 8, 9. In the intersection,
the results of products are only ai (i = 2, 3, 5, 6, 8, 9) i.e. {a2, a3, a5, a6, a8, a9}
is a subgroupoid of (V, ∗). This means that a1 ∗ (ai ∗ aj) = a2 = a1 ∗ ai for
i, j = 2, 3, 5, 6, 8, 9. The similar things hold for other cases and we see that (V, ∗) is
smooth.

3.3. Main theorem.
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Table 1. Table of binary operations of (V, ∗).

∗ a1 a2 a3 a4 a5 a6 a7 a8 a9
a1 a1 a2 a2 a4 a2 a2 a4 a2 a2
a2 a1 a2 a3 a1 a5 a3 a1 a5 a3
a3 a2 a2 a3 a2 a6 a6 a2 a6 a6
a4 a1 a1 a1 a4 a5 a1 a7 a5 a1
a5 a2 a2 a6 a4 a5 a6 a4 a8 a6
a6 a3 a3 a3 a3 a5 a6 a3 a5 a9
a7 a4 a4 a4 a4 a4 a4 a7 a8 a4
a8 a5 a5 a5 a5 a5 a5 a7 a8 a9
a9 a6 a6 a6 a6 a6 a6 a6 a8 a9

Theorem 3.5. Let G = (V,E) be a finite connected graph. Then a travel groupoid
on G constructed by the algorithm in Subsection 3.1 is smooth.

Proof. Fix a vertex o ∈ V and an o-spanning tree To. Then construct the travel
groupoid (V, ∗) by the algorithm. We need only to check the condition (t4): if
u ∗ v = u ∗w, then u ∗ (w ∗ v) = u ∗ v for any u, v, w ∈ V . A branch of a u-spanning
tree Tu is a component of the graph (V (Tu) \ u,E(Tu) \ S(u)) where V (Tu) is the
set of vertices of Tu and E(Tu) is the set of edges of Tu.

(i) We show that if o ∗ v = o ∗w, then o ∗ (v ∗w) = o ∗ v for any v, w ∈ V . From
Proposition 2.3 (3), this is obvious if v = o. We assume v 6= o. Since o ∗ v = o ∗ w,
v and w are on the same branch B of To. Consider the unique v-w path P on To,
which is on B. If P is preserved in the change of the spanning trees from To to Tv,
v ∗w is on P and on the branch B. Hence o ∗ (v ∗w) = o ∗ v. If P is not preserved
in the change of the spanning trees from To to Tv, some edges in P are removed
and some edges of Tv connect v and vertices on P . This implies that v ∗w is on P

and so on B. Hence o ∗ (v ∗ w) = o ∗ v.
(ii) We show that if u∗v = u∗w, then u∗(v∗w) = u∗v for any u(6= o), v, w ∈ V .

From Proposition 2.3 (3), this is obvious if v = u. We assume v 6= u. Since
u ∗ v = u ∗ w, v and w are on the same branch B of Tu. Consider the unique v-w
path P on Tu, which is on B. We consider the change of the spanning tree from
Tu to To. In the change P is preserved because the edges of Tu which are not of To

are all incident to u and so not on B. �

As a corollary to this theorem, we have an answer to Question 1.3 for finite
graphs.

Theorem 3.6. For any finite connected graph G, there exists a smooth travel
groupoid on G.

3.4. Remarks. In this subsection, we show two examples of groupoids. One is a
groupoid constructed from the graphG2 drawn in Fig. 4 by the upward construction
using v-spanning trees of G2 (but not following the algorithm in the subsection 3.1)
which is not a travel groupoid. This example means that a groupoid constructed by
upward construction is not necessarily a travel groupoid on a graph. (In contrast,
a groupoid constructed by the downward construction is always a travel groupoid
[1].) Another example is about a travel groupoid on the graph G3 drawn in Fig. 5
constructed by the algorithm in the subsection 3.1 which is not simple.
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Example 3.7. Let G2 = (V,E) be a graph depicted in the first figure in Figure
4. We construct v-spanning trees of vertices v of G2 as the other graphs in Figure
4. Here, a tree graph represents a v-spanning tree if the figure includes the letter
of the vertex v. The groupoid (V, ∗) defined by the trees upwardly is not a travel
groupoid because (a2 ∗ a5) ∗ a5 = a3 ∗ a5 = a2 6= a5 yielding that (V, ∗) does not
satisfy (t2).

a1

a2

a3

a4

a5

a6 a2

a4

a5

a1

a3

a6

Figure 4. A graph G2 and its v-spanning trees.

There is a smooth travel groupoid constructed by the algorithm in the subsection
3.1 which is not simple.

Example 3.8. Let G3 = (V,E) be a graph depicted in the first figure in Figure 5.
We construct the travel groupoid (V, ∗) on G3 from v-spanning trees of vertices v
of G3 by the algorithm in the subsection 3.1. The v-spanning trees are in Figure
5. This travel groupoid is not simple because we can easily check that a4 ∗ a2 6= a2
and a2 ∗ a4 = a3 6= a1 = a2 ∗ (a4 ∗ a2) yielding that (V, ∗) does not satisfy (t3).

o

a1

a2

a3

a4

o

a1

a2

a3

a4

Figure 5. A graph G3 and its v-spanning trees.
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[3] Nebeský L.: An algebraic characterization of geodetic graphs, Czechoslovak Math. J. 48(123),
701-710 (1998)



8 DIOGO KENDY MATSUMOTO AND ATSUHIKO MIZUSAWA
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