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Abstract

Aztec dragons are lattice regions first introduced by James Propp, which have the number
of tilings given by a power of 2. This family of regions has been investigated further by a
number of authors. In this paper, we consider a generalization of the Aztec dragons to two
new families of 6-sided regions. By using Kuo’s graphical condensation method, we prove
that the tilings of the new regions are always enumerated by powers of 2 and 3.

Keywords: perfect matching, lozenge tiling, dual graph, graphical condensation.

1 Introduction

A lattice partitions the plane into fundamental regions. A region considered in this paper is a
finite connected union of fundamental regions. We call the union of any two fundamental regions
sharing an edge a tile. We would like to know how many different ways to cover a certain region
by tiles so that there are no gaps or overlaps; and such coverings are called tilings. We use the
notation M(R) for the number of tilings of a region R.

We consider a symmetric dissection of the plane into equilateral triangles, squares, and
regular hexagons, with 4 polygons meeting at each vertex and with no two squares sharing an
edge (see Figure 1.1). We call the resulting lattice the dragon lattice. On this lattice, James
Propp introduced a family of regions called Aztec dragons [8], as an analogue of Aztec diamonds
[3, 4]. Figures 1.1(a)–(d) show the Aztec dragons of order 1, 2, 3 and 5, respectively (see the
shaded regions). James Propp conjectured that the number of tilings of the Aztec dragon is
always a power of 2 (see Problem 15 in [8]). The conjecture was proven by Ben Wieland (in
unpublished work, as announced in [8]) and Ciucu (see [1, Corollary 7.2]). In particular, they
showed that:

Theorem 1.1 (Aztec Dragon Theorem). The number of tilings of the Aztec dragon of order n
is 2n(n+1).

∗This research was supported in part by the Institute for Mathematics and its Applications with funds provided
by the National Science Foundation (grant no. DMS-0931945).
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Figure 1.1: The Aztec dragons of order (a) 1, (b) 2, (c) 3, and (d) 5.

A perfect matching of a graph G is a collection of disjoint edges covering all vertices of
G. The tilings of a region R can be identified with the perfect matchings of its dual graph
(the graph whose vertices are fundamental regions in R and whose edges connect precisely two
fundamental regions sharing an edge). In the view of this, we denote by M(G) the number of
perfect matchings of a graph G. The dual graph of an Aztec dragon is called an Aztec dragon
graph.

A further proof of the Aztec Dragon Theorem was provided by Cottrell and Young [2], by
using the domino shuffling method on the Aztec dragon graphs. They also proved a related
result for Aztec dragon graphs of half-integer order (see Figure 1.2). Recently, the Aztec dragon
graphs have been investigated under the relations to cluster algebras (see [7] and [9]). In [7], the
authors introduced a larger family of 2-parameter graphs called Aztec castles and proved that
the numbers of perfect matchings of these graphs are always some power of 2 (see Theorem 2.1
[7]).

In this paper, we extend the family of the Aztec dragons to two new families of 6-sided
regions, which we call dragon regions (the precise definition of a dragon region will be provided
in Section 2). By using Kuo’s graphical condensation method [5], we prove that the number of
tilings of a dragon region is always given by powers of 2 and 3 (see Theorem 2.1). The result
generalizes the Aztec Dragon Theorem as well as the related results in [2] and [7]. Finally, in
Section 5 we point out that our method can be used to obtain a related result when the tiles of
the Aztec dragons carry some weights. Moreover, by the same technique, we obtain new families
of regions having similar structure whose tilings are also enumerated by powers of 2 and 3.
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(a) (b) (c)
(d)

(e)
(f)

Figure 1.2: The dragon graphs of order n/2 for 1 6 n 6 6.

2 Dragon regions

Our goal in this section is to generalize the family of Aztec dragons.
The centers of the hexagonal fundamental regions on the dragon lattice form a triangular

lattice. We consider a six-sided contour on this triangular lattice as follows.
Starting from the center S of a hexagon, we go a units1 southwest, b units southeast, c units

north, d units northeast, and e units northwest. After 5 steps, we stop at the center O of some
hexagon. We adjust e so that S and O are on the same vertical line. Finally, we close the
contour by go f units down or up depending on whether O is above or below S (see the dotted
contour in Figures 2.1(a) and (b)). The above choice of e requires

a+ e = b+ d. (2.1)

The vertex O is above or below S when a is less or greater than c + d, respectively. If
a > c+d, then the closure of the contour deduces that f = a−c−d; in the case where a 6 c+d,
the closure implies f = c+ d− a. Thus, we always have

f = |a− c− d|. (2.2)

Next, we consider the region R consisting of all fundamental regions that are restricted or
intersected by the contour (see the union of all fundamental regions in Figures 2.1(a) and 2.2(a)).
We now remove all the boundary squares of R. We also remove the boundary hexagons and
the triangles adjacent to the boundary squares along the b- and e-sides as well as the f -side if
a > c + d. The resulting region R1 is illustrated as the shaded regions in Figures 2.1(a) and
2.2(a).

Color the plane black and white so that two fundamental regions sharing an edge have
opposite color. Without loss of generality, we assume that all squares are colored black and all
hexagon and triangles are colored white. It is easy to see that if a region admits a tiling, then
the numbers of black and white fundamental regions of its must be equal. We say such a region

1The unit here is the smallest distance between the centers of two hexagonal fundamental regions in the dragon
lattice, i.e the unit of the above triangular lattice.
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is balanced. The balance of the region R1 yields

d = 2b− a− 2c+ 1. (2.3)

Indeed, one can verify that the number of white fundamental regions in R is one more than
the number of black fundamental regions. Since R1 is balanced, removing R1 from R does not
alter the difference between the numbers of black and white fundamental regions. Enumerating
exactly the black and white fundamental regions in R−R1, we have b+ e+ f +1 = a+ c+ d if
a > c+ d and b+ e− f + 1 = a+ c+ d if a 6 c+ d. Since e = b+ d− a and f = |a− c− d|, we
obtain d = 2b− a− 2c+ 1 in both cases.

At this point, we can write d, e, f all in terms of a, b, c as

d = 2b− a− 2c+ 1, (2.4)

e = b+ d− a = 3b− 2a− 2c+ 1, (2.5)

f = |a− c− d| = |2b− 2a− c+ 1|. (2.6)

This means that our contour and the corresponding region are determined by only three param-

eters a, b, c. We denote by C(1)(a, b, c) the contour, and DR
(1)
a,b,c the region R1.

Next, we consider a variation DR
(2)
a,b,c of the region DR

(1)
a,b,c as follows. We define a six-sided

contour similar to C
(1)
a,b,c by starting from the center S of a hexagon, then going along five sides

of lengths a, b, c, d̃, ẽ, so that we end up at the center O of a hexagon, that is vertically below or
above S, and connecting S and O by a vertical side of length f̃ . Similar to the constraints (2.1)
and (2.2) in the case of the contour C(1)(a, b, c), we also have a+ ẽ = b+ d̃ and f̃ = |a− c− d̃|.

We consider the region R′ that contains all the fundamental regions that are restricted
or intersected by the new contour (see Figures 2.1(b) and 2.2(b)). Similar to the contour
C(1)(a, b, c), we remove all the boundary squares of R′. In addition, all the boundary hexagons
and the triangles adjacent to the boundary squares along the a-, c-, and d-sides, as well as the
f -side if a 6 c + d, have been removed. The resulting region R′

2 is illustrated as the shaded
regions in Figures 2.1(b) and 2.2(b).

Similar to the constraint (2.3), to guarantee that R′
2 is balanced, we must have b+ ẽ+ f̃−1 =

a + c + d̃ if a > c + d̃, and b + ẽ − f̃ − 1 = a + c + d̃ if a 6 c + d̃. Since ẽ = b + d̃ − a and
f̃ = |a− c− d̃|, we have d̃ = 2b− a− 2c− 1. Thus, d̃, ẽ, f̃ can be written in terms of a, b, c as

d̃ = 2b− a− 2c− 1, (2.7)

ẽ = b+ d̃− a = 3b− 2a− 2c− 1, (2.8)

f̃ = |a− c− d̃| = |2b− 2a− c− 1|. (2.9)

We denote by C(2)(a, b, c) the contour, and DR
(2)
a,b,c the region R′

2.

We call the two regions DR
(1)
a,b,c and DR

(2)
a,b,c dragon regions, and the dual graphs of the

dragon regions dragon graphs. The numbers of tilings of the dragon regions are given by the
theorem stated below.

Theorem 2.1. Assume that a, b and c are three non-negative integers.
(a) If b > 2, 2b− a− 2c > −1 and 3b− 2a− 2c > −1, then

M
(
DR

(1)
a,b,c

)
= 2(b−c+1)(2b−a−c)+(a−b)23

(a−b+c)(a−b+c−1)
2 . (2.10)
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Figure 2.1: The dragon regions (a) DR
(1)
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Figure 2.2: The dragon regions (a) DR
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5,8,4 and (b) DR

(2)
5,8,3.
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(b) If b > 2, 2b− a− 2c > 1 and 3b− 2a− 2c > 1, then

M
(
DR

(2)
a,b,c

)
= 2(b−c−1)(2b−a−c)+(a−b)23

(a−b+c)(a−b+c+1)
2 . (2.11)

We note that we assume the condition b > 2 in Theorem 2.1 to guarantee that our regions
are not empty.

The Aztec dragon of order n is exactly the region DR
(1)
n,n,0 (see Figure 1.1), thus the Aztec

dragon Theorem is a consequence of Theorem 2.1. Moreover, the Aztec dragon graph of order

n+ 1
2 is isomorphic to the dual graph of the region DR

(2)
n+1,n+2,1, so our theorem has Cottrel and

Young’s theorem (Theorem 1 in [2]) as a special case.
We conclude this section by noticing that the Aztec castles in [7] correspond to the dual

graphs of the dragon regions DR
(i)
a,b,c’s, where a− b+ c is −1 or 0.

3 Recurrences for the numbers of tilings of dragon regions

Consider the following system of recurrences. Here, we use the notations ⋆(a, b, c) and ♦(a, b, c)
for some functions from Z

3 to Z.

⋆(a, b, c)⋆(a − 3, b− 3, c− 2) = ⋆(a− 2, b− 1, c)⋆(a − 1, b− 2, c − 2)

+⋆(a− 1, b− 1, c− 1)⋆(a− 2, b− 2, c− 1).
(R1)

⋆(a, b, c)⋆(a − 2, b− 2, c) = ⋆(a− 1, b− 1, c)2 +⋆(a, b, c+ 1)⋆(a− 2, b− 2, c − 1). (R2)





⋆(a, b, 0)⋆(a − 2, b− 2, 0) = ⋆(a− 1, b− 1, 0)2

+⋆(a, b, 1)♦(3b − 2a+ 1, 2b− a+ 1, 1);

♦(a, b, 0)♦(a − 2, b− 2, 0) = ♦(a− 1, b− 1, 0)2

+♦(a, b, 1)⋆(3b − 2a− 1, 2b − a− 1, 1).

(R3)

⋆(a, b, c)⋆(a − 2, b− 3, c− 2) = ⋆(a− 1, b− 1, c)⋆(a − 1, b− 2, c − 2)

+⋆(a− 2, b− 2, c − 1)⋆(a, b − 1, c− 1).
(R4)

⋆(a, b, c)⋆(a − 2, b− 3, c− 2) = ⋆(c, b− 1, a− 1)⋆(a− 1, b− 2, c − 2)

+⋆(a− 2, b− 2, c − 1)⋆(a, b − 1, c− 1).
(R5)

In the next part of the section, we will show that M
(
DR

(1)
a,b,c

)
and M

(
DR

(2)
a,b,c

)
satisfy

the above recurrences (with certain constraints). Our proofs are based on the following Kuo’s
Condensation Theorem.
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Theorem 3.1 (Kuo [5]). Let G = (V1, V2, E) be a planar bipartite graph in which |V1| = |V2|.
Assume that u, v, w and t are four vertices appearing in a cyclic order on a face of G with
u,w ∈ V1 and v, t ∈ V2. Then

M(G)M(G− {u, v, w, t}) =M(G − {u, v})M(G− {w, t})

+M(G− {t, u})M(G− {v,w}). (3.1)

Lemma 3.2. Let a, b, c be non-negative integers so that b > 5 and c > 2. Assume in addition

that d := 2b− a− 2c+ 1 > 0, e := 3b− 2a− 2c+ 1 > 0, and a > c+ d+ 1. Then M
(
DR

(1)
a,b,c

)

satisfies the recurrence (R1).

Analogously, M
(
DR

(2)
a,b,c

)
satisfies the recurrence (R1), when d̃ := 2b − a − 2c − 1 > 0,

ẽ := 3b− 2a− 2c− 1 > 0, and a > c+ d̃+ 1.

Proof. To prove that M(DR
(1)
a,b,c) satisfies the recurrence (R1), we need to show that

M(DR
(1)
a,b,c)M(DR

(1)
a−3,b−3,c−2) = M(DR

(1)
a−2,b−1,c)M(DR

(1)
a−1,b−2,c−2)

+M(DR
(1)
a−1,b−1,c−1)M(DR

(1)
a−2,b−2,c−1).

(3.2)

We now apply the Kuo’s Condensation Theorem 3.1 to the dual graph G of the regions DR
(1)
a,b,c

with the four vertices u, v, w, t chosen as in Figure 3.1(a). More precisely, we chose u and t on
the west corner, v on the north corner, and w on the south corner of the graph. Each of the
graphs G− {u, v, w, t}, G− {u, v}, G− {w, t}, G− {t, u}, and G− {v,w} has some edges that
are forced in any perfect matchings. Fortunately, by removing these edges, we get a new dragon
graph having the same number of perfect matchings as the original graph. In particular, after

removing forced edges from G−{u, v}, we get the dual graph of DR
(1)
a−2,b−1,c (see Figure 3.1(b);

the forced edges are the dark bold ones; and the dual graph of DR
(1)
a−2,b−1,c is illustrated by the

one restricted by the light bold contour). Thus, we have

M(G− {u, v}) = M(DR
(1)
a−2,b−1,c). (3.3)

Similarly, we get the following equalities:

M(G− {v,w}) = M(DR
(1)
a−1,b−1,c−1) (see Figure 3.1(c)), (3.4)

M(G− {w, t}) = M(DR
(1)
a−1,b−2,c−2) (see Figure 3.1(d)), (3.5)

M(G− {t, u}) = M(DR
(1)
a−2,b−2,c−1) (see Figure 3.1(e)), (3.6)

and
M(G− {u, v, w, t}) = M(DR

(1)
a−3,b−3,c−2) (see Figure 3.1(f)). (3.7)

Substituting the above five equalities (3.3)–(3.7) into the equation (3.1) in Kuo’s Theorem
3.1, we obtain (3.2).

The statement for the region DR
(2)
a,b,c can be obtained similarly.
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Figure 3.1: Verifying M(DR
(1)
a,b,c) satisfies the recurrence (R1). The dark bold edges indicate the

forced ones.
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Figure 3.2: The dual graphs of (a) DR
(1)
8,8,3, (b) DR

(1)
5,8,4, (c) DR

(1)
7,5,0 and (d) DR

(1)
6,5,0, together

with the selection of the four vertices u, v, w, t.

Lemma 3.3. Let a, b, c be non-negative integers so that a > 2 and b > 4.

(a) Assume that c > 1. Then M(DR
(1)
a,b,c) satisfies the recurrence (R2), when d := 2b − a−

2c+1 > 2 and e := 3b− 2a− 2c+1 > 2. Analogously, M(DR
(2)
a,b,c) satisfies the recurrence (R2),

when d̃ := 2b− a− 2c− 1 > 2 and ẽ := 3b− 2a− 2c− 1 > 2.

(b) Assume that c = 0. Then the pair
(
M(DR

(1)
a,b,c), M(DR

(2)
a,b,c)

)
satisfies the first equality

in the recurrence (R3) for (⋆,♦), when d := 2b− a− 2c+ 1 > 2 and e := 3b− 2a− 2c+ 1 > 2,
i.e.

M
(
DR

(1)
a,b,0

)
M

(
DR

(1)
a−2,b−2,0

)
= M

(
DR

(1)
a−1,b−1,0

)2

+M
(
DR

(1)
a,b,1

)
M

(
DR

(2)
3b−2a+1,2b−a+1,1

)
,

(3.8)

and it satisfies the second equality of (R3), when d̃ := 2b−a−2c−1 > 2 and ẽ := 3b−2a−2c−1 >

2, i.e.

M
(
DR

(2)
a,b,0

)
M

(
DR

(2)
a−2,b−2,0

)
= M

(
DR

(2)
a−1,b−1,0

)2

+M
(
DR

(2)
a,b,1

)
M

(
DR

(1)
3b−2a−1,2b−a−1,1

)
.

(3.9)

Proof. (a) Similar to Lemma 3.2, we apply Kuo’s Theorem 3.1 to the dual graph G of DR
(1)
a,b,c

with the four vertices u, v, w, t chosen as in Figures 3.2(a) and (b), for the cases a > c + d and

9



a 6 c+ d, respectively. By considering forced edges, we get in both cases that

M(G− {u, v}) = M
(
DR

(1)
a−1,b−1,c

)
, (3.10)

M(G− {v,w}) = M
(
DR

(1)
a,b,c+1

)
, (3.11)

M(G− {w, t}) = M
(
DR

(1)
a−1,b−1,c

)
, (3.12)

M(G− {t, u}) = M
(
DR

(1)
a−2,b−2,c−1

)
, (3.13)

and
M(G− {u, v, w, t}) = M

(
DR

(1)
a−2,b−2,c

)
. (3.14)

Again, substituting (3.10)–(3.14) into the equation (3.1) in Kuo’s Theorem 3.1, we deduce

M
(
DR

(1)
a,b,c

)
M

(
DR

(1)
a−2,b−2,c

)
=M

(
DR

(1)
a−1,b−1,c

)2

+M
(
DR

(1)
a,b,c+1

)
M

(
DR

(1)
a−2,b−2,c−1

)
, (3.15)

which implies that M
(
DR

(1)
a,b,c

)
satisfies the recurrence (R2). Similarly, we can prove that the

number tilings of DR
(2)
a,b,c satisfies (R2).

(b) We present here the proof of (3.8), and (3.9) can be treated in the same way.

Similar to part (a), we apply the Kuo’s Theorem to the dual graph G of DR
(1)
a,b,0, as in Figures

3.2(c) and (d) for the cases a > c + d and a 6 c + d, respectively. We still get the equalities
(3.10), (3.11), (3.12), and (3.14) as in part (a). However, after removing forced edges from the

graph G−{t, u}, we do not get the dual graph of the region DR
(1)
a−2,b−2,c−1 any more (this region

does not even exist when c = 0). By reflecting the resulting graph about a vertical line, we get

the dual graph of DR
(2)

e,d,1
(see the graphs restricted by the bold contours in Figures 3.2(c) and

(d)). Thus, (3.8) follows from Kuo’s Theorem 3.1.

Lemma 3.4. Assume that a, b, c are non-negative integers so that a > 2, b > 5 and c > 2.
Denote by d := 2b−a−2c+1, e := 3b−2a−2c+1, d̃ := 2b−a−2c−1, and ẽ := 3b−2a−2c−1
as usual.

(a) Assume in addition that d > 1, e > 0, and a 6 c + d, then M
(
DR

(1)
a,b,c

)
satisfies the

recurrence (R4). The number of tilings M
(
DR

(2)
a,b,c

)
also satisfies the recurrence (R4), when

d̃ > 1, ẽ > 0, and a 6 c+ d̃.

(b) If d = 0, e > 0, and a 6 c + d, then M
(
DR

(1)
a,b,c

)
satisfies the recurrence (R5). Analo-

gously, M
(
DR

(2)
a,b,c

)
also satisfies the recurrence (R5), when d̃ = 0, ẽ > 0, and a 6 c+ d̃.

Proof. (a) To prove that M
(
DR

(i)
a,b,c

)
satisfies (R4) (with the corresponding constraints), for

i = 1, 2, we apply Kuo’s Theorem 3.1 to the dual graph G of the region DR
(i)
a,b,c with the four

10
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Figure 3.3: The dual graphs of (a) DR
(1)
5,8,4, (b) DR

(2)
5,8,3, (c) DR

(1)
5,10,8 and (d) DR

(2)
5,10,7, together

with the selection of the four vertices u, v, w, t.
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vertices u, v, w, t chosen as in Figures 3.3(a) and (b) (for the case i = 1 and 2, respectively). We
need to show that

M
(
DR

(i)
a,b,c

)
M

(
DR

(i)
a−2,b−3,c−2

)
= M

(
DR

(i)
a−1,b−1,c

)
M

(
DR

(i)
a−1,b−2,c−2

)

+M
(
DR

(i)
a−2,b−2,c−1

)
M

(
DR

(i)
a,b−1,c−1

)
.

(3.16)

Similar to the proofs of Lemmas 3.2 and 3.3, by removing edges forced by the removal of the
vertices u, v, w, t, we get new dragon graphs. To precise, we have

M(G− {u, v}) = M
(
DR

(i)
a−1,b−1,c

)
, (3.17)

M(G− {v,w}) = M
(
DR

(i)
a,b−1,c−1

)
, (3.18)

M(G− {w, t}) = M
(
DR

(i)
a−1,b−2,c−2

)
, (3.19)

M(G− {t, u}) = M
(
DR

(i)
a−2,b−2,c−1

)
, (3.20)

and
M(G− {u, v, w, t}) = M

(
DR

(i)
a−2,b−3,c−2

)
. (3.21)

Then the equality (3.16) follows also from Kuo’s Theorem 3.1.
(b) First, we note that if d := 2b−a− 2c+1 = 0, then 2(b− 1)− (a− 1)− 2c+1 = −1. This

means that the region DR
(1)
a−1,b−1,c does not exist when d = 0. Similarly, the region DR

(2)
a−1,b−1,c

does not exist when d̃ = 0. In particular, the equality (3.17) in part (a) is not true anymore
when d = 0 or d̃ = 0.

This part can be treated similarly to part (a). We still apply the Kuo’s Theorem to the dual

graph G of DR
(i)
a,b,c with the four vertices u, v, w, t selected as in Figures 3.3(c) and (d). We also

obtain the five equalities (3.18)–(3.21) as in part (a). However, after removing forced edges from
the graph G−{u, v}, we reflect the resulting graph about a vertical line and get the dual graph

of DR
(i)
c,b−1,a−1 (see the graphs restricted by the bold contours in Figures 3.3(c) and (d)). Thus,

we have
M(G− {u, v}) = M

(
DR

(i)
c,b−1,a−1

)
(3.22)

instead of (3.17) in part (a). By substituting (3.18)–(3.22) into (3.1), we get the statement in
part (b).

Denote respectively by Φ(a, b, c) and Ψ(a, b, c) the expressions on the right-hand sides of the
equalities (3.2) and (3.3), i.e.

Φ(a, b, c) := 2(b−c+1)(2b−a−c)+(a−b)23
(a−b+c)(a−b+c−1)

2 (3.23)

and
Ψ(a, b, c) := 2(b−c−1)(2b−a−c)+(a−b)23

(a−b+c)(a−b+c+1)
2 . (3.24)

It is straightforward to verify the following result.
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Lemma 3.5. For any integers a, b, c the functions Φ(a, b, c) and Ψ(a, b, c) satisfy all the recur-
rences (R1)–(R5). In particular, we have

Φ(a, b, c)Φ(a − 3, b− 3, c− 2) = Φ(a− 2, b− 1, c)Φ(a − 1, b− 2, c− 2)

+Φ(a− 1, b− 1, c − 1)Φ(a− 2, b− 2, c− 1),
(3.25)

Ψ(a, b, c)Φ(a − 3, b− 3, c − 2) = Ψ(a− 2, b− 1, c)Ψ(a − 1, b− 2, c − 2)

+Ψ(a− 1, b− 1, c− 1)Ψ(a− 2, b− 2, c − 1),
(3.26)

Φ(a, b, c)Φ(a − 2, b− 2, c) = Φ(a− 1, b− 1, c)2 +Φ(a, b, c+ 1)Φ(a− 2, b− 2, c − 1), (3.27)

Ψ(a, b, c)Ψ(a − 2, b− 2, c) = Ψ(a− 1, b− 1, c)2 +Ψ(a, b, c + 1)Ψ(a− 2, b− 2, c− 1), (3.28)




Φ(a, b, 0)Φ(a− 2, b− 2, 0) = Φ(a− 1, b − 1, 0)2

+Φ(a, b, 1)Ψ(3b − 2a+ 1, 2b − a+ 1, 1);

Ψ(a, b, 0)Ψ(a − 2, b− 2, 0) = Ψ(a− 1, b− 1, 0)2

+Ψ(a, b, 1)Φ(3b − 2a− 1, 2b − a− 1, 1),

(3.29)

Φ(a, b, c)Φ(a − 2, b− 3, c− 2) = Φ(a− 1, b− 1, c)Φ(a − 1, b− 2, c− 2)

+Φ(a− 2, b− 2, c− 1)Φ(a, b − 1, c− 1),
(3.30)

Ψ(a, b, c)Ψ(a − 2, b− 3, c− 2) = Ψ(a− 1, b− 1, c)Ψ(a − 1, b− 2, c− 2)

+Ψ(a− 2, b− 2, c− 1)Ψ(a, b − 1, c− 1),
(3.31)

Φ(a, b, c)Φ(a − 2, b− 3, c− 2) = Φ(c, b− 1, a− 1)Φ(a− 1, b− 2, c− 2)

+Φ(a− 2, b− 2, c− 1)Φ(a, b − 1, c− 1),
(3.32)

Ψ(a, b, c)Ψ(a − 2, b− 3, c− 2) = Ψ(c, b− 1, a− 1)Ψ(a− 1, b− 2, c− 2)

+Ψ(a− 2, b− 2, c− 1)Ψ(a, b − 1, c− 1).
(3.33)

4 Proof of Theorem 2.1

We show that
M

(
DR

(1)
a,b,c

)
= Φ(a, b, c), (4.1)

for b > 2, d > 0, e > 0, and that

M
(
DR

(2)
a,b,c

)
= Ψ(a, b, c), (4.2)

for b > 2, d̃ > 0, ẽ > 0, by induction on the perimeters of the contours of the regions. In this
proof, we always denote by d := 2b − a − 2c + 1, e := 3b − 2a − 2c + 1, f := |2b − 2a − c + 1|,
d̃ := 2b− a− 2c− 1, ẽ := 3b− 2a− 2c− 1, and f̃ := |2b− 2a− c− 1| as usual.

Denote by P(i)(a, b, c) the perimeter of the contour C(i)(a, b, c), for i = 1, 2. One readily sees
that P(1)(a, b, c) = a+ b+ c+ d+ e+ f = 4b− 2c+1 if a > c+ d, and 8b− 4a− 4c+3 otherwise.
Similarly, P(2)(a, b, c) equals 4b−2c−1 if a > c+ d̃, and 8b−4a−4c−3 otherwise. In particular,
the two parameters are both odd.

The base cases are all DR(1)-regions with the triple (a, b, c) satisfying at least one of the
following conditions:
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(i) P(1)(a, b, c) 6 15

(ii) b 6 4

(iii) c+ d 6 2;

and all DR(2)-regions having the triple (a, b, c) satisfying at least one of the following conditions:

(iv) P(2)(a, b, c) 6 15

(v) b 6 3

(vi) c+ d̃ 6 2,

It is easy to see that each of the conditions (i), (ii) and (iii) implies some small upper
bounds for all a, b, c. Indeed, if (i) holds, we get from the triangle inequality that 2a, 2b, 2c 6

P(1)(a, b, c) 6 15. Thus, we get a, b, c 6 7. Similarly, if b 6 4, then d = 2b− a− 2c+ 1 > 0, this
implies c 6 4. By the same reason, a 6 2b+ 1 6 9. Finally, if c+ d 6 2, then 2b 6 a+ 2c+ 1 6

a+ 5 6 (b+ d) + 5 6 b+ 7. Thus b 6 7, so a 6 b+ d 6 9.
Taking into account also the inequalities b > 2, d = 2b−a−2c+1 > 0 and e = 3b−2a−2c+1 >

0, we get that there are 53 DR(1)-regions in the base cases. Similarly, there are 28 DR(2)-regions
with the triple (a, b, c) satisfying at least one of the conditions (iv), (v), and (vi). For each of
the dragon regions in the base cases, (4.1) and (4.2) can be readily checked, for example, by a
computer package vaxmacs2 written by David Wilson. The number of tilings of each of these
dragon regions is returned in a second.

For the induction step, we assume that k is an odd integer greater than 15 and that (4.1)
and (4.2) hold for any DR(i)-regions with perimeter less than k (k > 17). By the base cases, we
only need to show that (4.1) holds for any triples (a, b, c) in the domain

D = {(a, b, c) ∈ Z
3| P(1)(a, b, c) = k, b > 5, d > 0, e > 0, c + d > 3},

and that (4.2) holds for any triples (a, b, c) in the domain

D̃ = {(a, b, c) ∈ Z
3| P(2)(a, b, c) = k, b > 4, d̃ > 0, ẽ > 0, c + d̃ > 3}.

Next, we partition each of D and D̃ into four subdomains as follows.

D1 = D ∩ {(a, b, c)| 2 6 a 6 c+ d}; D̃1 = D̃ ∩ {(a, b, c)| 2 6 a 6 c+ d̃};

D2 = D ∩ {(a, b, c)| a 6 1}; D̃2 = D̃ ∩ {(a, b, c)| a 6 1};

D3 = D ∩ {(a, b, c)| a > c+ d, e > d}; D̃3 = D̃ ∩ {(a, b, c)| a > c+ d̃, ẽ > d̃};

D4 = D ∩ {(a, b, c)| a > c+ d, e < d}; D̃4 = D̃ ∩ {(a, b, c)| a > c+ d̃, ẽ < d̃}.

We will show that M
(
DR

(1)
a,b,c

)
and Φ(a, b, c), and M

(
DR

(2)
a,b,c

)
and Ψ(a, b, c) agree in each of

the above subdomains.
There are four cases to distinguish.

Case 1: (a, b, c) ∈ D1 ∪ D̃1.

2This software is available at http://dwilson.com/vaxmacs.
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First, we assume that (a, b, c) ∈ D1.
We notice that the condition b > 5 guarantees that e > 2. Indeed, since we are assuming that

a 6 c+d, we have a 6 2b−a−c+1. By d > 0, we get 2b−a−2c+1 > 0. Adding the above two
inequalities, we get 3a+3c 6 4b+2. Then, e = 3b−2a−2c+1 = 3b− 2

3(3a+3c)+1 > b
3 −

1
3 > 4

3 .
Since e is an integer, e > 2.

Moreover, since we are assuming that c+ d > 3, then at least one of c and d is greater than
2. We first assume that d > 2.

Case 1.a. d > 2.

If c > 1, then, by Lemmas 3.3(a) and 3.5, M(DR
(1)
a,b,c) and Φ(a, b, c) both satisfy the recurrence

(R2). One notices that all regions other thanDR
(1)
a,b,c in the equality (3.2) have perimeters strictly

less than k. Thus, by induction hypothesis, we get

M(DR
(1)
a−3,b−3,c−2) = Φ(a− 3, b− 3, c− 2),

M(DR
(1)
a−2,b−1,c) = Φ(a− 2, b− 1, c),

M(DR
(1)
a−1,b−2,c−2) = Φ(a− 1, b− 2, c− 2),

M(DR
(1)
a−1,b−1,c−1) = Φ(a− 1, b− 1, c− 1),

and
M(DR

(1)
a−2,b−2,c−1) = Φ(a− 2, b− 2, c− 1).

By the recurrence (R2) and the above five equalities, we obtain M(DR
(1)
a,b,c) = Φ(a, b, c).

Similarly, if c = 0, by Lemmas 3.3(b) and 3.5, the pair of the numbers of tilings (M(DR
(1)
a,b,c),

M(DR
(2)
a,b,c)) and the pair of functions (Φ(a, b, c),Ψ(a, b, c)) both satisfy the first equality in the

recurrence (R3) for (⋆,♦). Again, by induction hypothesis, we get (4.1).

Case 1.b. c > 2.

If d > 1, then by Lemmas 3.4 and 3.5, M(DR
(1)
a,b,c) and Φ(a, b, c) both satisfy the recurrence

(R4); if d = 0, the later two functions satisfy the same recurrence (R5). Then, by induction
hypothesis one more time, we get (4.1). This means that we have (4.1) for any (a, b, c) ∈ D1.

In the same way, if (a, b, c) ∈ D̃1, we always get (4.2).

Case 2: (a, b, c) ∈ D2 ∪ D̃2.

We consider first the case when (a, b, c) ∈ D2. By flipping the region DR
(1)
a,b,c about the b-side

of the contour C(1)(a, b, c), we get the region DR
(1)

f,e,d
(see the upper row in Figure 4.1). Thus,

M(DR
(1)
a,b,c) = M(DR

(1)

f ,e,d
).

On the other hand, by the definition of function Φ, we obtain Φ(a, b, c) = Φ(f, e, d). Therefore,
to prove (4.1), it suffices to verify that

M(DR
(1)

f,e,d
) = Φ(f , e, d). (4.3)
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Figure 4.1: Obtaining a new hexagonal dungeon by flipping the old one.

If e 6 4, then the triple (f, e, d) are among the ones in the base cases, and (4.3) holds. Thus,
we can assume that e > 5. We now want to show that (f , e, d) ∈ D1, then (4.3) follows from
the Case 1 treated above. It is more convenient to re-write D1 with all constraints in terms of
a, b, c as

D1 = {(a, b, c) ∈ Z
3| P(1)(a, b, c) = k, b > 5, 2b− a− 2c+ 1 > 0,

3b− 2a− 2a+ 1 > 0, 2b− a− c+ 1 > 3, 2 6 a 6 2b− a− c+ 1}. (4.4)

The flips in Figure 4.1 do not change the perimeter, so the first constraint holds. Since we
assuming e > 5, the second constraint also holds here. Next, we have 2e − f − 2d+ 1 = c > 0,
3e−2f −2d+1 = b > 0, and 2e+f −d+1 = c+d > 3. Moreover, f = c+d−a+1 > c+d > 3,
and the condition f 6 2e− f − d+1 is equivalent to a > 0, which is obviously true. This means
that (f , e, d) is indeed in D1.

Similarly, if (a, b, c) ∈ D̃2, we also flip DR
(2)
a,b,c over the b-side of the contour C(2)(a, b, c) and

get DR
(2)

f̃ ,ẽ,d̃
. Then (4.2) follows again from Case 1.

Case 3: (a, b, c) ∈ D3 ∪ D̃3.

Assume that (a, b, c) ∈ D3.

If c > 2, then M(DR
(1)
a,b,c) and Φ(a, b, c) satisfy the same recurrence (R1); and if c = 1, then

the latter functions both satisfy the recurrence (R2). Then (4.1) follows from the induction
hypotheses. We also get (4.1) if c = 0 (in this case the first equality of (R3) has been used).
Thus, (4.1) always holds when (a, b, c) ∈ D3.

Arguing similarly, we have (4.2) holds when (a, b, c) ∈ D̃3.

Case 4: (a, b, c) ∈ D4 ∪ D̃4.

Similar to Case 2, we want to reduce this case to the cases treated before by flipping our
region in a suitable way.
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Figure 5.1: All types of tiles having weight 1 in the regions DR
(i)
a,b,c(x)’s.

If (a, b, c) ∈ D4 (resp. D̃4), we get DR
(1)

b,a,f
(resp. DR

(2)

b,a,f̃
) by flipping the region DR

(2)
a,b,c

(resp. DR
(1)
a,b,c) about the horizontal line passing the western vertex (see the lower row of Figure

4.1). It implies that

M(DR
(1)
a,b,c) = M(DR

(2)

b,a,f̃
) and M(DR

(2)
a,b,c) = M(DR

(1)

b,a,f
).

On the other hand, by the definition of the functions Φ and Ψ, we have

Φ(a, b, c) = Ψ(b, a, f̃ ) and Ψ(a, b, c) = Φ(b, a, f).

Therefore, we only need to verify that

M(DR
(1)

b,a,f
) = Φ(b, a, f) and M(DR

(2)

b,a,f̃
) = Ψ(b, a, f̃). (4.5)

Let us prove the first equality in (4.5). Similar to Case 2, by the base cases, we can assume a > 7
and e+ f > 3. However, now, we can check easily that (b, c, f ) ∈ D3 or D1 ∪ D2 if c = 1 or 0,
respectively. Then the first equality in (4.5) follows from the cases treated before. Do similarly
for the second equality in (4.5). This finishes our proof.

5 More applications of the method.

In this section, we point out several further applications of the method used in the proof of
Theorem 2.1.

Consider the weighted version DR
(i)
a,b,c(x) of the dragon region DR

(i)
a,b,c by assigning all tiles in

Figure 5.1 a weight 1, and each of other tiles an indeterminate weight x > 0. Now, M(DR
(i)
a,b,c(x))

is the sum of weights of all tilings in DR
(i)
a,b,c(x), where the weight of a tiling is the product of

weights of its constituent tiles.

Theorem 5.1. (a) Assume that a, b, and c are three non-negative integers satisfying b > 2,
d := 2b− a− 2c+ 1 > 0 and e := 3b− 2a− 2c+ 1 > 0. Then

M
(
DR

(1)
a,b,c(x)

)
= 2

(a−b)(a−b−1)
2 (x2 + 1)A(x2 + 2)BxC , (5.1)

where
A = (b− c+ 1)(2b − a− c) + (b−a)(b−a−1)

2 ,

B = (a−b+c)(a−b+c−1)
2 ,

and C = (a− b− 1)2 + (a− b+ c− 1)(a − b+ c)− c+min(2a− 2b+ c− 1, 0).

(b) Moreover, if d̃ := 2b− a− 2c− 1 > 0 and ẽ := 3b− 2a− 2c− 1 > 0, then

M
(
DR

(2)
a,b,c(x)

)
= 2

(b−a)(b−a−1)
2 (x2 + 1)A

′

(x2 + 2)B
′

xC
′

, (5.2)
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Figure 5.2: The needle rhombus R3.

where
A′ = (b− c− 1)(2b− a− c) + (a−b)(a−b−1)

2 ,

B′ = (a−b+c)(a−b+c+1)
2 ,

and C ′ = (b− a− 1)2 + (a− b+ c+ 1)(a− b+ c)−max(2a− 2b+ c+ 1, 0).

We omit the proof of Theorem 5.1 here, because it is essentially the same as the proof of
Theorem 2.1.

Next, we conclude the paper by introducing two new families of regions, which also have the
numbers of tilings given by powers of 2 and 3.

Searching over various families of regions having similar structure to the Aztec diamonds
[3, 4], we find several ones, in which the tilings are enumerated by powers of 2 and 3. One of
these families is the “needle rhombi” introduced by the author (see Theorem 25 [6]). Figure 5.2
shows the needle rhombus of order 3. Inspired by the dragon regions, we generalize the later
regions to two new families of six-sided regions as follows.

Partition the triangular lattice into equilateral triangles of side 3, which we call basic tri-
angles. Remove all six lattice segments opposite to each vertex of these basic triangles. We
get a new lattice, which the needle rhombi live in. Similar to the contours C(i)(a, b, c), we
consider a six-sided contour C(a, b, c) along the sides of the basic triangles having side-lengths
a, b, c, d := 2b−a− 2c, e := 3b− 2a− 2c, f := |2b− 2a− c| (the unit here is the side-length of the

basic triangles). Define a two families of needle regions N
(1)
a,b,c and N

(2)
a,b,c restricted by the above

contour as in Figures 5.3(a) and (b) for the case a > c + d, and Figures 5.3(c) and (d) for the
case a 6 c+ d.

By repeating the process in enumerating the tilings of the dragon regions, we get the following
tiling formulas for the needle regions.

Theorem 5.2. Assume that a, b, and c are three non-negative integers satisfying b > 2, 2b −
a− 2c > 0 and 3b− 2a− 2c > 0. Then
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(a) (b)

(c)

(d)

Figure 5.3: The regions (a) N
(1)
8,8,2, (b) N

(2)
8,8,2, (c) N

(1)
5,8,4 and (d) N

(2)
5,8,4.
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M(N
(1)
a,b,c) = 2a

2−3ab+3b2−3bc+c2+ac+a−b+ c

2
− 1

2
|2a−2b+c|

× 3(5a−7b+5c+1)(a−b+c)/2+b(b−1)−ac (5.3)

and

M(N
(2)
a,b,c) = 2a

2−3ab+3b2−3bc+c2+ac+a−b+ c

2
− 1

2
|2a−2b+c|

× 3(5a−7b+5c+1)(a−b+c)/2+b(b−1)−ac+(b−a)+min(2a−2b+c,0). (5.4)

The proof of Theorem 5.2 is completely analogous to that of Theorem 2.1, and will be omitted
here.
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