Towards a Characterization of Leaf Powers by Clique Arrangements

Ragnar Nevries ${ }^{1}$ and Christian Rosenke ${ }^{2}$

1 Department of Computer Science, University of Rostock ragnar.nevries@uni-rostock.de
2 Department of Computer Science, University of Rostock
christian.rosenke@uni-rostock.de

Abstract

The class \mathcal{L}_{k} of k-leaf powers consists of graphs $G=(V, E)$ that have a k-leaf root, that is, a tree T with leaf set V, where $x y \in E$, if and only if the T-distance between x and y is at most k. Structure and linear time recognition algorithms have been found for $2-, 3-, 4$, and, to some extent, 5 -leaf powers, and it is known that the union of all k-leaf powers, that is, the graph class $\mathcal{L}=\bigcup_{k=2}^{\infty} \mathcal{L}_{k}$, forms a proper subclass of strongly chordal graphs. Despite from that, no essential progress has been made lately.

In this paper, we use the new notion of clique arrangements to suggest that leaf powers are a natural special case of strongly chordal graphs. The clique arrangement $\mathcal{A}(G)$ of a chordal graph G is a directed graph that represents the intersections between maximal cliques of G by nodes and the mutual inclusion of these vertex subsets by arcs. Recently, strongly chordal graphs have been characterized as the graphs that have a clique arrangement without bad k-cycles for $k \geq 3$. We show that the clique arrangement of every graph of \mathcal{L} is free of bad 2-cycles. The question whether this characterizes the class \mathcal{L} exactly remains open.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Leaf Powers, Clique Arrangement, Strongly Chordal Graphs, NeST Graphs

1 Introduction

Leaf powers are a family of graph classes that has been introduced by Nishimura et al. [19] to model the problem of reconstructing phylogenetic trees. In particular, a given finite simple graph $G=(V, E)$ is called the k-leaf power of a tree T for some $k \geq 2$, if V is the set of leaves in T and any two distinct vertices $x, y \in V$ are adjacent, that is $x y \in E$, if and only if the distance of x and y in T is at most k. For all $k \geq 2$, the class of graphs that are a k-leaf power of some tree, is simply called k-leaf powers and denoted by \mathcal{L}_{k}. The general problem, from a graph theoretic point of view, is to structurally characterize \mathcal{L}_{k} for all fixed $k \geq 2$ and to provide efficient recognition algorithms.

Obviously, a graph G is a 2-leaf power, if and only if it is the disjoint union of cliques, that is, G does not contain a chordless path of length 2 . Dom et al. [13, 14] prove that 3 -leaf powers are exactly the graphs that do not contain an induced bull, dart, or gem. Brandstädt et al. [4] contribute to the characterization of 3-leaf powers by showing that they are exactly the graphs that result from substituting cliques into the nodes of a tree. Moreover, they give a linear time algorithm to recognize 3-leaf powers building on their characterization. A characterization of 4-leaf powers in terms of forbidden subgraphs is yet unknown. However, basic 4-leaf powers, the 4-leaf powers without true twins, are characterized by eight forbidden subgraphs [20]. The structure of basic 4-leaf powers has further been analyzed by

Brandstädt et al. [8], who provide a nice characterization of the two-connected components of basic 4-leaf powers that leads to a linear time recognition algorithm even for 4-leaf powers. For 5-leaf powers, a polynomial time recognition was given in [12]. However, no structural characterization is known, even for basic 5 -leaf powers. Only for distance-hereditary basic 5 -leaf powers a characterization in terms of 34 forbidden induced subgraphs has been discovered [6]. Except from the result in [10] that $\mathcal{L}_{k} \subseteq \mathcal{L}_{k+1}$ is not true for every k, there have not been any more essential advances in determining the structure of k-leaf powers for $k \geq 5$ since 2007. Instead, research has focused on generalizations of leaf powers [5, 9, which also turned into dead ends, very soon.

On the other hand, if we push k to infinity, then it turns out that not every graph is a k-leaf power for some $k \geq 2$. In particular, a k-leaf power is, by definition, the subgraph of the k-th power of a tree T induced by the leaves of T. Since trees are sun-free chordal and as taking powers and induced subgraphs do not destroy this property, it follows trivially that every k-leaf power, despite the value of k, is strongly chordal [15]. But even not every strongly chordal graph is a k-leaf power for some $k \geq 2$. In fact, we are aware of exactly one counter example, which has been found by Bibelnieks et al. [1] and is shown as G_{7} in Figure 1. Insofar, it is reasonable to ask for a precise characterization of the graphs that are not a k-leaf power for any $k \geq 2$. This problem can equivalently be formulated as to describe the graphs in the class $\mathcal{L}=\bigcup_{k=2}^{\infty} \mathcal{L}_{k}$, which we call leaf powers, for short.

Interestingly, Brandstädt et al. 3] show that \mathcal{L} coincides with the class of fixed tolerance NeST (neighborhood subtree tolerance) graphs, a well-known graph class with an absolutely different motivation given by Bibelnieks et al. 1]. Naturally, characterizations and an efficient recognition algorithms for this class are also open questions today. However, by Brandstädt et al. [2, 3], it is know that \mathcal{L} is a superclass of ptolemaic graphs, that is, gem-free chordal graphs [17, and even a superclass of directed rooted path graphs, introduced by Gavril 16.

Recently, we introduced the clique arrangement in [18], a new data structure that is especially valuable for the analysis of strongly chordal graphs. The clique arrangement $\mathcal{A}(G)=(\mathcal{X}, \mathcal{E})$ of a chordal graph G is a directed acyclic graph that has certain vertex subsets of G as a node set and describes the mutual inclusion of these sets by arcs. In particular, for every set C_{1}, C_{2}, \ldots of maximal cliques of G there is a node in \mathcal{X} for $X=C_{1} \cap C_{2} \cap \ldots$ and two nodes $X, Z \in \mathcal{X}$ are joined by an $\operatorname{arc} X Z \in \mathcal{E}$, if $X \subset Z$ and there is no $Y \in \mathcal{X}$ with $X \subset Y \subset Z$. In [18], we give a new characterization of strongly chordal graphs in terms of a forbidden cyclic substructure in the clique arrangement, called bad k-cycles for $k \geq 3$, and we show how to construct the clique arrangement of a strongly chordal graph in nearly linear time.

It is known that the clique arrangements of ptolemaic graphs are even directed trees [21]. Since all ptolemaic graphs are leaf powers and all leaf powers are strongly chordal, it appears likely that the degree of acyclicity in clique arrangements of leaf powers is between forbidden bad k-cycles, $k \geq 3$, and the complete absence of cycles.

This paper describes a cyclic substructure that is forbidden in the clique arrangement of leaf powers. For convenience, we call these substructures bad 2-cycles, although they are not the obvious continuation of the concept of bad k-cycles for $k \geq 3$. As the main result of this paper, we show that bad 2 -cycles occur in $\mathcal{A}(G)$, if and only if G contains at least one of seven induced subgraphs G_{1}, \ldots, G_{7} depicted in Figure 1

We leave it as an open question, if these seven graphs are sufficient to characterize \mathcal{L} in terms of forbidden subgraphs. However, we conjecture that this is the case. This would imply a polynomial time recognition algorithm for \mathcal{L}, by using the possibility of efficiently
recognizing strongly chordal graphs and checking the containment of a finite number of forbidden induced subgraphs.

2 Preliminaries

We refer to several graph classes which are not explicitly defined due to space limitations. For a comprehensive survey on graph classes we would like to refer to [7].

Throughout this paper, all graphs $G=(V, E)$ are simple, without loops and, with the exception of clique arrangements, undirected. We usually denote the vertex set by V and the edge set by E, where the edges are also called arcs in a directed graph. We write $x-y$, respectively $x \rightarrow y$ in the directed case, for $x y \in E$ and $x \mid y$ for $x y \notin E$. For all vertices $x \in V$ in an undirected graph, we let $N(x)=\{y \mid x y \in E\}$ denote the open neighborhood and $N[x]=N(x) \cup\{x\}$ the closed neighborhood of x in G. In a directed graph, $N_{o}(x)=\{y \mid x y \in E\}$ denotes the set of neighbors that are reachable from x by a single arc and $N_{i}(x)=\{y \mid y x \in E\}$ are the neighbors that reach x by a single arc. If $\left|N_{i}(x)\right|=0$ then x is a source and if $\left|N_{o}(x)\right|=0$ then x is a sink.

An independent set in G is a set of mutually nonadjacent vertices. A clique $C \subseteq V$ is a set of mutually adjacent vertices and C is called maximal, if there is no clique C^{\prime} with $C \subset C^{\prime}$. The set of all maximal cliques of G is denoted by $\mathcal{C}(G)$.

A (simple) path in a graph G is a sequence $x_{1}, x_{2} \ldots, x_{k}$ of non-repeating vertices in G, such that $x_{i} x_{i+1} \in E$ for all $i \in\{1, \ldots, k-1\}$. If E is clear from the context, then we denote the path by $x_{1}-x_{2}-\ldots-x_{k}$ in an undirected graph. In a directed graph, $x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{k}$ specifies a directed path and we say that x_{1} reaches x_{k}. The distance $d_{G}(x, y)$ between two vertices x, y of an (un-) directed graph G is the minimum number of edges in an (un-) directed path starting in x and ending in y. If the edge $x_{k} x_{1}$ is additionally present in E, then we talk of a (simple) cycle in G, and as for paths, an undirected cycle is denoted by $x_{1}-x_{2}-\ldots-x_{k}-x_{1}$. An undirected cycle is called induced k-cycle C_{k}, if G contains $x_{i} x_{j}$, if and only if $j=i+1$ or $i=k$ and $j=1$.

A tree T is an undirected connected acyclic graph, that is, for all pairs x, y of vertices there exists a path $x-\ldots-y$, and T is free of cycles. Directed graphs are acyclic, if they are free of directed cycles.

A vertex subset $U=\left\{x_{0}, \ldots, x_{k-1}, y_{0}, \ldots, y_{k-1}\right\} \subseteq V$ induces a k-sun in G, if $X=$ $\left\{x_{0}, \ldots, x_{k-1}\right\}$ is a clique and $Y=\left\{y_{0}, \ldots, y_{k-1}\right\}$ is an independent set and for every edge $x_{i} y_{j}$ between X and Y, either $i=j$ or $i+1=j$, where the indices are counted modulo k. By definition, a graph is chordal, if and only if it does not contain induced k-cycles for all $k \geq 4$, and by Farber [15] a graph is strongly chordal, if and only if it does not contain induced k-suns for all $k \geq 3$.

Beside the many useful properties of (strongly) chordal graphs, see for example [7], this paper uses in particular the following two properties, that are folklore but nevertheless have been shown in [18]:

- Lemma 1. If G is a chordal graph and C_{1}, C_{2} are maximal cliques of G, then there is a vertex $x \in C_{1} \backslash C_{2}$ such that $x \mid y$ for all $y \in C_{2} \backslash C_{1}$.
- Lemma 2. If G is a strongly chordal graph and \mathcal{C} any nonempty subset of $\mathcal{C}(G)$, then there are two maximal cliques $C_{1}, C_{2} \in \mathcal{C}$ such that $\bigcap_{C \in \mathcal{C}} C=C_{1} \cap C_{2}$.

A strongly chordal graph $G=(V, E)$ is the k-leaf power of a tree T for $k \geq 2$, if V is the set of leaves in T and for all $x, y \in V$ there exists $x y \in E$, if and only if $d_{T}(x, y) \leq k$. The tree T is called a k-leaf root of G, in this case. Notice that k-leaf roots are not necessarily
unique for given k-leaf powers. For all $k \geq 2$, the class \mathcal{L}_{k} consists of all graphs that are a k-leaf power for some tree and $\mathcal{L}=\bigcup_{k=2}^{\infty} \mathcal{L}_{k}$ is the class of leaf powers.

The clique arrangement $\mathcal{A}(G)=(\mathcal{X}, \mathcal{E})$ of a chordal graph G, as introduced in [18], is a directed acyclic graph with node set

$$
\mathcal{X}=\left\{X \mid X=\bigcap_{C \in \mathcal{C}} C \text { with } \mathcal{C} \subseteq \mathcal{C}(G) \text { and } X \neq \emptyset\right\}
$$

that contains exactly all intersections of the maximal cliques of G, and arc set

$$
\mathcal{E}=\{X Z \mid X, Z \in \mathcal{X} \text { with } X \subset Z \text { and } \nexists Y \in \mathcal{X}: X \subset Y \subset Z\}
$$

that describes their mutual inclusion. Clearly, the set of sinks in $\mathcal{A}(G)$ corresponds exactly to $\mathcal{C}(G)$.

The following simple facts for clique arrangements are also introduced in [18]:

- Lemma 3 (Nevries and Rosenke [18]). If $X \in \mathcal{X}$ is a node in the clique arrangement $\mathcal{A}(G)=(\mathcal{X}, \mathcal{E})$ of a chordal graph G and if $\left\{Y_{1}, \ldots, Y_{\ell}\right\}=N_{o}(X)$, then $X=Y_{1} \cap \ldots \cap Y_{\ell}$. Moreover, if C_{1}, \ldots, C_{k} are the sinks of $\mathcal{A}(G)$ that are reached from X by directed paths, then $X=C_{1} \cap \ldots \cap C_{k}$.
- Lemma 4 (Nevries and Rosenke [18]). If $Y_{1}, \ldots, Y_{k} \in \mathcal{X}$ are nodes in the clique arrangement $\mathcal{A}(G)=(\mathcal{X}, \mathcal{E})$ of a chordal graph G such that their intersection $X=Y_{1} \cap \ldots \cap Y_{k}$ is not empty, then $X \in \mathcal{X}$.

Although $\mathcal{A}(G)$ is acyclic by definition, we call the following structure a cycle in $\mathcal{A}(G)$ for the lack of a better term. For any $k \in \mathbb{N}$, a k-cycle of $\mathcal{A}(G)$ is a set of nodes $S_{0}, \ldots, S_{k-1}, T_{0}, \ldots, T_{k-1}$ such that for all $i \in\{0, \ldots, k-1\}$ there is a directed path from S_{i} to T_{i} and a directed path from S_{i} to T_{i-1} (counted modulo k). The nodes S_{0}, \ldots, S_{k-1} are called starters of the cycle and the nodes T_{0}, \ldots, T_{k-1} are called terminals of the cycle. Note that by definition, $S_{i} \subseteq T_{i} \cap T_{i-1}$ for all $i \in\{0, \ldots, k-1\}$. In [18], we call a k-cycle bad, if $k \geq 3$ and for all $i, j \in\{0, \ldots, k-1\}$ there is a directed path from S_{i} to T_{j}, if only if $j \in\{i, i-1\}$ (counted modulo k).

- Theorem 5 (Nevries and Rosenke [18]). Let $G=(V, E)$ be a chordal graph and $\mathcal{A}(G)=$ $(\mathcal{X}, \mathcal{E})$ be the clique arrangement of G. Then G is strongly chordal, if and only if $\mathcal{A}(G)$ is free of bad k-cycles for all $k \geq 3$.

In this paper we apply two other properties of clique arrangements for strongly chordal graphs:

- Lemma 6 (Proof in Section 6). Let G be a strongly chordal graph with clique arrangement $\mathcal{A}(G)=(\mathcal{X}, \mathcal{E})$ and let $X, Y, Z \in \mathcal{X}$ be three distinct nodes such that $X=Y \cap Z$. There are sinks $C_{1}, C_{2} \in \mathcal{X}$ such that C_{1} is reachable from Y and C_{2} is reachable from Z and $X=C_{1} \cap C_{2}$.
- Lemma 7 (Proof in Section 6). Let $G=(V, E)$ be a chordal graph with clique arrangement $\mathcal{A}(G)=(\mathcal{X}, \mathcal{E})$ that occurs as an induced subgraph of a chordal graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with clique arrangement $\mathcal{A}\left(G^{\prime}\right)=\left(\mathcal{X}^{\prime}, \mathcal{E}^{\prime}\right)$, that is, $G=G^{\prime}[V]$. There exists a function $\phi: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ that fulfills the following two conditions for all $X, Y \in \mathcal{X}$:

1. $X=Y \Leftrightarrow \phi(X)=\phi(Y)$, and
2. $\mathcal{A}(G)$ has a directed path from X to Y, if and only if $\mathcal{A}\left(G^{\prime}\right)$ has a directed path from $\phi(X)$ to $\phi(Y)$.

3 Forbidden Induced Subgraphs

Bibelnieks et al. [1] are the first to find a strongly chordal graph, namely G_{7}, that is not in \mathcal{L} and, consequently, show that the classes are not equivalent. In fact, they were looking for a strongly chordal graph that is not a fixed tolerance NeST graph, but by Brandstädt et al. [3], we know that \mathcal{L} and this class are equal. Since then, it has been conjectured that G_{7} is the smallest forbidden induced subgraph of leaf powers.

To show that G_{7} is not in \mathcal{L}, Bibelnieks et al. [1] use a lemma of Broin et al. 11]. The basic idea of the proof of this lemma is to show for certain pairs of edges $x_{1} y_{1}$ and $x_{2} y_{2}$ in G that the path between x_{1} and y_{1} is disjoint from the path between x_{2} and y_{2} in every leaf root of G. In particular, this happens, if vertices a, b exist in G with $x_{1}, y_{1} \in N(a) \backslash N[b]$ and $x_{2}, y_{2} \in N(b) \backslash N[a]$. The graph G_{7} has a cycle $x_{0}-y_{00}-y_{10}-x_{1}-y_{11}-y_{01}-x_{0}$, where the condition is fulfilled for many pairs of edges in the cycle. It follows that every leaf root of G_{7} would have a cycle, which is a contradiction.

In this section, we want to show that there are at least six other strongly chordal graphs G_{1}, \ldots, G_{6} that are not in \mathcal{L}. Interestingly, every of these six graphs is smaller than G_{7}. For our proof, we generalize the argument of Bibelnieks et al. [1 for pairs of edges $x_{1} y_{1}$ and $x_{2} y_{2}$ that correspond to disjoint paths in leaf roots. The following Lemma provides three corresponding conditions:

- Lemma 8. Let $G=(V, E)$ be a k-leaf power of a tree T for some $k \geq 2$ and let $x_{1} y_{1}$ and $x_{2} y_{2}$ be two edges of G on distinct vertices $x_{1}, y_{1}, x_{2}, y_{2} \in V$. The paths $x_{1}-\ldots-y_{1}$ and $x_{2}-\ldots-y_{2}$ in T are disjoint, that is, do not share any node, if at least one of the following conditions holds:

1. At most one of the edges $x_{1} x_{2}, x_{1} y_{2}, y_{1} x_{2}, y_{1} y_{2}$ is in E.
2. There is a vertex $a \in V$ such that $x_{1}, y_{1} \in N(a)$, and $x_{2}, y_{2} \notin N[a]$, and $N\left(x_{1}\right) \cap$ $\left\{x_{2}, y_{2}\right\} \leq 1$, and $N\left(y_{1}\right) \cap\left\{x_{2}, y_{2}\right\} \leq 1$.
3. There are distinct vertices $a, b \in V$ such that $x_{1}, y_{1} \in N(a) \backslash N[b]$, and $x_{2}, y_{2} \in N(b) \backslash$ $N[a]$.

Proof.

1. Assume that the two paths are not disjoint. Then T contains (not necessarily distinct) nodes s and t such that (i) the path $x_{1}-\ldots-y_{1}$ consists of three subpaths, firstly $x_{1}-\ldots-s$, secondly $s-\ldots-t$, and thirdly $t-\ldots-y_{1}$ and (ii) the path $x_{2}-\ldots-y_{2}$ consists of three subpaths, too, without loss of generality, the first is $x_{2}-\ldots-s$ and the last is $t-\ldots-y_{2}$. Hence, the path between s and t is the intersection between the two paths. Because $x_{1}-y_{1}$ and $x_{2}-y_{2}$ in G we get the following inequations by definition:

$$
\begin{align*}
& d_{T}\left(x_{1}, y_{1}\right)=d_{T}\left(x_{1}, s\right)+d_{T}(s, t)+d_{T}\left(t, y_{1}\right) \leq k \text { and } \tag{1}\\
& d_{T}\left(x_{2}, y_{2}\right)=d_{T}\left(x_{2}, s\right)+d_{T}(s, t)+d_{T}\left(t, y_{2}\right) \leq k . \tag{2}
\end{align*}
$$

As at most one of the edges $x_{1} x_{2}, x_{1} y_{2}, y_{1} x_{1}, y_{1} y_{2}$ is in E, we know that at least one of $x_{1} y_{2}, y_{1} x_{2} \notin E$ and $x_{1} x_{2}, y_{1} y_{2} \notin E$ is true. If $x_{1} \mid y_{2}$ and $y_{1} \mid x_{2}$, then we get

$$
\begin{align*}
& d_{T}\left(x_{1}, y_{2}\right)=d_{T}\left(x_{1}, s\right)+d_{T}(s, t)+d_{T}\left(t, y_{2}\right)>k \text { and } \tag{3}\\
& d_{T}\left(y_{1}, x_{2}\right)=d_{T}\left(y_{1}, t\right)+d_{T}(t, s)+d_{T}\left(s, x_{2}\right)>k \tag{4}
\end{align*}
$$

such that combining (11) and (3) yields $d_{T}\left(t, y_{1}\right)<d_{T}\left(t, y_{2}\right)$ and combining (2) and (4) yields $d_{T}\left(t, y_{2}\right)<d_{T}\left(t, y_{1}\right)$, a contradiction. Otherwise, if $x_{1} \mid x_{2}$ and $y_{1} \mid y_{2}$, we get the inequations

$$
\begin{align*}
d_{T}\left(x_{1}, x_{2}\right) & =d_{T}\left(x_{1}, s\right)+d_{T}\left(s, x_{2}\right)>k \text { and } \tag{5}\\
d_{T}\left(y_{1}, y_{2}\right) & =d_{T}\left(y_{1}, t\right)+d_{T}\left(t, y_{2}\right)>k \tag{6}
\end{align*}
$$

such that combining equation (11) and (5) yields $d\left(x_{2}, s\right)>d_{T}(s, t)+d_{T}\left(t, y_{1}\right)$. Putting this estimate of $d_{T}\left(x_{2}, s\right)$ into (2) yields $d_{T}\left(y_{1}, t\right)+d_{T}\left(t, y_{2}\right)+2 d_{T}(s, t)<k$. By (6) we can conclude that $2 d_{T}(s, t)<0$, which is a contradiction to the preconditions.
2. As the edges $a x_{1}$ and $x_{2} y_{2}$ are joined in G by at most one edge, $x_{1} x_{2}$ or $x_{1} y_{2}$, it follows from 1. that $a-\ldots-x_{1}$ is disjoint from $x_{2}-\ldots-y_{2}$ in T. Analogously, the edges $a y_{1}$ and $x_{2} y_{2}$ are joined by at most one edge in G, either $y_{1} x_{2}$ or $y_{1} y_{2}$. Hence, in T, the path $a-\ldots-y_{1}$ is disjoint from $x_{2}-\ldots-y_{2}$, too. Because T is a tree, it follows that the nodes on $x_{1}-\ldots-y_{1}$ are a subset of the combined nodes of the paths $a-\ldots-x_{1}$ and $a-\ldots-y_{1}$. Consequently, there is no node that simultaneously belongs to $x_{1}-\ldots-y_{1}$ and $x_{2}-\ldots-y_{2}$.
3. If $a-b$ then $z_{1} \mid z_{2}$ for all $z_{1} \in\left\{x_{1}, y_{1}\right\}$ and $z_{2} \in\left\{x_{2}, y_{2}\right\}$. Otherwise, $z_{1}-a-b-z_{2}-z_{1}$ is an induced C_{4} in G. Hence, in this case $x_{1}\left|x_{2}, x_{1}\right| y_{2}, y_{1} \mid x_{2}$ and $y_{1} \mid y_{2}$ and we are done.

If $a \mid b$, then for all $z_{1} \in\left\{x_{1}, y_{1}\right\}$ and $z_{2} \in\left\{x_{2}, y_{2}\right\}$, the edges $a-z_{1}$ and $b-z_{2}$ are joined at most by the edge $z_{1}-z_{2}$ in G. This means by 1 . that $a-\ldots z_{1}$ is disjoint from $b-\ldots-z_{2}$ in T. Again, as T is a tree, it follows that the nodes on $x_{1}-\ldots-y_{1}$ are a subset of the accumulated nodes on $a-\ldots-x_{1}$ and $a-\ldots-y_{1}$ and, similarly, the nodes on $x_{2}-\ldots-y_{2}$ are a subset of the nodes on $b-\ldots-x_{2}$ and $b-\ldots-y_{2}$. Consequently, there cannot be a node that simultaneously belongs to $x_{1}-\ldots-y_{1}$ and $x_{2}-\ldots-y_{2}$.

Based on this more general concept, we can find a cycle $x_{0}-y_{00}-y_{10}-x_{1}-y_{11}-y_{01}-x_{0}$ in every graph from G_{1}, \ldots, G_{7} such that many pairs of edges in the cycle fulfill at least one of the three conditions. The following theorem states that this is never compatible with the existence of a leaf root.

- Theorem 9 (Proof in Section [6). The graphs G_{1}, \ldots, G_{7} are not in \mathcal{L}.

This implies that G_{1}, \ldots, G_{7} are forbidden induced subgraphs for \mathcal{L}. In the following section, we analyze the clique arrangement of these seven graphs and show that they share one particular cyclic property, related to bad k-cycles.

4 Forbidden Cycles in Leaf Power Clique Arrangements

As shown in [18], strongly chordal graphs can be characterized by forbidden bad k-cycles in their clique arrangements, where $k \geq 3$. But by Theorem 9 this does not fully capture the cyclic structure that is forbidden in leaf powers. In this section, we show that there are certain kinds of 2 -cycles which may not occur as a subgraph in the clique arrangement of a leaf power. In particular, we call a 2 -cycle bad, if for all $i, j \in\{0,1\}$ there is a directed path from starter S_{i} to terminal T_{j} that does not contain a node X which fulfills $S_{0} \cup S_{1} \subseteq X \subseteq$ $T_{0} \cap T_{1}$. The following theorem provides the main argument of this paper:

- Theorem 10. Let $G=(V, E)$ be a strongly chordal graph with clique arrangement $\mathcal{A}(G)=$ $(\mathcal{X}, \mathcal{E})$. The graph $\mathcal{A}(G)$ contains a bad 2 -cycle, if and only if G contains one of the graphs G_{1}, \ldots, G_{7} as an induced subgraph.

Proof. The proof starts by showing the first direction, that is, if $\mathcal{A}(G)$ contains a bad 2cycle, then G contains one of the graphs G_{1}, \ldots, G_{7} as an induced subgraph. Among the bad 2-cycles of $\mathcal{A}(G)$ we select a cycle with starters S_{0}, S_{1} and terminals T_{0}, T_{1} that primarily minimizes the summed cardinalities of the terminals $\left|T_{0}\right|+\left|T_{1}\right|$ and secondarily maximizes the summed cardinalities of the starters $\left|S_{0}\right|+\left|S_{1}\right|$. Because T_{0} and T_{1} have a non-empty intersection, which contains at least $S_{0} \cup S_{1}$, Lemma 4 provides a node $T=T_{0} \cap T_{1}$.

In the following we provide a number of claims to support our arguments. The proofs of all these claims are found in Section 6. We start by shaping the bad 2-cycle:

Figure 1 The graphs G_{1}, \ldots, G_{7}. The bottom left figure displays $\mathcal{A}\left(G_{7}\right)$ and, without dashed nodes and arcs, it shows $\mathcal{A}\left(G_{1}\right)$. Analogously, the bottom right figure presents $\mathcal{A}\left(G_{6}\right)$ or, without the dashed parts, $\mathcal{A}\left(G_{2}\right)$. Bold arcs emphasize the bad 2-cycle, where starters are double framed and terminals bold framed.

- Claim 1. For all $i, j \in\{0,1\}$ there is a path $B_{i j}$ from S_{i} to T_{j} that does not contain a node X with $S_{0} \cup S_{1} \subseteq X \subseteq T_{0} \cap T_{1}$, in particular $B_{i j}$ does not contain T, such that $B_{i j}$ contains a node $P_{i j}$ with
(1) $S_{i} \subseteq P_{i j} \subseteq T_{j}$,
(2) $S_{1-i} \nsubseteq P_{i j}$,
(3) $P_{i j} \nsubseteq T$, and
(4) there exists a sink $Q_{i j}$ in $\mathcal{A}(G)$ with $S_{1-i} \nsubseteq Q_{i j}$ that fulfills $P_{i j}=Q_{i j} \cap T_{j}$.

In the following we refer to the nodes $P_{i j}$ by the P-nodes and we call $Q_{i j}$ the Q-nodes. The pure existence of the Q-nodes does not directly imply that they are different:

- Claim 2. For all $i, j, i^{\prime}, j^{\prime} \in\{0,1\}$ with $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$, the sinks $Q_{i j}$ and $Q_{i^{\prime} j^{\prime}}$ differ.

For the pairwise intersection between the P-nodes, Claim directly implies for all $i, j, j^{\prime} \in$ $\{0,1\}$ that $P_{i j} \nsubseteq P_{(1-i) j^{\prime}}$. We can now infer the following two additional statements about the intersections between the P-nodes and the intersections between the Q-nodes:

- Claim 3. For all $i \in\{0,1\}$ it is true that $P_{i 0} \cap P_{i 1}=S_{i}$.
- Claim 4. For all $i, i^{\prime} \in\{0,1\}$ it is true that $P_{0 i} \cap P_{1 i^{\prime}} \subseteq T$ and $Q_{0 i} \cap Q_{1 i^{\prime}} \subseteq T$.

We deduce that $P_{i j} \cap P_{i^{\prime} j^{\prime}} \subseteq T$ for all $i, j, i^{\prime}, j^{\prime} \in\{0,1\}$ with $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. Following the construction of the P-nodes, we also know for all $i, j \in\{0,1\}$ that the set $P_{i j}^{\prime}=P_{i j} \backslash T$ is not empty.

Using the collected facts about the mentioned nodes on the bad 2-cycle, the next two claims start selecting vertices to construct one of the induced subgraphs G_{1}, \ldots, G_{7} :

- Claim 5. For all $i \in\{0,1\}$, the starter S_{i} contains a vertex u_{i} such that $u_{i} \notin Q_{(1-i) 0} \cup$ $Q_{(1-i) 1}$.
- Claim 6. For all $i, j \in\{0,1\}$, there is a vertex $w_{i j} \in Q_{i j} \backslash P_{i j}$ such that
(1) for all $i^{\prime}, j^{\prime} \in\{0,1\}$ it is true that $w_{i j}=w_{i^{\prime} j^{\prime}} \Longleftrightarrow(i, j)=\left(i^{\prime}, j^{\prime}\right)$ and
(2) $w_{i j}$ is neither adjacent to $u_{1-i}, w_{i(1-j)}, w_{(1-i) j)}, w_{(1-i)(1-j)}$, nor to any vertex in $P_{i(1-j)}^{\prime}$, in $P_{(1-i) j}^{\prime}$ or in $P_{(1-i)(1-j)}^{\prime}$.
Depending on the edges between the six central vertices of G_{1}, \ldots, G_{7}, there exist up to two additional vertices in G_{4}, \ldots, G_{7}. This dependency is also visible in the clique arrangement. Consider the sets $V_{0}=P_{00} \cup P_{01}, V_{1}=P_{10} \cup P_{11}, D_{0}=P_{00} \cup P_{11}$ and $D_{1}=P_{01} \cup P_{10}$ and moreover, for all $i, j \in\{0,1\}$ let $C_{i j}=V_{i} \cup D_{j}$. If one of the sets $C_{i j}, i, j \in\{0,1\}$ induces a clique in G, then it follows that T_{0} or T_{1} are proper subsets of maximal cliques in G :
- Claim 7. For all $i, j \in\{0,1\}$ and $k=(i+j+1) \bmod 2$, the node T_{k} is not a sink in $\mathcal{A}(G)$, if $C_{i j}$ is a clique in G.
In such a case, if $C_{i j}$ is a clique, we select an additional vertex from the sink that is reachable from T_{k} :
- Claim 8. For all $i, j \in\{0,1\}$ and $k=(i+j+1) \bmod 2$, if $C_{i j}$ is a clique in G, then there is a sink T_{k}^{\prime} which is reachable from T_{k} and contains a vertex $w_{k} \in T_{k}^{\prime} \backslash\left(P_{0 k} \cup P_{1 k} \cup T_{1-k}\right)$ such that
(1) w_{k} is not one of the vertices $w_{1-k}, w_{00}, w_{01}, w_{10}, w_{11}$,
(2) w_{k} is neither adjacent to $w_{1-k}, w_{0(1-k)}, w_{1(1-k)}$ nor to any vertex in $T_{1-k} \backslash T$, and
(3) w_{k} is adjacent to at most one vertex of $w_{0 k}$ and $w_{1 k}$.

In the remainder of the proof we select the central vertices $v_{i j}$ from $P_{i j}^{\prime}$ for all $i, j \in\{0,1\}$ to ultimately induce a forbidden subgraph. But before explaining how to select these four vertices, we briefly summarize the results gathered in the proof so far. By Claim 55 we know that there are vertices u_{0}, u_{1} and, from the construction of the P-nodes in Claim it
follows that $\left\{u_{0}, u_{1}, v_{00}, v_{10}\right\}$ and $\left\{u_{0}, u_{1}, v_{01}, v_{11}\right\}$ are cliques in G, regardless of the choice of $v_{00}, v_{01}, v_{10}, v_{11}$. Moreover, by Claim [6, there exists an independent set $\left\{w_{00}, w_{01}, w_{10}, w_{11}\right\}$ in G such that for all $i, j \in\{0,1\}$, the vertex $w_{i j}$ is adjacent to u_{i} and $v_{i j}$ but not to any of the vertices $u_{1-i}, v_{i(1-j)}, v_{(1-i) j}, v_{(1-i)(1-j)}$. Finally, Claim 8 states that certain circumstances imply the existence of two non-adjacent vertices w_{0} and w_{1} in G that are both adjacent to u_{0} and u_{1} and such that for all $k \in\{0,1\}$ it is true that w_{k} is adjacent to $v_{0 k}$ and $v_{1 k}$ but not adjacent to $v_{0(1-k)}, v_{1(1-k)}, w_{0(1-k)}$ and $w_{0(1-k)}$. The claim leaves it open, if w_{k} can be adjacent to either $w_{0 k}$ or $w_{1 k}$ and, consequently, we cope with this problem during the following vertex selection. These facts are subsequently used without explicit mentioning.

Moreover, in the following vertex selection we write
$G_{i}\left(x_{0}, x_{1}, y_{00}, y_{01}, y_{10}, y_{11}, z_{00}, z_{01}, z_{10}, z_{11},\left[z_{0}, z_{1}\right]\right)$
to state that G contains an induced G_{i} for $i \in\{1, \ldots, 7\}$ on vertices $x_{0}, x_{1}, y_{00}, y_{01}, y_{10}$, $y_{11}, z_{00}, z_{01}, z_{10}, z_{11}$, optionally including z_{0}, z_{1}. Hence, both vertex sets $x_{0}, x_{1}, y_{00}, y_{10}$ and $x_{0}, x_{1}, y_{01}, y_{11}$ form a clique in G and every $z_{i j}$ is exactly adjacent to $x_{i}, y_{i j}$. Depending on i the vertices z_{0} and z_{1} are present and z_{i} is exactly adjacent to $x_{0}, x_{1}, y_{0 i}, y_{1 i}$ for $i \in\{0,1\}$. The adjacency between $y_{00}, y_{01}, y_{10}, y_{11}$ depends on i, too.

To find suitable vertices for the forbidden induced subgraphs, we have to distinguish between three cases:

1. Assume that at most one of the sets $V_{0}, V_{1}, D_{0}, D_{1}$ is a clique in G : Because of symmetry we just have the following two subcases:
a. Assume that at most V_{0} is a clique in G : Because D_{0}, D_{1} are not cliques, we can select vertices $v_{i j} \in P_{i j}^{\prime}$ for all $i, j \in\{0,1\}$ such that $v_{00} \mid v_{11}$ and $v_{01} \mid v_{10}$. At most one of the edges $v_{00} v_{01}$ or $v_{10} v_{11}$ is present in E because otherwise $v_{00}-v_{01}-v_{11}-v_{10}-v_{00}$ is an induced C_{4} in G. If $v_{00} \mid v_{01}$ and $v_{10} \mid v_{11}$, then

$$
G_{1}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

Clearly, if V_{0} is a clique, then $v_{00}-v_{01}$ and $v_{10} \mid v_{11}$ and then we have

$$
G_{2}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

b. Assume that at most D_{0} is a clique in G : Analogously to the previous case, we can select $v_{i j} \in P_{i j}^{\prime}$ for all $i, j \in\{0,1\}$ such that $v_{00} \mid v_{01}$ and $v_{10} \mid v_{11}$ and again, either $v_{00}-v_{11}$ or $v_{01}-v_{10}$ as otherwise $v_{00}-v_{11}-v_{01}-v_{10}-v_{00}$ is an induced C_{4} in G. The case of $v_{00} \mid v_{01}$ and $v_{10} \mid v_{11}$ yields an induced G_{1} and has already been handled in the first case. If without loss of generality $v_{00}-v_{11}$, then

$$
G_{3}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

2. Assume that exactly two of the sets $V_{0}, V_{1}, D_{0}, D_{1}$ are cliques in G : If V_{0} and V_{1} are cliques but not D_{0} and D_{1}, then vertices $v_{i j} \in P_{i j}^{\prime}$ exist for all $i, j \in\{0,1\}$ such that $v_{00} \mid v_{11}$ and $v_{01} \mid v_{10}$ and consequently, $v_{00}-v_{01}-v_{11}-v_{10}-v_{00}$ is an induced C_{4}. Analogously, D_{0} and D_{1} being the cliques implies $v_{00}-v_{11}-v_{01}-v_{10}-v_{00}$ as an induced C_{4}. Because of this and symmetry, we have only one remaining case, namely V_{0} and D_{0} are the cliques and this implies that C_{00} is a clique.
Next we show that there exist vertices $v_{i j} \in P_{i j}^{\prime}$ for all $i, j \in\{0,1\}$ such that $v_{01} \mid v_{10}$ and $v_{10} \mid v_{11}$. For that purpose, assume that every vertex in P_{10}^{\prime}, that is adjacent to some vertex in $P_{(1-k) 1}^{\prime}$ for $k \in\{0,1\}$, is also adjacent to all vertices in $P_{k 1}^{\prime}$. Then, as V_{1} and D_{1} are not cliques, there are vertices $x \neq y \in P_{10}^{\prime}$ such that there is $x^{\prime} \in P_{01}^{\prime}$ and $y^{\prime} \in P_{11}^{\prime}$
with $x \mid x^{\prime}$ and $y \mid y^{\prime}$. By our assumption, it follows that $x-y^{\prime}$ and $x^{\prime}-y$ and hence, there is $x-y-x^{\prime}-y^{\prime}-x$, an induced C_{4} in G. Consequently, the assumption was wrong and we can select the vertices such that $v_{01} \mid v_{10}$ and $v_{10} \mid v_{11}$.
Because C_{00} is a clique, it follows by Claim 8 that w_{1} exists, and if w_{1} is neither adjacent to w_{01} nor to w_{11}, then

$$
G_{4}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}, w_{1}\right)
$$

Otherwise, if w_{1} is adjacent to w_{10}, then we get

$$
G_{3}\left(u_{0}, u_{1}, v_{00}, w_{1}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right),
$$

and if $w_{1}-w_{11}$, then

$$
G_{2}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, w_{1}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

3. Assume that at least three of the sets $V_{0}, V_{1}, D_{0}, D_{1}$ are cliques in G : In this case, we select any vertex $v_{i j} \in P_{i j}^{\prime}$ for all $i, j \in\{0,1\}$. As at least one of the sets $C_{00}=V_{0} \cup D_{0}$ or $C_{11}=V_{1} \cup D_{1}$ is a clique, it follows from Claim 8 that w_{1} exists. Analogously, $C_{01}=V_{0} \cup D_{1}$ or $C_{10}=V_{1} \cup D_{0}$ is a clique and thus, w_{0} exists.
Assume first that w_{0} and w_{1} are completely disjoint from $w_{00}, w_{01}, w_{10}, w_{11}$. By symmetry we just have to consider the cases of (i) $v_{01} \mid v_{10}$, which leads to

$$
G_{5}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}, w_{0}, w_{1}\right)
$$

(ii) $v_{10} \mid v_{11}$, which yields

$$
G_{6}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}, w_{0}, w_{1}\right)
$$

and (iii) $v_{00}, v_{01}, v_{10}, v_{11}$ are a clique where

$$
G_{7}\left(u_{0}, u_{1}, v_{00}, v_{01}, v_{10}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}, w_{0}, w_{1}\right) .
$$

Finally, we have to check all the cases where w_{0} or w_{1} are adjacent to one of the vertices $w_{00}, w_{01}, w_{10}, w_{11}$. Because of symmetry we can simply assume that w_{0} is adjacent to w_{10}.
Assume that w_{1} is neither adjacent to w_{01} nor to w_{11}. Then (iv) $v_{00}-v_{01}$ and $v_{00} \mid v_{11}$ implies

$$
G_{2}\left(u_{0}, u_{1}, v_{00}, v_{01}, w_{0}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

(v) $v_{00} \mid v_{01}$ and $v_{00}-v_{11}$ yields

$$
G_{3}\left(u_{0}, u_{1}, v_{00}, v_{01}, w_{0}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right),
$$

and (vi) $v_{00}-v_{01}$ and $v_{00}-v_{11}$ gives

$$
G_{4}\left(u_{0}, u_{1}, v_{00}, v_{01}, w_{0}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}, w_{1}\right)
$$

If $w_{1}-w_{11}$, then (vii) $v_{00} \mid v_{01}$ implies

$$
G_{1}\left(u_{0}, u_{1}, v_{00}, v_{01}, w_{0}, w_{1}, w_{00}, w_{01}, w_{10}, w_{11}\right),
$$

and (viii) $v_{00}-v_{01}$ yields

$$
G_{2}\left(u_{0}, u_{1}, v_{00}, v_{01}, w_{0}, w_{1}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

Moreover, if $w_{1}-w_{01}$, then (ix) $v_{00} \mid v_{11}$ results in

$$
G_{1}\left(u_{0}, u_{1}, v_{00}, w_{1}, w_{0}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

and $(\mathrm{x}) v_{00}-v_{11}$ provides

$$
G_{3}\left(u_{0}, u_{1}, v_{00}, w_{1}, w_{0}, v_{11}, w_{00}, w_{01}, w_{10}, w_{11}\right)
$$

The following shows the converse direction, that is, if G contains one of G_{1}, \ldots, G_{7} as an induced subgraph, then $\mathcal{A}(G)$ has a bad 2-cycle.

We basically use Lemma 7 The clique arrangement of all graphs G_{1}, \ldots, G_{7} contains a bad 2-cycle with starters $S_{0}=\left\{x_{0}\right\}, S_{1}=\left\{x_{1}\right\}$ and terminals $T_{0}=\left\{x_{0}, x_{1}, y_{00}, y_{10}\right\}$, $T_{1}=\left\{x_{0}, x_{1}, y_{01}, y_{11}\right\}$. Moreover, there are nodes $P_{i j}=\left\{x_{i}, y_{i j}\right\}, Q_{i j}=\left\{x_{i}, y_{i j}, z_{i j}\right\}$ such that $S_{i} \rightarrow \ldots \rightarrow P_{i j} \rightarrow \ldots \rightarrow T_{j}$ and $P_{i j} \rightarrow \ldots \rightarrow Q_{i j}$ for all $i, j \in\{0,1\}$. If G contains an induced subgraph G_{1}, \ldots, G_{7}, then there is a function ϕ, that maps these nodes to some nodes of the clique arrangement $\mathcal{A}(G)$ such that $\phi\left(S_{i}\right) \rightarrow \ldots \rightarrow \phi\left(P_{i j}\right) \rightarrow \ldots \rightarrow \phi\left(T_{j}\right)$ and $\phi\left(P_{i j}\right) \rightarrow \ldots \rightarrow \phi\left(Q_{i j}\right)$ for all $i, j \in\{0,1\}$.

Assume that at least one of these four paths in $\mathcal{A}(G)$, say $\phi\left(S_{0}\right) \rightarrow \ldots \rightarrow \phi\left(T_{0}\right)$, contains a node X with $\phi\left(S_{0}\right) \cup \phi\left(S_{1}\right) \subseteq X \subseteq \phi\left(T_{0}\right) \cap \phi\left(T_{1}\right)$. If X is situated on the subpath $\phi\left(S_{0}\right) \rightarrow \ldots \rightarrow \phi\left(P_{00}\right)$, then it follows that $X \subset Q_{00}$ and, hence, $x_{1}-z_{00}$, a contradiction.

Hence, X is on the subpath $\phi\left(P_{00}\right) \rightarrow \ldots \rightarrow \phi\left(T_{0}\right)$. Here, $\phi\left(P_{00}\right)$ is a subset of $X \subseteq$ $\phi\left(T_{0}\right) \cap \phi\left(T_{1}\right)$ and thus, also a subset of $\phi\left(T_{1}\right)$. This means that $y_{00} \in \phi\left(T_{1}\right)$, which implies $y_{00}-y_{01}$ and $y_{00}-y_{11}$. Consequently, we are in the case were the induced subgraph in G is one of G_{4}, \ldots, G_{7}. The clique arrangement of all these graphs contains a sink $T_{1}^{\prime}=$ $\left\{x_{0}, x_{1}, y_{01}, y_{11}, z_{1}\right\}$ that is reached from T_{1}. In $\mathcal{A}(G)$, we have $\phi\left(T_{1}\right) \rightarrow \ldots \rightarrow \phi\left(T_{1}^{\prime}\right)$, thus, $\phi\left(P_{00}\right) \subset \phi\left(T_{1}^{\prime}\right)$, which finally means that $y_{00}-z_{1}$, a contradiction.

Hence, X does not exist and $\mathcal{A}(G)$ contains a bad 2-cycle with starters $\phi\left(S_{0}\right), \phi\left(S_{1}\right)$ and terminals $\phi\left(T_{0}\right), \phi\left(T_{1}\right)$.

The main theorem, presented in this section, and Theorem 9 lead to the following conclusion:

- Corollary 11. Let $G=(V, E)$ be a graph in \mathcal{L} with clique arrangement $\mathcal{A}(G)=(\mathcal{X}, \mathcal{E})$. The graph $\mathcal{A}(G)$ does not contain a bad 2-cycle.

Hence, leaf powers fit naturally into the hierarchy of chordal graphs, right between strongly chordal graphs, which have clique arrangements without bad k-cycles for $k \geq 3$, and ptolemaic graphs, whose clique arrangements are entirely free of cycles.

5 Conclusion and Future Directions

In this paper, we were able to indicate that leaf powers \mathcal{L} are a natural subclass of strongly chordal graphs by showing that their clique arrangements are not only free of bad k-cycles for $k \geq 3$ but also for $k=2$. Moreover, we proved that the clique arrangement of a strongly chordal graph G comprises a bad 2 -cycle, if and only if G contains at least one of G_{1}, \ldots, G_{7} as an induced subgraph. This means that, beside the forbidden induced subgraphs of strongly chordal graphs, that is, the family of suns, this finite number of graphs describe a cyclic composition of cliques that is not realizable by a k-leaf root for any $k \geq 2$.

It remains for future work to find a complete characterization of \mathcal{L} in terms of forbidden subgraphs. During our deep analysis of leaf powers we have considered a huge variety of
graphs and their clique arrangements. We have not a single example of a graph G that has a clique arrangement $\mathcal{A}(G)$ without bad k-cycles for $k \geq 2$, where a corresponding leaf root of G is unknown. Therefore, we conjecture that a strongly chordal graph G has a k-leaf root for some $k \geq 2$, if and only if $\mathcal{A}(G)$ is free of bad 2 -cycles. If this was true, a polynomial time recognition algorithm is straight found by the efficient recognition of strongly chordal graphs and the possibility to check for a finite number of induced subgraphs in polynomial time.

Answering this question implies the challenge of constructing leaf roots from bad-cyclefree clique arrangements. This turns out to be sophisticated, especially if the clique arrangement has 2-cycles that are not bad.

6 Technical Proofs

The Proof of Lemma 6

Proof. First of all, we know that $Y \nsubseteq Z$ and $Z \nsubseteq Y$ as otherwise X, Y, Z are not distinct nodes. Let \mathcal{X}_{Y} be the set of sinks reachable from Y and \mathcal{X}_{Z} be the set of sinks reachable from Z. If Y and Z are sinks themselves then $\mathcal{X}_{Y}=\{Y\}$ and $\mathcal{X}_{Z}=\{Z\}$ and trivially we set $C_{1}=Y$ and $C_{2}=Z$.

If just one of the nodes, Y or Z, is a sink, without loss of generality, $\mathcal{X}_{Y}=\{Y\}$, then Lemma 2 implies that there are sinks $A, B \in \mathcal{X}_{Z}$ such that $A \neq B$ and $Z=A \cap B$. Clearly, $A \neq Y$ and $B \neq Y$ as otherwise $Z \subseteq Y$. By Lemma 4 $A^{\prime}=A \cap Y$ and $B^{\prime}=B \cap Y$ are nodes in \mathcal{X} because both contain X. It is straight forward that $A^{\prime} \neq B^{\prime}$ and moreover, $A^{\prime} \neq Z$ and $B^{\prime} \neq Z$ as otherwise $Z \subseteq Y$. We have a 3 -cycle with starters $A^{\prime}, B^{\prime}, Z$ and terminals A, B, Y. By Theorem 5, the cycle is not bad and as $Z \nsubseteq Y$ it follows that $A^{\prime} \subseteq B$ or $B^{\prime} \subseteq A$. If $A^{\prime} \subseteq B$, then $A^{\prime} \subseteq A$ and $Z=A \cap B$ imply that $A^{\prime} \subseteq Z$. From $A^{\prime} \subseteq Y$ and $X=Y \cap Z$ we obtain $A^{\prime} \subseteq X$ and, as $X \subseteq A^{\prime}$, we have $X=A^{\prime}$. Hence, in this case $X=A \cap Z$ and we set $C_{1}=A$ and $C_{2}=Y$. In an analogous fashion we get $X=B \cap Y$, if $B^{\prime} \subseteq A$ and then we set $C_{1}=B$ and $C_{2}=Y$.

If none of the nodes Y, Z is a sink, then Lemman 2 implies that there are sinks $A \neq B \in \mathcal{X}_{Y}$ and $C \neq D \in \mathcal{X}_{Z}$ such that $Y=A \cap B$ and $Z=C \cap D$. If Y reaches one of the sinks C and D or Z reaches one of the sinks A and B, without loss of generality, Z reaches B, then $Z \subseteq B \cap C$. Notice that Z cannot reach A in this case, as otherwise $Z \subseteq Y$. By Lemma 3, Z is exactly the intersection of all cliques in \mathcal{X}_{Z}, which includes B. By definition, $Z=C \cap D$ and, hence, we also have $Z=B \cap C \cap D$. As $B \cap C \cap D \subseteq B \cap C$, we conclude that $Z=B \cap C$. The node $A^{\prime}=A \cap C$ exists by Lemma \mathbb{Z} because it contains X as a subset. Clearly, if $Y=A^{\prime}$ or $Z=A^{\prime}$ then $A^{\prime}=A \cap B \cap C$. Otherwise, we have a 3 -cycle with starters Y, Z, A^{\prime} and terminals A, B, C. By Theorem 5, the cycle is not bad and as $Y \subseteq C$ or $Z \subseteq A$ implies $Y \subseteq Z$ or $Z \subseteq Y$, we have $A^{\prime} \subseteq A \cap B \cap C$, again. Because $Y=A \cap B$ and $Z=B \cap C$, this implies that $A^{\prime} \subseteq Y$ and $A^{\prime} \subseteq Z$, and because $X=Y \cap Z$, we have $A^{\prime} \subseteq X$ and thus, $X=A^{\prime}$. Hence, $X=A \cap C$ and we set $C_{1}=A$ and $C_{2}=C$.

If neither Y reaches the sinks C or D nor Z reaches the sinks A or B, then we consider the nodes $A^{\prime}=A \cap C$ and $B^{\prime}=B \cap D$, which exist by Lemma 4, as they all contain X as a subset. Clearly, if A^{\prime} or B^{\prime} coincides with Y, then Y reaches one of the sinks C or D and analogously, A^{\prime} and B^{\prime} are not Z. Moreover, $A^{\prime}=B^{\prime}$ implies that A^{\prime} is a subset of Y and Z and, by that, a subset of X, which means that $X=A^{\prime}=A \cap C$ and that $C_{1}=A$ and $C_{2}=C$. Otherwise, as $Y \neq Z$, we get a 4 -cycle with starters $A^{\prime}, B^{\prime}, Y, Z$ and terminals A, B, C, D. Theorem 5states that the cycle is not bad and as $Y \nsubseteq C \cup D$ and $Z \nsubseteq A \cup B$, it must be true, without loss of generality, that $A^{\prime} \subseteq B$ and hence, we get that $A^{\prime} \subseteq Y$ and
that there is a 3 -cycle with starters $A^{\prime}, B^{\prime}, Z$ and terminals B, C, D. This cycle is not bad, either, and hence, either $A^{\prime} \subseteq D$ or $B^{\prime} \subseteq C$. If $A^{\prime} \subseteq D$, then $A^{\prime} \subseteq Z$, which implies $A^{\prime} \subseteq X$ and thus, $X=A^{\prime}=A \cap C$ and then $C_{1}=A$ and $C_{2}=C$.

The case $B^{\prime} \subseteq C$ implies that $B^{\prime} \subseteq Z$ and then we consider the node $C^{\prime}=A \cap D$, which exists because it contains X as a subset. If $B^{\prime}=C^{\prime}, B^{\prime}$ is contained in $X=Y \cap Z$, which means that $X=B^{\prime}=B \cap D$ and that $C_{1}=B$ and $C_{2}=D$. Otherwise, we have a 3-cycle with starters $B^{\prime}, C^{\prime}, Y$ and terminals A, B, D. Because the cycle is not bad, it is true that $B^{\prime} \subseteq A$ or $C^{\prime} \subseteq B$. If $B^{\prime} \subseteq A$, then $B^{\prime} \subseteq Y$, which implies $B^{\prime} \subseteq X$ and thus, $X=B^{\prime}=B \cap D$ and then $C_{1}=B$ and $C_{2}=D$. In the other case, C^{\prime} is contained in A and B and thus, in Y. Moreover, C^{\prime} is a subset of $B \cap D$, thus, a subset of B^{\prime}, and, consequently, contained in $C \cap D$, which means that C^{\prime} is also in Z. Together, this implies that $X=C^{\prime}=A \cap D$ and that $C_{1}=A$ and $C_{2}=D$.

The Proof of Lemma 7

Proof. We first fix a function ϕ. For that purpose notice that for every maximal clique C of H, there is at least one maximal clique C^{\prime} in G such that $C \subseteq C^{\prime}$ and we define $\phi(C)=C^{\prime}$. Notice that $C=\phi(X) \cap V$. Moreover, for every node $X \in \mathcal{X}$ that is not a maximal clique, there is the subset C_{1}, \ldots, C_{k} of maximal cliques in H that are reached in $\mathcal{A}(H)$ by a directed path from X. As $X=C_{1} \cap \ldots \cap C_{k}$, we define $\phi(X)=X^{\prime}$ for the node $X^{\prime} \in \mathcal{X}^{\prime}$ that fulfills $X^{\prime}=\phi\left(C_{1}\right) \cap \ldots \cap \phi\left(C_{k}\right)$.

The proof is completed by showing the two declared properties for all $X, Y \in \mathcal{X}$:

1. Since ϕ is a function, $X=Y$ implies $\phi(X)=\phi(Y)$. Conversely, if $\phi(X)=\phi(Y)$ but $X \neq Y$, then there are non-adjacent vertices $x \in X \backslash Y$ and $y \in Y \backslash X$, which are, by definition, both in $\phi(X)$, a contradiction.
2. By definition, there is a directed path from $\phi(X)$ to $\phi(Y)$ in $\mathcal{A}\left(G^{\prime}\right)$, if $\phi(X) \subseteq \phi(Y)$. As $X=\phi(X) \cap V$ and $Y=\phi(Y) \cap V$ this implies $X \subseteq Y$, which, by definition, means that there is a directed path from X to Y in $\mathcal{A}(G)$.
Conversely, let there be a directed path from X to Y in $\mathcal{A}(G)$, thus, let $X \subseteq Y$. This means that in $\mathcal{A}(G)$ the set C_{1}, \ldots, C_{k} of maximal cliques reached from Y is a subset of the maximal cliques C_{1}, \ldots, C_{ℓ} reached from X, hence, $k \leq \ell$. Consequently, $\phi\left(C_{1}\right) \cap$ $\ldots \cap \phi\left(C_{\ell}\right)=\phi(X) \subseteq \phi(Y)=\phi\left(C_{1}\right) \cap \ldots \cap \phi\left(C_{k}\right)$, which implies that there is a directed path from $\phi(X)$ to $\phi(Y)$ in $\mathcal{A}\left(G^{\prime}\right)$.

The Proof of Theorem 9

Proof. The proof works basically the same as in [11. Assume that at least one of the graphs G_{1}, \ldots, G_{7} is a k-leaf power of a tree T for some $k \geq 2$ and that $x_{0}^{\prime}, x_{1}^{\prime}, y_{00}^{\prime}, y_{01}^{\prime}, y_{10}^{\prime}, y_{11}^{\prime}$ are the parent nodes of the leaves $x_{0}, x_{1}, y_{00}, y_{01}, y_{10}, y_{11}$ in T.

Consider for all $i, j \in\{0,1\}$ the path $P_{i j}=x_{i}^{\prime}-\ldots-y_{i j}^{\prime}$ in T as well as, for all $i \in\{0,1\}$, the path $P_{i}=y_{0 i}^{\prime}-\ldots-y_{1 i}^{\prime}$ in T. From Lemma 8 we get that $P_{00} \cap P_{10}=\emptyset$ and $P_{00} \cap P_{11}=\emptyset$. Similarly, Lemma 8 implies that $P_{01} \cap P_{10}=\emptyset$ and $P_{01} \cap P_{11}=\emptyset$. This means that the subtree T_{0} of T given by the union $P_{00} \cup P_{01}$ is disjoint from the subtree T_{1} of T given by $P_{10} \cup P_{11}$.

As T is a tree, there is a node z situated on the path connecting the subtrees T_{0} and T_{1} such that z is on every path $x-\ldots-y$ in T that connects a node x from T_{0} and a node y from T_{1}. In particular, that also means that z is on P_{0}, if $x=y_{00}^{\prime}$ and $y=y_{10}^{\prime}$, and that z
is on P_{1}, if $x=y_{01}^{\prime}$ and $y=y_{11}^{\prime}$. Hence, $P_{0} \cap P_{1} \neq \emptyset$, as both paths contain z, which is a contradiction to Lemma 8

The Proofs of Claims in Theorem 10

The claims proved in the following are stated in a general and simple fashion, and they often use indices $i, j \in\{0,1\}$ for the occurring nodes. However, because the bad 2 -cycle is symmetric, the proofs always show the individual statements just for the case $i=j=0$ without explicit indication.

The Proof of Claim 1

Proof. As mentioned, we show the claim only for $i=j=0$.
We start by choosing an arbitrary path B_{00} from S_{0} to T_{0} that does not contain a node X with $S_{0} \cup S_{1} \subseteq X \subseteq T_{0} \cap T_{1}$, which exists by the definition of bad 2-cycles. Obviously, this implies that the node T is not on B_{00}.

Firstly, there are nodes P, P^{\prime} on the path $B_{00}=S_{0} \rightarrow \ldots \rightarrow P \rightarrow P^{\prime} \rightarrow \ldots \rightarrow T_{0}$ that are joined by an arc $P \rightarrow P^{\prime}$ such that $P \subseteq T$ and $P^{\prime} \nsubseteq T$ and $P^{\prime} \neq T_{0}$, hence, on B_{00}, the node P is the last exit to T. Clearly, we have $S_{0} \subseteq T$ and thus, if such arc does not exist, then every node on the path, except T_{0} itself, would be a subset of T. Because T is not on $B_{00}=S_{0} \rightarrow \ldots \rightarrow Q \rightarrow T_{0}$, even the predecessor Q of T_{0} reaches T by a directed path. Hence, as $T \subset T_{0}$, there is a directed path $Q \rightarrow \ldots \rightarrow T \rightarrow \ldots \rightarrow T_{0}$ and, consequently, the arc $Q \rightarrow T_{0}$ is transitive, a contradiction.

Next we show that $S_{1} \subseteq P^{\prime}$ implies also that $S_{1} \subseteq P$. This can be seen by the use of the intersection node $X=P^{\prime} \cap T$, which entirely contains S_{1} because $S_{1} \subset P^{\prime}$ and $S_{1} \subseteq T$. As $P^{\prime} \nsubseteq T$ and $X \subseteq T$, it follows that X is not equal to the node P^{\prime}. Moreover, since $P \subseteq P^{\prime}$ and $P \subseteq T$, it follows that $P \subseteq X$ and hence, there is a path $P \rightarrow \ldots \rightarrow X \rightarrow \ldots \rightarrow T$. But X cannot be a node on that path, unless $X=P$, because otherwise $P \rightarrow P^{\prime}$ would be a transitive arc. But $X=P$ implies that $B_{00}=S_{0} \rightarrow \ldots \rightarrow X=P \rightarrow \ldots \rightarrow T_{0}$ passes a node that fulfills $S_{0} \cup S_{1} \subseteq X=P \subseteq T$, which is a contradiction to the selection of the bad 2 -cycle. Hence, $S_{1} \nsubseteq P^{\prime}$ must be true.

However, P^{\prime} is not necessarily the node P_{00} we are looking for. Particularly, it may happen that no sink Q of $\mathcal{A}(G)$ fulfills $Q \cap T_{0}=P^{\prime}$. For that reason, let Q_{1}, \ldots, Q_{r} be the sinks reachable from P^{\prime} by directed paths and let $P_{1}^{\prime}=Q_{1} \cap T_{0}, \ldots, P_{r}^{\prime}=Q_{r} \cap T_{0}$. Because $P^{\prime}=P_{1}^{\prime} \cap \ldots \cap P_{r}^{\prime}$, Lemma 3 implies that, if $S_{1} \subseteq P_{i}^{\prime}$ for all $i \in\{1, \ldots, r\}$, then $S_{1} \subseteq P^{\prime}$. Hence, we can select $i \in\{1, \ldots, r\}$ such that $S_{1} \nsubseteq P_{i}^{\prime}$ and we set $P_{00}=P_{i}^{\prime}$ and $Q_{00}=Q_{i}$.

Of course, it may happen that P_{00} is not on the path B_{00}, but now we have a new path $B^{\prime}=S_{0} \rightarrow \ldots \rightarrow P^{\prime} \rightarrow \ldots \rightarrow P_{00} \rightarrow \ldots \rightarrow T_{0}$. We use B^{\prime} as a replacement for B_{00}, because it is easy to see that it does not contain a node X with $S_{0} \cup S_{1} \subseteq X \subseteq T$, too. If such a node X was on the subpath $S_{0} \rightarrow \ldots \rightarrow P_{00}$, then $S_{1} \subset P_{00}$, and, if it was on the subpath $P_{00} \rightarrow \ldots \rightarrow T_{0}$, then $P_{00} \subset T$, which both contradicts the construction of P_{00}.

Finally, as $P_{00}=Q_{00} \cap T_{0}$, it follows that $S_{1} \nsubseteq Q_{00}$, as otherwise $S_{1} \subseteq T_{0}$ implies that $S_{1} \subseteq P_{00}$, too.

The Proof of Claim 2

Proof. The case $Q_{00}=Q_{1 j^{\prime}}$ is impossible for all $j^{\prime} \in\{0,1\}$, because then $S_{1} \subseteq Q_{1 j^{\prime}}$ implies $S_{1} \subseteq Q_{00}$, which is forbidden by Claim 1. If we assume that $Q_{00}=Q_{01}$, then we get a 3 -cycle with starters P_{00}, P_{01}, S_{1} and terminals T_{0}, T_{1}, Q_{00}. Certainly, P_{00} is not contained
in T_{1} as otherwise $P_{00} \subseteq T_{0}$ implies $P_{00} \subseteq T$, which is forbidden by Claim 1 . Similarly, we get that $P_{01} \nsubseteq T_{0}$. That $S_{1} \nsubseteq Q_{00}$ is a direct consequence of Claim 1 Hence, the 3 -cycle is bad, a contradiction to Theorem 55,

The Proof of Claim 3

Proof. Let S be the node representing the intersection $P_{00} \cap P_{01}$, which exists by Lemma 4 as $S_{0} \subseteq S$. If we assume that $S_{0} \neq S$, then we have two paths $B_{00}^{\prime}=S \rightarrow \ldots \rightarrow P_{00} \rightarrow \ldots \rightarrow T_{0}$ and $B_{01}^{\prime}=S \rightarrow \ldots \rightarrow P_{01} \rightarrow \ldots \rightarrow T_{1}$ and we obtain a 2-cycle with starters S, S_{1} and terminals T_{0}, T_{1}. We show that this cycle is bad by arguing that none of $B_{00}^{\prime}, B_{01}^{\prime}, B_{10}$, and B_{11} contains a node X that fulfills $S \cup S_{1} \subseteq X \subseteq T$. Clearly, the existence of X on one of B_{10}, $B_{11}, P_{00} \rightarrow \ldots \rightarrow T_{0}$, and $P_{01} \rightarrow \ldots \rightarrow T_{1}$ contradicts to the choice of B_{00}, B_{01}, B_{10}, and B_{11}.

If X was on the path $S \rightarrow \ldots \rightarrow P_{00}$, then we would get $S_{1} \subset P_{00}$, which has been eliminated in Claim 1. Similarly, the path $S \rightarrow \ldots \rightarrow P_{01}$ does not contain X, and hence, the new 2-cycle is bad. But this contradicts to the choice of the primal bad 2-cycle, because, by $S_{0} \subset S$, we obtain $\left|S_{0}\right|+\left|S_{1}\right|<|S|+\left|S_{1}\right|$.

The Proof of Claim 4

Proof. If $Q_{00} \cap Q_{1 i^{\prime}}=\emptyset$, then clearly $Q_{00} \cap Q_{1 i^{\prime}} \subseteq T$. Otherwise, let Q be the intersection node for $Q_{00} \cap Q_{1 i^{\prime}}$, which exists by Lemma 4. We get a 3 -cycle with starters S_{0}, S_{1}, Q and terminals Q_{00}, Q_{10}, T. If $Q \nsubseteq T$ then the 3-cycle is bad, because $S_{0} \nsubseteq Q_{10}$ and $S_{1} \nsubseteq Q_{00}$ by Claim 1. This contradicts Theorem 5 .

Clearly, we have $P_{00} \cap P_{10} \subseteq Q_{00} \cap Q_{10} \subseteq T$ and $P_{00} \cap P_{11} \subseteq Q_{00} \cap Q_{11} \subseteq T$.

The Proof of Claim 5

Proof. If u_{0} does not exist, then S_{0} is a subset of $Q_{10} \cup Q_{11}$. As S_{0} cannot be entirely contained in a single set, Q_{10} or Q_{11}, we find two distinct nodes $X=S_{0} \cap Q_{10}$ and $Y=$ $S_{0} \cap Q_{11}$ by Lemma 4 The same lemma reveals the existence of a node $Z=Q_{10} \cap Q_{11}$, because Z contains at least as S_{1}.

We get a 3-cycle with starters X, Y, Z and terminals S_{0}, Q_{10}, Q_{11}. We show that this cycle is bad by the help of $S_{0}=\left(S_{0} \cap Q_{10}\right) \cup\left(S_{0} \cap Q_{11}\right)$. Firstly, X cannot be a subset of Q_{11}, because otherwise Q_{11}, which already contains $Y=S_{0} \cap Q_{11}$, contains also $S_{0} \cap Q_{10}$, which would imply that $S_{0} \subseteq Q_{11}$. Secondly and similarly, Y cannot be a subset of Q_{10}, because otherwise $S_{0} \subseteq Q_{10}$. Finally, by $S_{1} \subseteq Z$, it follows that $Z \nsubseteq S_{0}$. This bad 3-cycle contradicts Theorem [5] hence, the node u_{0} exists.

The Proof of Claim 6

Proof. As the Q-nodes represent distinct maximal cliques in G, Lemma 1 allows to select vertices $x \in Q_{00} \backslash Q_{10}$ and $y \in Q_{00} \backslash Q_{11}$ such that x is not adjacent to any vertex in $Q_{10} \backslash Q_{00}$ and y is not adjacent to any vertex in $Q_{11} \backslash Q_{00}$.

We show that at least one of x and y is not adjacent to all vertices in $\left(Q_{10} \cup Q_{11}\right) \backslash Q_{00}$. If $x=y$ we are done. Otherwise, assume that x has a neighbor $x^{\prime} \in Q_{11} \backslash Q_{00}$ and that y has a neighbor $y^{\prime} \in Q_{10} \backslash Q_{00}$. As $x \mid y^{\prime}$ and $y \mid x^{\prime}$ and $x-y$, it follows that $x^{\prime} \mid y^{\prime}$ as otherwise G contains $x-y-y^{\prime}-x^{\prime}-x$ as an induced C_{4}.

Now consider the vertex u_{1}, which is at the same time in $Q_{10} \backslash Q_{00}$ and in $Q_{11} \backslash Q_{00}$ according to Claim 5. Hence, according to the choice of x and y, we have $x \mid u_{1}$ and $y \mid u_{1}$. Moreover, as u_{1} and x^{\prime} are both in $Q_{11} \backslash Q_{00}$ and because u_{1} and y^{\prime} are both in $Q_{10} \backslash Q_{00}$,
we get $x^{\prime}-u_{1}$ and $y^{\prime}-u_{1}$, which implies that G has $x-y-y^{\prime}-u_{1}-x^{\prime}-x$ as an induced C_{5}. This means, our assumption was wrong and we let w_{00} be a vertex in $\{x, y\}$ that has no neighbors in $Q_{10} \backslash Q_{00}$ and in $Q_{11} \backslash Q_{00}$.

First of all, we have already seen that w_{00} is not adjacent to u_{1}. Therefore, w_{00} is in $Q_{00} \backslash P_{00}$, as every vertex in P_{00} is adjacent to u_{1} by $P_{00} \cup\left\{u_{1}\right\} \subseteq T_{0}$. Moreover, this means that $w_{00} \neq w_{10}$ and $w_{00} \neq w_{11}$ as both, w_{10} and w_{11}, are adjacent to u_{1}, which follows from $\left\{w_{10}, u_{1}\right\} \subseteq Q_{10}$ and $\left\{w_{11}, u_{1}\right\} \subseteq Q_{11}$. As $w_{10} \in Q_{10} \backslash Q_{00}$ and $w_{11} \in Q_{11} \backslash Q_{00}$, it follows also that w_{00} is not adjacent to w_{10} and w_{11}.

From Claim 4 we know that $Q_{00} \cap Q_{10}$ and $Q_{00} \cap Q_{11}$ are subsets of T. Because $P_{10}=$ $Q_{10} \cap T_{0}$ and $P_{11}=Q_{11} \cap T_{1}$, this means also that $Q_{00} \cap P_{10}=Q_{00} \cap Q_{10} \cap T_{0} \subseteq T$ and $Q_{00} \cap P_{11}=Q_{00} \cap Q_{11} \cap T_{1} \subseteq T$. Hence, from $P_{10}^{\prime}=P_{10} \backslash T$ and $P_{11}^{\prime}=P_{11} \backslash T$ it follows already that w_{00} is not adjacent to vertices in P_{10}^{\prime} or in P_{11}^{\prime}. It remains to show that $w_{00} \neq w_{01}$, that $w_{00} \mid w_{01}$ and that w_{00} is not adjacent to any vertex in P_{01}^{\prime}.

If $W=N\left(w_{00}\right) \cap P_{01}^{\prime}$ is an empty set, then w_{00} is not adjacent to vertices in P_{01}^{\prime}. Otherwise, if W is not empty, assume that there are vertices $x \in W$ and $y \in P_{00}^{\prime}$ such that $x \mid y$. Recall that w_{00} is adjacent to all vertices in P_{00}^{\prime} including y and not adjacent to u_{1}. Unlike w_{00}, the vertices x and y are adjacent to u_{1}, because $\left\{u_{1}, y\right\} \subseteq T_{0}$ and $\left\{u_{1}, x\right\} \subseteq T_{1}$. This means that G has $w_{00}-x-u_{1}-y-w_{00}$ as an induced C_{4}, a contradiction.

Consequently, $W \cup P_{00}^{\prime}$ is a clique in G and there is a maximal clique of G represented by a sink T^{\prime} of $\mathcal{A}(G)$ such that $\left(W \cup P_{00}^{\prime} \cup\left\{u_{1}\right\}\right) \subseteq T^{\prime}$. Because $T=T_{0} \cap T_{1}$, it follows from Lemma 6 that there are distinct sinks T_{0}^{\prime}, reachable from T_{0}, and T_{1}^{\prime}, reachable from T_{1}, such that $T=T_{0}^{\prime} \cap T_{1}^{\prime}$. Clearly, $T_{0}^{\prime} \neq T_{1}^{\prime}$ and because $u_{1} \in T_{0}^{\prime}$ and $u_{1} \in T_{1}^{\prime}$, we have $T^{\prime} \neq T_{0}^{\prime}$ and $T^{\prime} \neq T_{1}^{\prime}$. We let $X=T^{\prime} \cap T_{0}^{\prime}$ and $Y=T^{\prime} \cap T_{1}^{\prime}$ and obtain a 3-cycle with starters X, Y, T and terminals $T^{\prime}, T_{0}^{\prime}, T_{1}^{\prime}$. By construction, there are vertices $x \in P_{00}^{\prime}$ and $y \in P_{01}^{\prime}$ that are also contained in T^{\prime}. Because $P_{00}^{\prime} \subseteq T_{0}^{\prime}$ and $P_{01}^{\prime} \subseteq T_{1}^{\prime}$, it follows that $x \in T_{0}^{\prime}$ and $y \in T_{1}^{\prime}$ and this in turn means that $x \in X$ and $y \in Y$. Consequently, $X \nsubseteq T_{1}^{\prime}$, as otherwise $x \in T_{0}^{\prime} \cap T_{1}^{\prime}=T$, which is a contradiction to the construction $P_{00}^{\prime}=P_{00} \backslash T$. Analogously, we have $Y \nsubseteq T_{0}^{\prime}$. Finally, $T \subseteq T^{\prime}$ implies that all vertices in T, including u_{1}, are adjacent to w_{00}, which is impossible. This means that the 3-cycle is bad and, hence, W has to be empty and w_{00} is not adjacent to any vertex in P_{00}^{\prime}.

As w_{01} is adjacent to all vertices in P_{01}^{\prime}, it follows that $w_{00} \neq w_{01}$. Assume that w_{00} and w_{01} are adjacent and select any vertices $x \in P_{00}^{\prime}$ and $y \in P_{01}^{\prime}$. If $x-y$, then we obtain $w_{00}-x-y-w_{01}-w_{00}$ as an induced C_{4} in G, and otherwise, we get $w_{00}-x-u_{1}-y-w_{01}-w_{00}$ as an induced C_{5} in G. Hence, $w_{00}-w_{01}$ cannot be true.

The Proof of Claim 7

Proof. Let R_{00} be a sink of $\mathcal{A}(G)$ that represents one of the maximal cliques of G with $C_{00} \subseteq$ R_{00}. Consider the node T_{1}^{\prime} that results from the intersection $R_{00} \cap T_{1}$, which exists by Lemma 4. as both, R_{00} and T_{1}, contain $P_{01} \cup P_{11}$. If $T_{1}^{\prime} \subset T_{1}$, we get a new 2 -cycle with starters S_{0}, S_{1} and terminals T_{0}, T_{1}^{\prime}. Assume that there is a node X with $S_{0} \cup S_{1} \subseteq X \subseteq T_{0} \cap T_{1}^{\prime}$ on one of $B_{00}, B_{10}, B_{01}^{\prime}=S_{0} \rightarrow \ldots \rightarrow P_{01} \rightarrow \ldots \rightarrow T_{1}^{\prime}$, and $B_{11}^{\prime}=S_{1} \rightarrow \ldots \rightarrow P_{11} \rightarrow \ldots \rightarrow T_{1}^{\prime}$. If X is neither on the path $P_{01} \rightarrow \ldots \rightarrow T_{1}^{\prime}$ nor on the path $P_{11} \rightarrow \ldots \rightarrow T_{1}^{\prime}$, then X is located on one of the paths B_{00}, B_{01}, B_{10}, and B_{11}, a contradiction to the choice of these paths. If $P_{01} \rightarrow \ldots \rightarrow X \rightarrow \ldots \rightarrow T_{1}^{\prime}$, then it follows that $P_{01} \subseteq X \subseteq T_{0} \cap T_{1}^{\prime} \subset T$, which is impossible due to the construction of P_{01}. The same holds if X is on the path $P_{11} \rightarrow \ldots \rightarrow T_{1}^{\prime}$. Hence, the new 2 -cycle is bad. This is a contradiction to the choice of the primal cycle, because, by $T_{1}^{\prime} \subset T_{1}$, we have $\left|T_{0}\right|+\left|T_{1}^{\prime}\right|<\left|T_{0}\right|+\left|T_{1}\right|$. Consequently, T_{1}^{\prime} equals T_{1}, and thus, $T_{1} \subset R_{00}$, which means that T_{1} is not a sink in $\mathcal{A}(G)$.

The Proof of Claim 8

Proof. Lemma 6 implies the existence of two distinct sinks T_{0}^{\prime}, reachable from T_{0}, and T_{1}^{\prime}, reachable from T_{1}, such that $T_{0}^{\prime} \cap T_{1}^{\prime}=t$. Because C_{00} is a clique, Claim 7 implies that T_{1} is not a sink, hence, $T_{1}^{\prime} \neq T_{1}$. From Lemma 1 it follows that $T_{1}^{\prime} \backslash T_{0}^{\prime}$ contains at least one vertex w_{1} that is not adjacent to any vertex in $T_{0}^{\prime} \backslash T_{1}^{\prime}$.

As C_{00} is a clique, all vertices in P_{01} and in P_{11} are adjacent to all vertices in P_{00}. Consequently, w_{1} is not in $P_{01} \cup P_{11}$. If w_{0} exists, then it can neither be the same vertex as w_{1} nor be adjacent to w_{1}, because $w_{0} \in T_{0}^{\prime} \backslash T_{1}^{\prime}$. Clearly, by Claim 6, w_{1} is not one of the vertices w_{00}, w_{10}, because, unlike w_{1}, they are adjacent to vertices in $T_{0} \backslash T$. Moreover, Claim 6 implies that w_{1} is not w_{01}, because, unlike w_{01}, the vertex w_{1} is adjacent to all vertices in P_{11}^{\prime}. Similarly w_{1} is not w_{11}.

It remains to show that w_{1} is not adjacent to w_{00} and w_{10} and adjacent to at most one vertex w_{10} or w_{11}. If $w_{1}-w_{00}$, then we can select any vertex $x \in P_{01}^{\prime}$ and get $w_{1}-u_{1}-x-w_{00}-w_{1}$ as an induced C_{4} in G. Analogously, if $w_{1}-w_{10}$, then we select $x \in P_{10}^{\prime}$ to find $w_{1}-u_{0}-x-w_{10}-w_{1}$ as induced C_{4} in G. Finally, if w_{1} is adjacent to w_{01} and w_{11}, then we select $x \in P_{00}^{\prime}$ and get an induced 3 -sun in G with central clique u_{0}, u_{1}, w_{1} and independent set x, w_{11}, w_{01}.

[^0] Mathematics (1993), 43, 13-26.
2 A. Brandstädt, C. Hundt. Ptolemaic Graphs and Interval Graphs are Leaf Powers. LATIN 2008, LNCS 4957, 479-491.
3 A. Brandstädt, C. Hundt, F. Mancini and P. Wagner. Rooted Directed Path Graphs are Leaf Powers. Discrete Mathematics (2009), 310(4), 897-910.
4 A. Brandstädt and V.B. Le. Structure and Linear Time Recognition of 3-Leaf Powers. Information Processing Letters (2006), 98, 133-138.
5 A. Brandstädt and V.B. Le. Simplicial Powers. COCOA 2008, LNCS 5165, 160-170.
6 A. Brandstädt, V.B. Le and D. Rautenbach. Distance-hereditary 5-Leaf Powers. Discrete Mathematics (2009), 309, 3843-3852.
7 A. Brandstädt, V.B. Le and J.P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999).
8 A. Brandstädt, V.B. Le and R. Sritharan. Structure and Linear Time Recognition of 4-Leaf Powers. ACM Transactions on Algorithms (2008), 5(1).
9 A. Brandstädt and P. Wagner. On (k, ℓ)-Leaf Powers. MFCS 2007, LNCS 4708, 525-535.
10 A. Brandstädt and P. Wagner. On k - versus $(k+1)$-Leaf Powers. COCOA 2008, LNCS 5165, 171-179.
11 M.W. Broin and T.J. Lowe. A Dynamic Programming Algorithm for Covering Problems with (Greedy) Totally Balanced Constraint Matrices. SIAM Journal on Algebraic Discrete Methods (1986), 7(3), 348-357.
12 M.-S. Chang and T. Ko. The 3-Steiner Root Problem. WG 2007, LNCS 4769, 109-120.
13 M. Dom, J. Guo, F. Hüffner and R. Niedermeier. Error Compensation in Leaf Root Problems. Algorithmica (2006), 44(4), 363-381.
14 M. Dom, J. Guo, F. Hüffner and R. Niedermeier. Extending the Tractability Border for Closest Leaf Powers. WG 2005, LNCS 3787, 397-408.
15 M. Farber. Characterizations of Strongly Chordal Graphs. Discrete Mathematics (1983), 43, 173-189.

16 F. Gavril. A Recognition Algorithm for the Intersection Graphs of Directed Paths in Directed Trees. Discrete Mathematics (1974), 13(3), 237-249.
17 E. Howorka. A Characterization of Ptolemaic Graphs. Journal of Graph Theory (1981), 5, 323-331.
18 R. Nevries and C. Rosenke. Characterizing and Computing the Structure of Clique Intersections in Strongly Chordal Graphs. WG 2013, to appear.
19 N. Nishimura, P. Ragde and D.M. Thilikos. On Graph Powers for Leaf Labeled Trees. Journal of Algorithms (2002), 42(1), 69-108.
20 D. Rautenbach. Some Remarks about Leaf Roots. Discrete Mathematics (2006), 306(13), 1456-1461.
21 R. Uehara and Y. Uno. Laminar Structure of Ptolemaic Graphs and its Applications. ISAAC 2005, LNCS 3827, 186-195.

[^0]: - References

 1 E. Bibelnieks and P.M. Dearing. Neighborhood Subtree Tolerance Graphs. Discrete Applied

