On the choosability of claw-free perfect graphs

Sylvain Gravier* Frédéric Maffray ${ }^{\dagger} \quad$ Lucas Pastor ${ }^{\ddagger}$

August 7, 2018

Abstract

It has been conjectured that for every claw-free graph G the choice number of G is equal to its chromatic number. We focus on the special case of this conjecture where G is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most 4.

1 Introduction

We consider finite, undirected graphs, without loops. Given a graph G and an integer k, a k-coloring of the vertices of G is a mapping $c: V(G) \rightarrow\{1,2, \ldots, k\}$ for which every pair of adjacent vertices x, y satisfies $c(x) \neq c(y)$. A coloring is a k-coloring for any k. The graph G is called k-colorable if it admits a k-coloring. The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable.

The list-coloring variant of the coloring problem, introduced by Erdős, Rubin and Taylor [4] and by Vizing [9], is as follows. Assume that each vertex v has a list $L(v)$ of prescribed colors; then we want to find a coloring c such that $c(v) \in L(v)$ for all $v \in V(G)$. When such a coloring exists we say that the graph G is L-colorable and that c is an L-coloring of G. Given an integer k, a graph G is k-choosable if it is L-colorable for every assignment L that satisfies $|L(v)|=k$ for all $v \in V(G)$ (equivalently, if it is L-colorable for every assignment L that satisfies $|L(v)|=k$ for all $v \in V(G))$. The choice number or list-chromatic number $\operatorname{ch}(G)$ of G is the smallest k such that G is k-choosable. It is easy to see that every k-choosable graph G is k-colorable (consider the assignment $L(v)=\{1,2, \ldots, k\}$ for all $v \in V(G))$, and so $\chi(G) \leq \operatorname{ch}(G)$ holds for every graph. There are graphs for which the difference between $\operatorname{ch}(G)$ and $\chi(G)$ is arbitrarily large. (For example, it is easy to see that the choice number of the complete bipartite graph $K_{p, p^{p}}$ is $p+1$.)

The above notions can be extended to the problem of coloring the edges of a graph. The least number of colors necessary to color all edges of a graph in such a way that no two adjacent edges receive the same color is its chromatic index

[^0]$\chi^{\prime}(G)$. The least k such that G is L^{\prime}-edge-colorable for any assignment L^{\prime} of colors to the edges of G with $\left|L^{\prime}(e)\right|=k$ for all $e \in E$ is called the choice index or list-chromatic index of G. Vizing (see [9), proposed the following conjecture:

Conjecture 1.1. Every graph G satisfies $c h^{\prime}(G)=\chi^{\prime}(G)$.
The special case of this conjecture dealing with list-coloring the edges of a complete bipartite graph was known as the Dinitz conjecture, as it was equivalent to a problem on Latin squares posed by Jeffrey Dinitz. Galvin [5] established the following more general result.

Theorem 1.2 (Galvin [5). Every bipartite graph G satisfies $c h^{\prime}(G)=\chi^{\prime}(G)$.
The problem of edge-coloring can be reduced to a special instance of the problem of vertex-coloring via the line-graph. Given a graph H, the line-graph $\mathcal{L}(H)$ of H is the graph whose vertices are the edges of H and whose edges are the pairs of adjacent edges of H. Conversely, H is called the root graph of $\mathcal{L}(H)$. It is clear that $\chi(\mathcal{L}(H))=\chi^{\prime}(H)$ and $\operatorname{ch}(\mathcal{L}(H))=c h^{\prime}(H)$.

In a graph G, we say that a vertex v is complete to a set $S \subseteq V(G)$ when v is adjacent to every vertex in S, and anticomplete to S when v has no neighbor in S. Given two sets $S, T \subseteq V(G)$ we say that S is complete to T is every vertex in S is adjacent to every vertex in T, and anticomplete to T when no vertex in S is adjacent to any vertex in T. The neighborhood of a vertex v is denoted by $N_{G}(v)$ (and the subscript G may be dropped when there is no ambiguity). The complement of graph G is denoted by \bar{G}.

A graph is cobipartite if its complement is bipartite, in other words if its vertex-set can be partitioned into at most two cliques. We let P_{n}, C_{n} and K_{n} respectively denote the path, cycle and complete graph on n vertices.

Given any graph F, a graph G is F-free if no induced subgraph of G is isomorphic to F. The claw is the graph with four vertices a, b, c, d and edges $a b, a c, a d$; vertex a is called the center of the claw.

A graph G is perfect if every induced subgraph H of G satisfies $\chi(H)=\omega(H)$. A Berge graph is any graph that does not contain as an induced subgraph an odd cycle of length at least five or the complement of an odd cycle of length at least five. Chudnovsky, Robertson, Seymour, Thomas solved the long-standing and famous problem known as the Strong Perfect Graph Conjecture by proving the following theorem.

Theorem 1.3 (3). A graph G is perfect if and only if it is Berge.
The special case of the Strong Perfect Graph Conjecture concerning claw-free graphs had been resolved much earlier by Parthasarathy and Ravindra.

Theorem 1.4 (Parthasarathy and Ravindra [12]). Every claw-free Berge graph G is perfect.

Here we are interested in a restricted version of a question posed by two of us [6, 7], asking whether it is true that every claw-free graph G satisfies $\operatorname{ch}(G)=\chi(G)$.

Conjecture 1.5. Every claw-free perfect graph G satisfies $\operatorname{ch}(G)=\chi(G)$.

This conjecture was proved in [8] for every claw-free perfect graph G with $\omega(G) \leq 3$. Here we will prove it for the case $\omega(G) \leq 4$. Our main result is the following.

Theorem 1.6. Let G be a claw-free perfect graph with $\omega(G) \leq 4$. Then $\operatorname{ch}(G)=$ $\chi(G)$.

Our proof is based on a decomposition theorem for claw-free perfect graphs due to Chvátal and Sbihi [2]. They proved that every claw-free perfect graph either admits a clique cutset or belongs to two specific classes of graphs, which we defined precisely below.

Definition (Clique cutset). A clique cutset in a graph G is a clique C of G such that $G \backslash C$ is disconnected. A minimal clique cutset is a clique cutset that does not contain another clique cutset.

If C is a minimal clique cutset in a graph G and A_{1}, \ldots, A_{k} are the vertexsets of the components of $G \backslash C$, we consider that G is decomposed into the collection of induced subgraphs $G\left[A_{i} \cup C\right]$ for $i=1, \ldots, k$. These subgraphs themselves may admit clique cutsets, so the decomposition (via minimal clique cutsets) can be applied further. This decomposition can be represented by a tree, where each non-leaf node corresponds to an induced subgraph G^{\prime} of G and a minimal clique cutset C^{\prime} of G^{\prime}, and the children of the node are the induced subgraphs into which G^{\prime} is decomposed along C^{\prime}. The leaves of T are indecomposable subgraphs of G (subgraphs that have no clique cutset), which we call atoms. (This tree may not be unique, depending on the choice of a clique cutset at each node.) Whitesides [15] and Tarjan [14] proved that for every graph G on n vertices every clique-cutset decomposition tree has at most n leaves and that such a decomposition can be obtained in polynomial time $O\left(n^{3}\right)$. A nice feature is that every graph G admits an extremal clique cutset, that is, a minimal clique cutset C such that there is a component H of $G \backslash C$ such that $G[V(H) \cup C]$ is an atom.

Definition (Elementary graph [2]). A graph is elementary if its edges can be colored with two colors (one color on each edge) in such a way that every induced two-edge path has its two edges colored differently.

Definition (Peculiar graph [2]). A graph G is peculiar if $V(G)$ can be partitioned into nine sets $A_{i}, B_{i}, Q_{i}(i=1,2,3)$ that satisfy the following properties for each i, where subsbcripts are understood modulo 3 :

- Each of the nine sets is non-empty and induces a clique.
- A_{i} is complete to $B_{i} \cup A_{i+1} \cup A_{i+2} \cup B_{i+2}$ and not complete to B_{i+1}.
- B_{i} is complete to $A_{i} \cup B_{i+1} \cup B_{i+2} \cup A_{i+1}$ and not complete to A_{i+2}.
- Q_{i} is complete to $A_{i+1} \cup B_{i+1} \cup A_{i+2} \cup B_{i+2}$ and anticomplete to $A_{i} \cup B_{i} \cup$ $Q_{i+1} \cup Q_{i+2}$.

We say that $\left(A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}, Q_{1}, Q_{2}, Q_{3}\right)$ is a peculiar partition of G.
Theorem 1.7 (Chvátal and Sbihi [2]). Every claw-free perfect graph either has a clique cutset or is a peculiar graph or an elementary graph.

The structure of peculiar graphs is clear from their definition. Concerning elementary graphs, their structure was elucidated by Maffray and Reed [11] as follows. Let us say that an edge is flat if it is not contained in a triangle.

Definition (Flat edge augmentation). Let xy be a flat edge in a graph G, and let A be a cobipartite graph such that $V(A)$ is disjoint from $V(G)$ and $V(A)$ can be partitioned into two cliques X, Y. We obtain a new graph G^{\prime} by removing x and y from G and adding all edges between X and $N_{G}(x) \backslash\{y\}$ and all edges between Y and $N_{G}(y) \backslash\{x\}$. This operation is called augmenting the flat edge $x y$ with the cobipartite graph A. In G^{\prime} the pair (X, Y) is called the augment.

When $x_{1} y_{1}, \ldots, x_{k} y_{k}$ are pairwise non-adjacent flat edges in a graph G, and A_{1}, \ldots, A_{k} are pairwise vertex-disjoint cobipartite graphs, also vertex-disjoint from G, one can augment each edge $x_{i} y_{i}$ with the graph A_{i}. Clearly the result is the same whatever the order in which the k operations are performed. We say that the resulting graph is an augmentation of G.

Theorem 1.8 (Maffray and Reed [11). A graph G is elementary if and only if it is an augmentation of the line-graph H of a bipartite multigraph B. Moreover we may assume that each augment A_{i} satisfies the following:

- There is at least one pair of non-adjacent vertices in A_{i},
- The bipartite graph whose vertex-set is $X_{i} \cup Y_{i}$ and whose edges are the edges of A_{i} with one end in X_{i} and one in Y_{i} is connected (and consequently both $\left.\left|X_{i}\right|,\left|Y_{i}\right| \geq 2\right)$.

In a directed graph D, for every vertex v we let $d^{+}(v)$ denote the number of vertices w such that $v w$ is an arc of D.

Theorem 1.9 (Galvin [5). Let G be the line-graph of a bipartite graph B, where $V(B)$ is partitioned into two stable set X, Y. Let f be an $\omega(G)$-coloring of the vertices of G, with colors $1,2, \ldots, \omega(G)$. Let D be the directed graph obtained from G by directing every edge $u v$ as follows, assuming that $f(u)<f(v)$: when the common end of edges u, v in B is in X, then give the orientation $u \rightarrow v$, and when it is in Y give the orientation $u \leftarrow v$. Assume that L is a list assignment on $V(G)$ such that every vertex v of G satisfies $|L(v)| \geq d_{D}^{+}(v)+1$. Then G is L-colorable.

Let G be a graph and let L be a list assignment on $V(G)$. For every set $S \subseteq V(G)$ we set $L(S)=\bigcup_{x \in S} L(x)$. If f is a coloring of G, we set $f(S)=$ $\{f(x) \mid x \in S\}$. If H is an induced subgraph of G, we may also write $L(H)$ and $f(H)$ instead of $L(V(H))$ and $f(V(H))$ respectively.

For the sake of completeness we recall the classical theorems of Kőnig and Hall. Let X_{1}, \ldots, X_{k} be a family of sets. A system of distinct representatives for the family is a subset $\left\{x_{1}, \ldots, x_{k}\right\}$ of k distinct elements of $X_{1} \cup \cdots \cup X_{k}$ such that $x_{i} \in X_{i}$ for all $i=1, \ldots, k$. Note that if G is a graph and L is a list assignment on $V(G)$, and the family $\{L(v) \mid v \in V(G)\}$ admits a system of distinct representatives, then this is an L-coloring of G.

Theorem 1.10 (Hall's theorem [10, 13]). A family \mathcal{F} of k sets has a system of distinct representatives if and only if, for all $\ell \in\{1, \ldots, k\}$, the union of any ℓ members of \mathcal{F} has size at least ℓ.

A matching in a graph G is a set of pairwise non-incident edges.
Theorem 1.11 (Kőnig's theorem [13]). In a bipartite graph on n vertices, let μ be the size of a maximum matching and α be the size of a maximum stable set. Then $\mu+\alpha=n$.

2 Peculiar graphs

Lemma 2.1. Let G be a connected claw-free graph that contains a peculiar subgraph, and assume that G is also C_{5}-free. Then G is peculiar.

Proof. Let H be a peculiar subgraph of G that is maximal. If $H=G$ we are done. So let us assume that $H \neq G$. Since G is connected there is a vertex x of $V(G) \backslash V(H)$ that has a neighbor in H. Let $A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}, Q_{1}, Q_{2}, Q_{3}$ be nine cliques that form a partition of $V(H)$ as in the definition of a peculiar graph. For $i=1,2,3$ we pick a pair of non-adjacent vertices $a_{i} \in A_{i}$ and $b_{i+1} \in B_{i+1}$, and we pick any $q_{i} \in Q_{i}$. (All subscripts are modulo 3.)

If x has no neighbor in $Q_{1} \cup Q_{2} \cup Q_{3}$, then it has a neighbor a in $A_{i} \cup B_{i}$ for some i; but then $\left\{a, x, q_{i+1}, q_{i+2}\right\}$ induces a claw. Therefore x has a neighbor in $Q_{1} \cup Q_{2} \cup Q_{3}$.

Suppose that x has a neighbor k in Q_{1} and none in $Q_{2} \cup Q_{3}$. Then x has no neighbor z in $A_{1} \cup B_{1}$, for otherwise $\left\{z, x, q_{2}, q_{3}\right\}$ induces a claw. Also x is adjacent to one of a_{2}, b_{3}, for otherwise $\left\{x, k, a_{2}, b_{3}\right\}$ induces a claw; up to symmetry we assume that x is adjacent to a_{2}. Then x is adjacent to every vertex $a \in A_{3}$, for otherwise $\left\{a_{2}, q_{3}, a, x\right\}$ induces a claw; and to every vertex $y \in A_{2} \cup B_{2} \cup Q_{1}$, for otherwise $\left\{a_{3}, y, x, q_{2}\right\}$ induces a claw; and to every vertex $b \in B_{3}$, for otherwise $\left\{b_{2}, b, q_{3}, x\right\}$ induces a claw. Hence x is complete to $A_{2} \cup B_{2} \cup A_{3} \cup B_{3} \cup Q_{1}$ and anticomplete to $A_{1} \cup B_{1} \cup Q_{2} \cup Q_{3}$. So $V(H) \cup\{x\}$ induces a peculiar subgraph of G, because x can be added to Q_{1}, a contradiction to the choice of H.

Therefore we may assume up to symmetry that x has a neighbor $k \in Q_{1}$ and a neighbor $k^{\prime} \in Q_{2}$. Note that x has no neighbor $k^{\prime \prime} \in Q_{3}$, for otherwise $\left\{x, k, k^{\prime}, k^{\prime \prime}\right\}$ induces a claw.

Suppose that x has a non-neighbor $a \in A_{1}$. Then x is adjacent to every vertex $u \in A_{2}$, for otherwise $\left\{x, k, u, a, k^{\prime}\right\}$ induces a C_{5}; and then to every vertex $v \in B_{2}$, for otherwise either $\left\{a_{2}, a, x, v\right\}$ induces a claw (if $a v \notin E(G)$) or $\left\{x, k, v, a, k^{\prime}\right\}$ induces a C_{5} (if $a v \in E(G)$); and then to every vertex $w \in$ $A_{3} \cup B_{3} \cup Q_{1}$, for otherwise $\left\{b_{2}, x, w, q_{3}\right\}$ induces a claw. Then a is adjacent to every vertex $b \in B_{2}$, for otherwise $\left\{x, k^{\prime}, a, q_{3}, b\right\}$ induces a C_{5}; and by the same argument the set $A_{1} \backslash N(x)$ is complete to B_{2}. It follows that $a_{1} \in N(x)$ since a_{1} is not complete to B_{2}. Then x is adjacent to every vertex $q \in Q_{2}$, for otherwise $\left\{a_{1}, x, q_{3}, q\right\}$ induces a claw. But now we observe that $V(H) \cup\{x\}$ induces a larger peculiar subgraph of G, because x can be added to A_{3} and the vertices of $A_{1} \backslash N(x)$ can be moved to B_{1}.

Therefore we may assume that x is complete to A_{1}, and, similarly, to B_{2}. Then x is adjacent to every vertex u in $Q_{2} \cup B_{3}$, for otherwise $\left\{a_{1}, x, u, q_{3}\right\}$ induces a claw, and similarly x is complete to $Q_{1} \cup A_{3}$. It cannot be that x has both a non-neighbor $a^{\prime} \in A_{2}$ and a non-neighbor $b^{\prime} \in B_{1}$, for otherwise $\left\{x, k, a^{\prime}, b^{\prime}, k^{\prime}\right\}$ induces a C_{5}. So, up to symmetry, x is complete to A_{2}. But now
$V(H) \cup\{x\}$ induces a larger peculiar subgraph of G, because x can be added to A_{3}. This completes the proof of the lemma.

We observe that (up to isomorphism) there is a unique peculiar graph G with $\omega(G)=4$. Indeed if G is such a graph, with the same notation as in the definition of a peculiar graph, then for each i the set $Q_{i} \cup A_{i+1} \cup B_{i+1} \cup A_{i+2}$ is a clique, so, since G has no clique of size 5 , the four sets $Q_{i}, A_{i+1}, B_{i+1}, A_{i+2}$ have size 1; and so the nine sets $A_{i}, B_{i}, Q_{i}(i=1,2,3)$ all have size 1 . Hence G is the unique peculiar graph on nine vertices.

Lemma 2.2. Let G be a peculiar graph with $\omega(G)=4$. Then G is 4-choosable.
Proof. Let $\left(A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}, Q_{1}, Q_{2}, Q_{3}\right)$ be a peculiar partition of G. As observed above, we have $\left|A_{i}\right|=\left|B_{i}\right|=\left|Q_{i}\right|=1$ for all $i=1,2,3$. Hence let $A_{i}=\left\{a_{i}\right\}, B_{i}=\left\{b_{i}\right\}$ and $Q_{i}=\left\{q_{i}\right\}$, for all $i=1,2,3$. Recall that a_{i} is not adjacent to b_{i+1}, for each i. Let $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$.

Let L be a list assignment that satisfies $|L(v)|=4$ for all $v \in V(G)$. Let us prove that G is L-colorable.

First suppose that for some $i \in\{1,2,3\}$ we have $L\left(a_{i}\right) \cap L\left(b_{i+1}\right) \neq \emptyset$, say for $i=1$. Pick any $c \in L\left(a_{1}\right) \cap L\left(b_{2}\right)$. Let $G^{\prime}=G \backslash\left\{a_{1}, b_{2}\right\}$ and let $L^{\prime}(x)=$ $L(x) \backslash\{c\}$ for all $x \in V\left(G^{\prime}\right)$. Clearly, G^{\prime} is a claw-free perfect graph and $\omega\left(G^{\prime}\right)=3$. Moreover, G^{\prime} is elementary. To see this, define an egde coloring of G^{\prime} by coloring blue the edges in $\left\{q_{3} b_{1}, q_{3} a_{2}, b_{1} a_{2}, b_{3} a_{3}, q_{2} a_{3}, b_{3} q_{1}\right\}$ and red the edges in $\left\{q_{2} b_{1}, q_{2} b_{3}, b_{3} b_{1}, q_{1} a_{2}, q_{1} a_{3}, a_{2} a_{3}\right\}$; it is a routine matter to check that this edge coloring is an elementary coloring. By [8], G^{\prime} is 3 -choosable, so it admits an L^{\prime}-coloring. We can extend this coloring to a_{1} and b_{2} by assigning color c to them. Therefore we may assume that:

$$
\begin{equation*}
L\left(a_{i}\right) \cap L\left(b_{i+1}\right)=\emptyset \text { for all } i=1,2,3 \tag{1}
\end{equation*}
$$

Now suppose that there are vertices $u, v \in Q$ such that $L(u) \cap L(v) \neq \emptyset$. Let w be the unique vertex in $Q \backslash\{u, v\}$. Pick any $c \in L(u) \cap L(v)$. Let $G^{\prime}=G \backslash\{u, v\}$. Let $L^{\prime}(x)=L(x) \backslash\{c\}$ for all $x \in V\left(G^{\prime}\right) \backslash\{w\}$, and let $L^{\prime}(w)=L(w)$. We claim that the family $\left\{L^{\prime}(x) \mid x \in V\left(G^{\prime}\right)\right\}$ admits a system of distinct representatives. Suppose the contrary. By Hall's theorem, there is a set $S \subseteq V\left(G^{\prime}\right)$ such that $\left|L^{\prime}(S)\right|<|S|$. Since $\left|L^{\prime}(x)\right| \geq 3$ for all $x \in V\left(G^{\prime}\right)$, we have $\left|L^{\prime}(S)\right| \geq 3$, so $|S| \geq 4$; this implies that either (a) $S \supseteq\left\{a_{i}, b_{i+1}\right\}$ for some $i \in\{1,2,3\}$ or (b) S contains w. In case (a), (11) implies that c belongs to at most one of $L\left(a_{i}\right)$ and $L\left(b_{i+1}\right)$, and so $\left|L^{\prime}(S)\right| \geq\left|L^{\prime}\left(a_{i}\right) \cup L^{\prime}\left(b_{i+1}\right)\right| \geq 7$, so $|S| \geq 8$, which is impossible because $\left|V\left(G^{\prime}\right)\right|=7$. In case (b), since $\left|L^{\prime}(w)\right|=4$, we have $\left|L^{\prime}(S)\right| \geq 4$, so $|S| \geq 5$, which implies that S satisfies (a) again, a contradiction. Thus the family $\left\{L^{\prime}(x) \mid x \in V\left(G^{\prime}\right)\right\}$ admits a system of distinct representatives, which is an L^{\prime}-coloring of G^{\prime}. We can extend this coloring to u and v by assigning color c to them. Therefore we may assume that

$$
\begin{equation*}
L(u) \cap L(v)=\emptyset \text { for all } u, v \in Q \tag{2}
\end{equation*}
$$

We claim that the family $\{L(x) \mid x \in V(G)\}$ admits a system of distinct representatives. Suppose the contrary. By Hall's theorem, there is a set $T \subseteq$ $V(G)$ such that $|L(T)|<|T|$. Since $|L(x)|=4$ for all $x \in V(G)$, we have $|L(T)| \geq 4$, so $|T| \geq 5$; this implies that either (a) $T \supseteq\left\{a_{i}, b_{i+1}\right\}$ for some $i \in\{1,2,3\}$ or (b) T contains two vertices from Q. In either case, (11) or (2)
implies that $|L(T)| \geq 8$, so $|T| \geq 9$, that is, $T=V(G)$. But then $T \supset Q$, so (22) implies that $|L(T)| \geq 12$ and $|T| \geq 13$, which is impossible. Thus the family $\{L(x) \mid x \in V(G)\}$ admits a system of distinct representatives, which is an L-coloring of G.

3 Cobipartite graphs

In this section we analyze the list-colorability of certain cobipartite graphs with certain list assignments.

Lemma 3.1. Let H be a cobipartite graph, where $V(H)$ is partitioned into two cliques X and Y. Assume that $|X| \leq|Y|$ and that there are $|X|$ non-edges between X and Y and they form a matching in \bar{H}. Let L be a list assignment on $V(H)$ such that $|L(x)| \geq|X|$ for all $x \in X$ and $|L(y)| \geq|Y|$ for all $y \in Y$. Then H is L-colorable.

Proof. Let $X=\left\{x_{1}, \ldots, x_{p}\right\}$, and let y_{1}, \ldots, y_{p} be vertices of Y such that $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{p}, y_{p}\right\}$ are the non-edges of H. The hypothesis implies that y_{1}, \ldots, y_{p} are pairwise distinct. Since a clique in H can contain at most one of x_{i}, y_{i} for each $i=1, \ldots, p$, we have $\omega(H)=|Y|$.

We proceed by induction on $|X|$. If $|X|=0$, then H is a clique with $|L(v)|=|V(H)|$ for all $v \in V(H)$; so H is L-colorable by Hall's theorem. Now suppose that $|X|>0$. If the family $\{L(v) \mid v \in V(H)\}$ admits a system of distinct representatives, then this is an L-coloring. So suppose the contrary. By Hall's theorem there is a set $T \subseteq V(H)$ such that $|L(T)|<|T|$. Then $|T|>|X|$, so T contains a vertex y from Y, and so $|T|>|L(y)| \geq|Y|$. Since $\omega(H)=|Y|$, it follows that T is not a clique. So T contains non-adjacent vertices x, y with $x \in X$ and $y \in Y$. We have $|L(x) \cup L(y)| \leq|L(T)|<|T| \leq|X|+|Y|$, which implies $L(x) \cap L(y) \neq \emptyset$. Pick a color $c \in L(x) \cap L(y)$. Set $L^{\prime}(w)=L(w) \backslash\{c\}$ for all $w \in V(H) \backslash\{x, y\}$. Let $X^{\prime}=X \backslash\{x\}, Y^{\prime}=Y \backslash\{y\}$, and $H^{\prime}=H \backslash\{x, y\}$. Clearly every vertex $x^{\prime} \in X^{\prime}$ satisfies $\left|L^{\prime}\left(x^{\prime}\right)\right| \geq\left|X^{\prime}\right|$ and every vertex $y^{\prime} \in Y^{\prime}$ satisfies $\left|L^{\prime}\left(y^{\prime}\right)\right| \geq\left|Y^{\prime}\right|$, and $\left|X^{\prime}\right| \leq\left|Y^{\prime}\right|$, and there are $\left|X^{\prime}\right|$ non-edges between X^{\prime} and Y^{\prime}, and they form a matching in $\overline{H^{\prime}}$. By the induction hypothesis, H^{\prime} admits an L^{\prime}-coloring. We can extend it to an L-coloring of H by assigning the color c to x and y.

Lemma 3.2. Let H be a cobipartite graph, where $V(H)$ is partitioned into two cliques $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$, and $E(\bar{H})=\left\{x_{2} y_{2}\right\}$. Let L be a list assignment on $V(H)$ such that $|L(u)| \geq 2$ for all $u \in V(H)$. Then H is L-colorable if and only if every clique Q of H satisfies $|L(Q)| \geq|Q|$.

Proof. This is a corollary of Claim 1 in [6]. For completeness, we restate the claim here: The graph H is not L-colorable if and only if for some $v \in\left\{x_{2}, y_{2}\right\}$ we have $L\left(x_{1}\right)=L\left(y_{1}\right)=L(v)$ and these three lists are of size two.

Clearly, if H is L-colorable, then every clique Q of H satisfies $|L(Q)| \geq|Q|$. Conversely, if every clique Q of H satisfies $|L(Q)| \geq|Q|$, then by the above claim, applied to the cliques $\left\{x_{1}, y_{1}, x_{2}\right\}$ and $\left\{x_{1}, y_{1}, y_{2}\right\}$, we obtain that H is L-colorable.

Lemma 3.3. Let H be a cobipartite graph, where $V(H)$ is partitioned into two cliques $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$, and $E(\bar{H})=\left\{x_{3} y_{2}\right\}$. Let L be a list assignment on $V(H)$ such that $|L(x)| \geq 3$ for all $x \in X$ and $|L(y)| \geq 2$ for all $y \in Y$. Then H is L-colorable if and only if every clique Q of H satisfies $|L(Q)| \geq|Q|$.
Proof. If H is L-colorable then clearly every clique Q of H satisfies $|L(Q)| \geq|Q|$. Now let us prove the converse.

First suppose that $L\left(y_{2}\right) \subseteq L\left(x_{3}\right)$. Since $H \backslash\left\{x_{3}\right\}$ is a clique, every subset T of $V(H) \backslash\left\{x_{3}\right\}$ satisfies $|L(T)| \geq|T|$, and so, by Hall's theorem there is an L-coloring of $H \backslash\left\{x_{3}\right\}$. Then we can extend any such coloring by assigning to x_{3} the color assigned to y_{2}.

Now assume that $L\left(y_{2}\right) \nsubseteq L\left(x_{3}\right)$. This implies $\left|L\left(x_{3}\right) \cup L\left(y_{2}\right)\right| \geq 4$. Suppose that the family $\{L(x) \mid x \in V(H)\}$ does not have a system of distinct representatives. By Hall's theorem there is a set $T \subseteq V(H)$ such that $|L(T)|<|T|$. By the assumption, T is not a clique, so it contains x_{3} and y_{2}. It follows that $|L(T)| \geq 4$. Hence $|T|=5$, so $T=V(H)$, and $|L(T)|=4$, and we may assume that $L\left(x_{3}\right)=\{1,2,3\}$ and $L\left(y_{2}\right)=\{3,4\}$ and $L(T)=\{1,2,3,4\}$. Assign color 3 to x_{3} and y_{2}. Now assign a color c from $L\left(y_{1}\right) \backslash\{3\}$ to y_{1} (there may be two choices for c). We may assume that this coloring fails to be extended to $\left\{x_{1}, x_{2}\right\}$; so it must be that $L\left(x_{1}\right) \backslash\{3, c\}$ and $L\left(x_{2}\right) \backslash\{3, c\}$ are equal and of size 1 ; so $L\left(x_{1}\right)=L\left(x_{2}\right)=\{b, c, 3\}$ for some $b \neq c$, with $b \in\{1,2,4\}$. Suppose that $3 \notin L\left(y_{1}\right)$. Then there is a second choice for c, and we may assume that this attempt fails similarly. Hence $L\left(y_{1}\right)=\{b, c\}$, with $b, c \in\{1,2,4\}$. If $\{b, c\}=\{1,2\}$, then the clique $Q_{1}=\left\{x_{1}, x_{2}, x_{3}, y_{1}\right\}$ violates the assumption because $L\left(Q_{1}\right)=\{1,2,3\}$. If $\{b, c\}=\{1,4\}$ or $\{2,4\}$, then the clique $Q_{2}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ violates the assumption because $L\left(Q_{2}\right)=\{b, c, 3\}$. So we may assume that $3 \in L\left(y_{1}\right)$, i.e., $L\left(y_{1}\right)=\{c, 3\}$. If $c=4$, then Q_{2} violates the assumption because $L\left(Q_{2}\right)=\{b, 3,4\}$. So, up to symmetry, $c=1$. If $b=2$, then Q_{1} violates the assumption because $L\left(Q_{1}\right)=\{1,2,3\}$. If $b=4$, then Q_{2} violates the assumption because $L\left(Q_{2}\right)=\{1,3,4\}$. Hence the family $\{L(x) \mid x \in V(H)\}$ admits a system of distinct representatives, which is an L-coloring of G.

Lemma 3.4. Let H be a cobipartite graph, where $V(H)$ is partitioned into two cliques $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$, and $E(\bar{H})=\left\{x_{2} y_{2}, x_{3} y_{3}\right\}$. Let L be a list assignment on $V(H)$ such that $|L(x)| \geq 3$ for all $x \in V(H)$. Then H is L-colorable if and only if every clique Q of H satisfies $|L(Q)| \geq|Q|$. In particular, if $\left|L\left(x_{1}\right) \cup L\left(y_{1}\right)\right| \geq 4$, then H is L-colorable.

Proof. If H is L-colorable then clearly every clique Q of H satisfies $|L(Q)| \geq|Q|$. Now let us prove the converse. We first claim that:

We may assume that $\left|L\left(x_{i}\right) \cap L\left(y_{i}\right)\right| \leq 1$ for each $i \in\{2,3\}$.
Suppose on the contrary, and up to symmetry, that $\left|L\left(x_{2}\right) \cap L\left(y_{2}\right)\right| \geq 2$. Let $H^{\prime}=H \backslash\left\{x_{2}\right\}$, and set $L^{\prime}\left(y_{2}\right)=L\left(x_{2}\right) \cap L\left(y_{2}\right)$ and $L^{\prime}(u)=L(u)$ for all $u \in\left\{x_{1}, x_{3}, y_{1}, y_{3}\right\}$. Thus H^{\prime} and L^{\prime} satisfy the hypothesis of Lemma 3.3. If every clique Q in H^{\prime} satifies $\left|L^{\prime}(Q)\right| \geq|Q|$, then Lemma 3.3 implies that H^{\prime} admits an L^{\prime}-coloring, and we can extend it to an L-coloring of H by giving to x_{2} the color assigned to y_{2}. Hence assume that some clique Q in H^{\prime} satisfies $\left|L^{\prime}(Q)\right|<|Q|$. We have $\left|L^{\prime}(Q)\right| \geq 2$, so $|Q| \geq 3$, so $3 \leq\left|L^{\prime}(Q)\right|<|Q| \leq 4$, and
so $\left|L^{\prime}(Q)\right|=3$ and $|Q|=4$. Since x_{3} and y_{3} play symmetric roles here, we may assume up to symmetry that $Q=\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}$, and $L^{\prime}(Q)=\{a, b, c\}$, where a, b, c are three distinct colors. Hence $L\left(x_{1}\right)=L\left(y_{1}\right)=L\left(y_{3}\right)=\{a, b, c\}$. Since $|L(Q)| \geq 4$, there is a color $d \in L\left(y_{2}\right) \backslash\{a, b, c\}$. Since $\left|L\left(\left\{x_{1}, y_{1}, x_{2}, y_{3}\right\}\right)\right| \geq 4$, there is a color $e \in L\left(y_{2}\right) \backslash\{a, b, c\}$. If $a \in L\left(x_{3}\right)$, then we can assign color a to x_{3} and y_{3}, colors b and c to x_{1} and y_{1}, color e to x_{2} and color d to y_{2}. So assume that $a \notin L\left(x_{3}\right)$, and similarly that $b, c \notin L\left(x_{3}\right)$. Then we can assign colors a, b, c to x_{1}, y_{1}, y_{3}, color e to x_{2}, color d to y_{2}, and a color from $L\left(x_{3}\right) \backslash\{d, e\}$ to x_{3}. Thus (1) holds.

It follows from (1) that $\left|L\left(x_{i}\right) \cup L\left(y_{i}\right)\right| \geq 5$ for $i=2,3$. If the family $\{L(x) \mid x \in V(H)\}$ admits a system of distinct representatives, then this is an L-coloring. So suppose the contrary. By Hall's theorem there is a set $T \subseteq$ $V(H)$ such that $|L(T)|<|T|$. By the assumption, T is not a clique, so it contains x_{i} and y_{i} for some $i \in\{2,3\}$. By (11) we have $|L(T)| \geq 5$, so $|T| \geq 6$, hence $T=V(H)$, and $|L(T)|=5$, and consequently $\left|L\left(x_{i}\right)\right|=\left|L\left(y_{i}\right)\right|=3$ and $\left|L\left(x_{i}\right) \cap L\left(y_{i}\right)\right|=1$ for each $i=2,3$. Let $L\left(x_{i}\right) \cap L\left(y_{i}\right)=\left\{c_{i}\right\}$ for $i=2,3$.

Suppose that $c_{2} \neq c_{3}$. We assign color c_{i} to x_{i} and y_{i} for each $i=2,3$. If this coloring can be extended to $\left\{x_{1}, y_{1}\right\}$ we are done. So suppose the contrary. Then it must be that $L\left(x_{1}\right)=L\left(y_{1}\right)=\left\{b, c_{2}, c_{3}\right\}$ for some color $b \in L(H) \backslash\left\{c_{2}, c_{3}\right\}$. Then we can color H as follows. Assign colors c_{2} and c_{3} to x_{1} and y_{1}. There are four ways to color x_{2} and y_{2} with one color from $L\left(x_{2}\right) \backslash\left\{c_{2}\right\}$ for x_{2} and one color from $L\left(y_{2}\right) \backslash\left\{c_{2}\right\}$ for y_{2}; at most two of them use a pair of colors equal to $L\left(x_{3}\right) \backslash\left\{c_{3}\right\}$ or $L\left(y_{3}\right) \backslash\left\{c_{3}\right\}$, so we can choose another way, and there will remain a color for x_{3} and a color for y_{3}.

Now suppose that $c_{2}=c_{3}$; call this color c. Let $L^{\prime}(v)=L(v) \backslash\{c\}$ for all $v \in V(H) \backslash\left\{x_{3}, y_{3}\right\}$. We may assume that the graph $H \backslash\left\{x_{3}, y_{3}\right\}$ does not admit an L^{\prime}-coloring, for otherwise such a coloring can be extended to H by assigning color c to x_{3} and y_{3}. Hence, by Lemma 3.2 there is a clique Q of size 3 in $H \backslash\left\{x_{3}, y_{3}\right\}$ such that $\left|L^{\prime}(Q)\right|=2$, say $L^{\prime}(Q)=\{a, b\}$. So $L(u)=\{a, b, c\}$ for all $u \in Q$. Moreover Q consists of x_{1}, y_{1} and one of x_{2}, y_{2}. We assign color a to x_{1}, color b to y_{1}, and color c to x_{2} and y_{2}. Since $\left|L\left(Q \cup\left\{x_{3}\right\}\right)\right| \geq 4$, there is a color $d \in L\left(x_{3}\right) \backslash\{a, b, c\}$, and similarly there is a color $e \in L\left(y_{3}\right) \backslash\{a, b, c\}$. We assign d to x_{3} and e to y_{3}, and we obtain an L-coloring of H.

Finally we prove the last sentence of the lemma. Since x_{1} and y_{1} are in all cliques of size 4 , the assumption that $\left|L\left(x_{1}\right) \cup L\left(y_{1}\right)\right| \geq 4$ implies that every clique Q of H satisfies $|L(Q)| \geq|Q|$. So H is L-colorable.

Lemma 3.5. Let H be a cobipartite graph with $\omega(H) \leq 4$. Let x, y be two adjacent vertices in H such that $N(x) \backslash\{y\}$ and $N(y) \backslash\{x\}$ are cliques and $V(H)=N(x) \cup N(y)$. Let L be a list assignment such that $|L(x)| \geq 2,|L(y)| \geq$ 2 , and $|L(v)| \geq 4$ for all $v \in V(H) \backslash\{x, y\}$. Then H is L-colorable.

Proof. Let $X=N(x) \backslash\{y\}$ and $Y=N(y) \backslash\{x\}$. Let $I=X \cap Y$. Since $\{x, y\} \cup I$ is a clique, we have $|I| \leq 2$.

First suppose that $|I|=2$. Let $I=\left\{w, w^{\prime}\right\}$. Since $\{x\} \cup X$ is a clique that contains I, we have $|X \backslash I| \leq 1$. Likewise $|Y \backslash I| \leq 1$. We may assume that we are in the situation where $X \backslash I$ and $Y \backslash I$ are non-empty and complete to each
other, because any other situation can be reduced to that one by adding vertices or edges (which makes the coloring problem only harder). Let $X \backslash I=\{u\}$ and $Y \backslash I=\{v\}$. Suppose that $L(x) \cap L(v) \neq \emptyset$. Pick a color $a \in L(x) \cap L(v)$, assign it to x and v, and remove it from the lists of all other vertices. Pick a color b from $L(y) \backslash\{a\}$, assign it to y and remove it from the list of the vertices in I. Let L^{\prime} be the reduced list assignment. Then $\left|L^{\prime}(w)\right| \geq 2,\left|L^{\prime}\left(w^{\prime}\right)\right| \geq 2$, and $\left|L^{\prime}(u)\right| \geq 3$, so we can L^{\prime}-color greedily w, w^{\prime}, u in this order. Hence assume that $L(x) \cap L(v)=\emptyset$, and similarly that $L(y) \cap L(u)=\emptyset$. Then $|L(x) \cup L(v)| \geq 6$ and $|L(y) \cup L(u)| \geq 6$. It follows that the family $\{L(z) \mid z \in V(H)\}$ satisfies Hall's condition, so H is L-colorable.

Now suppose that $|I|=1$. Let $I=\{w\}$. Then $|X \backslash\{w\}| \leq 2$ and $|Y \backslash\{w\}| \leq$ 2. We may assume that we are in the situation where $X \backslash I$ and $Y \backslash I$ have size 2 and there are three edges between them, because any other situation can be reduced to that one by adding vertices or edges. Let $X \backslash I=\{u, v\}$ and $Y \backslash I=\{s, t\}$, and let $u s, u t, v s \in E(H)$ and $v t \notin E(H)$. Suppose that $L(x) \cap L(s) \neq \emptyset$. We pick a color $a \in L(x) \cap L(s)$, assign it to x and s, and remove it from the lists of all other vertices. Then it is easy to see that we can color y, t, w, u, v in this order, using colors from the reduced lists. Hence assume that $L(x) \cap L(s)=\emptyset$, and similarly that $L(y) \cap L(u)=\emptyset$. So $|L(x) \cup L(s)| \geq 6$ and $|L(y) \cup L(u)| \geq 6$.
Suppose that $L(x) \cap L(t) \neq \emptyset$. We pick a color $a \in L(x) \cap L(t)$, assign it to x and t, and remove it from the lists of all other vertices. Since $L(x) \cap L(s)=\emptyset$, the list $L(s)$ loses no color $(a \notin L(s))$. If $L(y) \backslash\{a\}$ and $L(v) \backslash\{a\}$ have a common element b, we assign it to y and v, and it is easy to see that w, u, s can be colored in this order with the reduced lists. On the other hand if $L(y) \backslash\{a\}$ and $L(v) \backslash\{a\}$ are disjoint, then it is easy to see that the family $\{L(z) \backslash\{a\} \mid z \in V(H) \backslash\{x, t\}\}$ satisfies Hall's condition, so H is L-colorable. Hence assume that $L(x) \cap L(t)=\emptyset$, and similarly that $L(y) \cap L(v)=\emptyset$. So $|L(x) \cup L(t)| \geq 6$ and $|L(y) \cup L(v)| \geq 6$. Suppose that $L(t) \cap L(v) \neq \emptyset$. Pick a color $a \in L(t) \cap L(v)$ and assign it to t and v. Since $L(y) \cap L(v)=\emptyset$ and $L(x) \cap L(t)=\emptyset$ we have $L(y)=L(y) \backslash\{a\}$ and similarly $L(x)=L(x) \backslash\{a\}$. It follows that the family $\{L(z) \backslash\{a\} \mid z \in$ $V(H) \backslash\{t, v\}\}$ satisfies Hall's condition. Finally assume that $L(t) \cap L(v)=\emptyset$. So $|L(t) \cup L(v)| \geq 8$. Then the family $\{L(z) \mid z \in V(H)\}$ satisfies Hall's condition, so H is L-colorable.

Finally suppose that $I=\emptyset$. We may assume that X and Y have size 3 and that the non-edges between them form a matching of size 2 , because any other situation can be reduced to that one by adding vertices or edges. Let $X=\left\{u_{1}, u_{2}, u_{3}\right\}, Y=\left\{v_{1}, v_{2}, v_{3}\right\}$, and $E(\bar{H})=\left\{u_{2} v_{2}, u_{3} v_{3}\right\}$. We can choose a color a from $L(x)$ and a color b from $L(y)$ such that $L\left(u_{1}\right) \backslash\{a\} \neq L\left(v_{1}\right) \backslash\{b\}$. Let $L^{\prime}(u)=L(u) \backslash\{a\}$ for all $u \in X$ and $L^{\prime}(v)=L(v) \backslash\{b\}$ for all $v \in Y$. By the last sentence of Lemma 3.4, $H \backslash\{x, y\}$ admits an L^{\prime}-coloring, and we can extend it to an L-coloring of H by assigning color a to x and color b to y.

Lemma 3.6. Let H be a cobipartite graph, where $V(H)$ is partitioned into two cliques $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$, and $E(\bar{H})=\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right.$, $\left.x_{3} y_{1}, x_{1} y_{2}\right\}$. Let L be a list assignment on $V(H)$ such that $\left|L\left(x_{3}\right)\right|=2,\left|L\left(y_{2}\right)\right|=$ 2 , and $|L(w)|=3$ for every $w \in V(H) \backslash\left\{x_{3}, y_{2}\right\}$. Then H is L-colorable.

Proof. Suppose that $L\left(x_{2}\right) \cap L\left(y_{2}\right) \neq \emptyset$. Assign a color a from $L\left(x_{2}\right) \cap L\left(y_{2}\right)$
to x_{2} and y_{2}. Let $L^{\prime}(u)=L(u) \backslash\{a\}$ for all $u \in\left\{x_{1}, x_{3}, y_{1}, y_{3}\right\}$. Then we can L^{\prime}-color $x_{3}, x_{1}, y_{3}, y_{1}$ greedily in this order, because $x_{3}-x_{1}-y_{3}-y_{1}$ is an induced path and the reduced lists' size pattern is $(\geq 1, \geq 2, \geq 2, \geq 2)$. The proof is similar when $L\left(x_{3}\right) \cap L\left(y_{3}\right) \neq \emptyset$. So we may assume that:

$$
\begin{equation*}
L\left(x_{2}\right) \cap L\left(y_{2}\right)=\emptyset \text { and } L\left(x_{3}\right) \cup L\left(y_{3}\right)=\emptyset . \tag{1}
\end{equation*}
$$

Suppose that $L\left(x_{1}\right) \cap L\left(y_{2}\right) \neq \emptyset$. Assign a color a from $L\left(x_{1}\right) \cap L\left(y_{2}\right)$ to x_{1} and y_{2}. Let $L^{\prime}(u)=L(u) \backslash\{a\}$ for all $u \in\left\{x_{2}, x_{3}, y_{1}, y_{3}\right\}$. By (11), we have $a \notin L\left(x_{2}\right)$, so $L^{\prime}\left(x_{2}\right)=L\left(x_{2}\right)$, and a is in at most one of $L\left(x_{3}\right)$ and $L\left(y_{3}\right)$. If $a \in L\left(x_{3}\right)$, then we can L^{\prime}-color greedily $x_{3}, x_{2}, y_{1}, y_{3}$ in this order. If $a \in L\left(y_{3}\right)$, then we can L^{\prime}-color greedily $y_{3}, y_{1}, x_{2}, x_{3}$ in this order. The proof is similar when $L\left(x_{3}\right) \cap L\left(y_{1}\right) \neq \emptyset$. So we may assume that:

$$
\begin{equation*}
L\left(x_{1}\right) \cap L\left(y_{2}\right)=\emptyset \text { and } L\left(x_{3}\right) \cap L\left(y_{1}\right)=\emptyset . \tag{2}
\end{equation*}
$$

Suppose that $L\left(x_{1}\right) \cap L\left(y_{1}\right) \neq \emptyset$. Assign a color a from $L\left(x_{1}\right) \cap L\left(y_{1}\right)$ to x_{1} and y_{1}. Let $L^{\prime}(u)=L(u) \backslash\{a\}$ for all $u \in\left\{x_{2}, x_{3}, y_{2}, y_{3}\right\}$. By (2), we have $a \notin L\left(x_{3}\right)$ and $a \notin L\left(y_{2}\right)$. The graph $H \backslash\left\{x_{1}, y_{1}\right\}$ is an even cycle, and $\left|L^{\prime}(u)\right| \geq 2$ for every vertex u in that graph, so it is L^{\prime}-colorable. So we may assume that:

$$
\begin{equation*}
L\left(x_{1}\right) \cap L\left(y_{1}\right)=\emptyset \tag{3}
\end{equation*}
$$

By (11), (21) and (31), we have $|L(u) \cup L(v)|=5$ whenever $\{u, v\}$ is any of $\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{3}\right\},\left\{x_{1}, y_{2}\right\},\left\{x_{3}, y_{1}\right\}$, and $\left|L\left(x_{1}\right) \cap L\left(y_{1}\right)\right|=6$. It follows that the family $\{L(w) \mid w \in V(H)\}$ admits a system of distinct representatives, which is an L-coloring for H.

Lemma 3.7. Let H be a cobipartite graph with $\omega(G) \leq 4$. Let $V(H)$ be partitioned into two cliques X, Y with $X=\left\{x_{1}, x_{2}, x_{3}\right\}$, such that x_{1} is complete to Y. Let L be a list assignment such that $\left|L\left(x_{1}\right)\right| \geq 3,\left|L\left(x_{2}\right)\right| \geq 2,\left|L\left(x_{3}\right)\right| \geq 2$, and $|L(y)| \geq 4$ for all $y \in Y$. Then H is L-colorable.
Proof. Since $Y \cup\left\{x_{1}\right\}$ is a clique, we have $|Y| \leq 3$. If $|Y| \leq 2$, then Lemma 3.3 implies that H is L-colorable. So we may assume that $|Y|=3$, say $Y=$ $\left\{y_{1}, y_{2}, y_{3}\right\}$, and we may assume that $E(\bar{H})=\left\{x_{2} y_{2}, x_{3} y_{3}\right\}$. If the family $\{L(w) \mid$ $w \in V(H)\}$ admits a system of distinct representatives, then this is an L-coloring of H, so assume the contrary. So there is a set $T \subseteq V(H)$ such that $|L(T)|<|T|$. We have $|L(T)| \geq 2$, so $|T| \geq 3$, so $|L(T)| \geq 3$, so $|T| \geq 4$, so $T \cap Y \neq \emptyset$, so $|L(T)| \geq 4$, and so $|T| \geq 5$. It follows that T is not a clique. Hence assume that $x_{2}, y_{2} \in T$. If $L\left(x_{2}\right) \cap L\left(y_{2}\right)=\emptyset$, then $|L(T)| \geq\left|L\left(x_{2}\right) \cup L\left(y_{2}\right)\right|=6$, so $|T| \geq 7$, which is impossible. Hence $L\left(x_{2}\right) \cap L\left(y_{2}\right) \neq \emptyset$. Assign a color c_{2} from $L\left(x_{2}\right) \cap L\left(y_{2}\right)$ to x_{2} and y_{2}. Define $L^{\prime}(u)=L(u) \backslash\left\{c_{2}\right\}$ for all $u \in V(H) \backslash\left\{x_{2}, y_{2}\right\}$. If $L^{\prime}\left(x_{3}\right) \cap L^{\prime}\left(y_{3}\right) \neq \emptyset$ assign a color c_{3} from $L^{\prime}\left(x_{3}\right) \cap L^{\prime}\left(y_{3}\right)$ to x_{3} and y_{3}. Then we have $\left|\left(L^{\prime}\left(x_{1}\right) \cup L^{\prime}\left(y_{1}\right)\right) \backslash\left\{c_{2}\right\}\right| \geq 2$, so we can extend the coloring to $\left\{x_{1}, y_{1}\right\}$. On the other hand, if $L^{\prime}\left(x_{3}\right) \cap L^{\prime}\left(y_{3}\right)=\emptyset$, the family $\left\{L^{\prime}(w) \mid w \in V(H) \backslash\left\{x_{2}, y_{2}\right\}\right\}$ admits a system of distinct representatives. So H admist an L-coloring.

Lemma 3.8. Let H be a cobipartite graph, where $V(H)$ is partitioned into two cliques $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, and $E(\bar{H})=\left\{x_{1} y_{1}, x_{1} y_{3}\right.$, $\left.x_{1} y_{4}, x_{2} y_{2}, x_{2} y_{3}, x_{2} y_{4}, x_{3} y_{3}, x_{4} y_{4}\right\}$. Let L be a list assignment on $V(H)$ such that $\left|L\left(x_{1}\right)\right|=2,\left|L\left(x_{2}\right)\right|=2$ and $|L(w)|=4$ for all $w \in V(H) \backslash\left\{x_{1}, x_{2}\right\}$. Then H is L-colorable.

Proof. We choose colors c_{1}, c_{2} with $c_{1} \in L\left(x_{1}\right), c_{2} \in L\left(x_{2}\right)$ and $c_{1} \neq c_{2}$, such that if $\left|L\left(y_{1}\right) \cap L\left(y_{2}\right)\right|=3$, then either $\left\{c_{1}\right\} \neq L\left(y_{2}\right) \backslash L\left(y_{1}\right)$ or $\left\{c_{2}\right\} \neq$ $L\left(y_{1}\right) \backslash L\left(y_{2}\right)$. This is possible as follows: if $\left|L\left(y_{1}\right) \cap L\left(y_{2}\right)\right|=3$, let α be the color in $L\left(y_{1}\right) \backslash L\left(y_{2}\right)$, then choose $c_{2} \in L\left(x_{2}\right) \backslash\{\alpha\}$ and $c_{1} \in L\left(x_{1}\right) \backslash\left\{c_{2}\right\}$. We assign color c_{1} to x_{1} and c_{2} to x_{2}. Let $L^{\prime}\left(y_{1}\right)=L\left(y_{1}\right) \backslash\left\{c_{2}\right\}, L^{\prime}\left(y_{2}\right)=$ $L\left(y_{2}\right) \backslash\left\{c_{1}\right\}, L^{\prime}\left(x_{3}\right)=L\left(x_{3}\right) \backslash\left\{c_{1}, c_{2}\right\}, L^{\prime}\left(x_{4}\right)=L\left(x_{4}\right) \backslash\left\{c_{1}, c_{2}\right\}, L^{\prime}\left(y_{3}\right)=L\left(y_{3}\right)$ and $L^{\prime}\left(y_{4}\right)=L\left(y_{4}\right)$. So $\left|L^{\prime}(u)\right| \geq 2$ for $u \in\left\{x_{3}, x_{4}\right\},\left|L^{\prime}(v)\right| \geq 3$ for $v \in\left\{y_{1}, y_{2}\right\}$, and $\left|L^{\prime}(w)\right|=4$ for $w \in\left\{y_{3}, y_{4}\right\}$. Note that the choice of c_{1} and c_{2} implies that $\left|L^{\prime}\left(y_{1}\right) \cup L^{\prime}\left(y_{2}\right)\right| \geq 4$. Now we show that $H \backslash\left\{x_{1}, x_{2}\right\}$ is L^{\prime}-colorable.

Suppose that $L^{\prime}\left(x_{3}\right) \cap L^{\prime}\left(y_{3}\right) \neq \emptyset$. Assign a color c_{3} from $L^{\prime}\left(x_{3}\right) \cap L^{\prime}\left(y_{3}\right)$ to x_{3} and y_{3}. Define $L^{\prime \prime}(u)=L^{\prime}(u) \backslash\left\{c_{3}\right\}$ for all $u \in\left\{x_{4}, y_{1}, y_{2}, y_{4}\right\}$. Note that $\left|L^{\prime \prime}\left(x_{4}\right)\right| \geq 1,\left|L^{\prime \prime}(u)\right| \geq 2$ for $u \in\left\{y_{1}, y_{2}\right\}$, and $\left|L^{\prime \prime}\left(y_{4}\right)\right| \geq 3$. Assign a color c_{4} from $L^{\prime \prime}\left(x_{4}\right)$ to x_{4}. Since $\left|L^{\prime}\left(y_{1}\right) \cup L^{\prime}\left(y_{2}\right)\right| \geq 4$, it follows that $\mid\left(L^{\prime \prime}\left(y_{1}\right) \cup L^{\prime \prime}\left(y_{2}\right)\right) \backslash$ $\left\{c_{4}\right\} \mid \geq 2$. So we can $L^{\prime \prime}$-color greedily $\left\{y_{1}, y_{2}\right\}$ and then y_{4}. The proof is similar if $L^{\prime}\left(x_{4}\right) \cap L^{\prime}\left(y_{4}\right) \neq \emptyset$. Therefore we may assume that $L^{\prime}\left(x_{3}\right) \cap L^{\prime}\left(y_{3}\right)=\emptyset$ and $L^{\prime}\left(x_{4}\right) \cap L^{\prime}\left(y_{4}\right)=\emptyset$, and so $\left|L^{\prime}\left(x_{3}\right) \cup L^{\prime}\left(y_{3}\right)\right|=6$ and $\left|L^{\prime}\left(x_{4}\right) \cup L^{\prime}\left(y_{4}\right)\right|=6$. This and the choice of c_{1}, c_{2} implies that the family $\left\{L^{\prime}(w) \mid w \in V(H) \backslash\left\{x_{1}, x_{2}\right\}\right\}$ admits a system of distinct representatives.

Lemma 3.9. Let H be a cobipartite graph with $\omega(G) \leq 4$. Let C be a clique of size 3 in H such that for every $w \in C$, the set $N(w) \backslash C$ is a clique. Let L be a list assignment such that $|L(w)|=3$ for all $w \in C$ and $|L(v)|=4$ for all $v \in V(H) \backslash C$. Then H is L-colorable.

Proof. If H is not connected, it has two components H_{1}, H_{2} and both are cliques of size at most 4. The hypothesis implies easily that for each $i \in\{1,2\}$ the family $\left\{L(u) \mid u \in V\left(H_{i}\right)\right\}$ satisfies Hall's theorem, and consequently H is L-colorable. Hence we assume that H is connected. Let $n=|V(H)|$ and $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$. The hypothesis implies that $n \leq 8$. Let $\mu=n-4$. Since $\omega(H)=4$, Kőnig's theorem implies that \bar{H} has a matching of size μ. We may assume that the pairs $\left\{v_{i}, v_{i+\mu}\right\}(i=1, \ldots, \mu)$ form such a matching. We may also assume that $E(H)$ is maximal under the hypothesis of the lemma, since adding edges can only make the problem harder.

First suppose that $n=4$. The hypothesis implies that the family $\{L(u) \mid$ $u \in V(H)\}$ satisfies Hall's theorem, and consequently H is L-colorable.

Now suppose that $n=5$. So $\mu=1$ and $v_{1} v_{2} \in E(\bar{H})$. Up to symmetry, we have either $C=\left\{v_{3}, v_{4}, v_{5}\right\}$ or $C=\left\{v_{1}, v_{3}, v_{4}\right\}$. If $C=\left\{v_{3}, v_{4}, v_{5}\right\}$, then we can L-color greedily the vertices $v_{3}, v_{4}, v_{5}, v_{1}, v_{2}$ in this order. If $C=\left\{v_{1}, v_{3}, v_{4}\right\}$, then we can L-color greedily the vertices $v_{1}, v_{3}, v_{4}, v_{5}, v_{2}$ in this order.

Now suppose that $n=6$. So $\mu=2$ and $\left\{v_{1} v_{3}, v_{2} v_{4}\right\} \subseteq E(\bar{H})$. Up to symmetry, we have either $C=\left\{v_{1}, v_{5}, v_{6}\right\}$ or $C=\left\{v_{1}, v_{2}, v_{5}\right\}$. Suppose that $C=\left\{v_{1}, v_{5}, v_{6}\right\}$. Since $\left\{v_{1}, v_{2}, v_{4}\right\}$ is not a stable set of size 3 and $N\left(v_{1}\right) \backslash C$ is a clique, v_{1} is adjacent to exactly one of v_{2}, v_{4}, say to v_{4} and not to v_{2}. Then we can L-color greedily the vertices $v_{1}, v_{5}, v_{6}, v_{4}, v_{3}, v_{2}$ in this order. Suppose that $C=\left\{v_{1}, v_{2}, v_{5}\right\}$. By the maximality of $E(H)$ we may assume that $E(\bar{H})=$ $\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$. Then Lemma 3.4 (with $X=C, Y=V(H) \backslash C, x_{1}=v_{5}$ and $y_{1}=v_{6}$) implies that H is L-colorable.

Now suppose that $n=7$. So $\mu=3$, and $\left\{v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}\right\} \subseteq E(\bar{H})$. Up to symmetry, we have either $C=\left\{v_{1}, v_{2}, v_{3}\right\}$ or $C=\left\{v_{1}, v_{2}, v_{7}\right\}$. If $C=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$, then, by the maximality of $E(H)$ we may assume that $E(\bar{H})=$ $\left\{v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}\right\}$, and by Lemma 3.1 (with $X=C$ and $Y=V(H) \backslash C$), H is L-colorable. So suppose that $C=\left\{v_{1}, v_{2}, v_{7}\right\}$. For each $i \in\{1,2\}, v_{i}$ has exactly one neighbor in $\left\{v_{3}, v_{6}\right\}$, for otherwise either $\left\{v_{i}, v_{3}, v_{6}\right\}$ is a stable set of size 3 or $N\left(v_{i}\right) \backslash C$ is not a clique. This leads to the following two cases (a) and (b):
(a) v_{1} and v_{2} have the same neighbor in $\left\{v_{3}, v_{6}\right\}$. We may assume that $v_{1} v_{3}, v_{2} v_{3} \in E(H)$ and $v_{1} v_{6}, v_{2} v_{6} \notin E(H)$. Since H is cobipartite, $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{4}, v_{5}, v_{6}\right\}$ are cliques, and by the maximality of $E(H)$ we may assume that $\left\{v_{1} v_{5}, v_{2} v_{4}, v_{3} v_{4}, v_{3} v_{5}\right\} \subseteq E(H)$ and that v_{7} is complete to $\left\{v_{1}, \ldots, v_{6}\right\}$. Pick a color c from $L\left(v_{7}\right)$, assign it to v_{7}, and set $L^{\prime}(u)=L(u) \backslash\{c\}$ for all $u \in V(H) \backslash\left\{v_{7}\right\}$. By Lemma 3.1 (with $X=\left\{v_{1}, v_{2}\right\}$ and $Y=\left\{v_{3}, v_{4}, v_{5}\right\}$), $H \backslash\left\{v_{6}, v_{7}\right\}$ admits an L^{\prime}-coloring. This can be extended to v_{6} since v_{6} has only two neighbors in $H \backslash\left\{v_{7}\right\}$. So H is L-colorable.
(b) v_{1} and v_{2} do not have the same neighbor in $\left\{v_{3}, v_{6}\right\}$. We may assume that $v_{1} v_{3}, v_{2} v_{6} \in E(H)$ and $v_{1} v_{6}, v_{2} v_{3} \notin E(H)$. Since H is cobipartite, $\left\{v_{1}, v_{3}, v_{5}\right\}$ and $\left\{v_{2}, v_{4}, v_{6}\right\}$ are cliques, and by the maximality of $E(H)$ we may assume that $v_{4} v_{5}, v_{5} v_{6} \in E(H)$ and that v_{7} is complete to $\left\{v_{1}, \ldots, v_{6}\right\}$. Pick a color c from $L\left(v_{7}\right)$, assign it to v_{7}, and set $L^{\prime}(u)=L(u) \backslash\{c\}$ for all $u \in V(H) \backslash\left\{v_{7}\right\}$. By Lemma 3.6, $H \backslash\left\{v_{7}\right\}$ is L^{\prime}-colorable. So H is L-colorable.

Now suppose that $n=8$. So $\mu=4$ and $\left\{v_{1} v_{5}, v_{2} v_{6}, v_{3} v_{7}, v_{4} v_{8}\right\} \subseteq E(\bar{H})$. Up to symmetry we have $C=\left\{v_{1}, v_{2}, v_{3}\right\}$. For each $i \in\{1,2,3\}$, v_{i} has exactly one neighbor in $\left\{v_{4}, v_{8}\right\}$, for otherwise either $\left\{v_{i}, v_{4}, v_{8}\right\}$ is a stable set of size 3 or $N\left(v_{i}\right) \backslash C$ is not a clique. This leads to two cases: (a) v_{1}, v_{2}, v_{3} have the same neighbor in $\left\{v_{4}, v_{8}\right\}$; (b) only two of v_{1}, v_{2}, v_{3} have a common neighbor in $\left\{v_{4}, v_{8}\right\}$.

Suppose that (a) holds. We may assume that v_{1}, v_{2}, v_{3} are all adjacent to v_{4} and not adjacent to v_{8}. Since H is cobipartite, $\left\{v_{1}, \ldots, v_{4}\right\}$ and $\left\{v_{5}, \ldots, v_{8}\right\}$ are cliques, and by the maximality of $E(H)$ we may assume that $E(\bar{H})=$ $\left\{v_{1} v_{5}, v_{2} v_{6}, v_{3} v_{7}, v_{4} v_{8}, v_{1} v_{8}, v_{2} v_{8}, v_{3} v_{8}\right\}$. By Lemma 3.1 (with $X=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left.Y=\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}\right), H \backslash\left\{v_{8}\right\}$ admits an L^{\prime}-coloring. This can be extended to v_{8} since v_{8} has only three neighbors in H. So H is L-colorable.

Therefore we may assume that (b) holds. We may assume that $v_{1} v_{4}, v_{2} v_{4}$, $v_{3} v_{8} \in E(H)$ and $v_{1} v_{8}, v_{2} v_{8}, v_{3} v_{4} \notin E(H)$. Since H is cobipartite, $\left\{v_{1}, v_{2}, v_{4}, v_{7}\right\}$ and $\left\{v_{3}, v_{5}, v_{6}, v_{8}\right\}$ are cliques, and by the maximality of $E(H)$ we may assume that $E(\bar{H})=\left\{v_{1} v_{5}, v_{2} v_{6}, v_{3} v_{7}, v_{4} v_{8}, v_{1} v_{8}, v_{2} v_{8}, v_{3} v_{4}\right\}$.

Suppose that $L\left(v_{3}\right) \cap L\left(v_{7}\right) \neq \emptyset$. Assign a color c from $L\left(v_{3}\right) \cap L\left(v_{7}\right)$ to v_{3} and v_{7}. Define $L^{\prime}(w)=L(w) \backslash\{c\}$ for every $w \in V(H) \backslash\left\{v_{3}, v_{7}\right\}$. By Lemma3.3, $H \backslash\left\{v_{3}, v_{7}, v_{8}\right\}$ admits an L^{\prime}-coloring. This can be extended to v_{8} since v_{8} has only two neighbors in $H \backslash\left\{v_{3}, v_{7}\right\}$. So we may assume that:

$$
\begin{equation*}
L\left(v_{3}\right) \cap L\left(v_{7}\right)=\emptyset . \tag{1}
\end{equation*}
$$

Suppose that $L\left(v_{1}\right) \cap L\left(v_{5}\right) \neq \emptyset$. Assign a color c from $L\left(v_{1}\right) \cap L\left(v_{5}\right)$ to v_{1} and v_{5}. Define $L^{\prime}(w)=L(w) \backslash\{c\}$ for every $w \in V(H) \backslash\left\{v_{1}, v_{5}\right\}$. By Lemma 3.6 the graph $H \backslash\left\{v_{1}, v_{5}\right\}$ is L^{\prime}-colorable. The proof is similar if $L\left(v_{2}\right) \cap L\left(v_{6}\right) \neq \emptyset$. So we may assume that:

$$
\begin{equation*}
L\left(v_{1}\right) \cap L\left(v_{5}\right)=\emptyset \text { and } L\left(v_{2}\right) \cup L\left(v_{6}\right)=\emptyset . \tag{2}
\end{equation*}
$$

Suppose that $L\left(v_{3}\right) \cap L\left(v_{4}\right) \neq \emptyset$. Assign a color c from $L\left(v_{3}\right) \cap L\left(v_{4}\right)$ to v_{3} and v_{4}. Define $L^{\prime}(w)=L(w) \backslash\{c\}$ for every $w \in V(H) \backslash\left\{v_{3}, v_{4}\right\}$. By (11), we have $c \notin L\left(v_{7}\right)$, so $L^{\prime}\left(v_{7}\right)=L\left(v_{7}\right)$. Hence and by (11) and (2), the family $\left\{L^{\prime}(w) \mid w \in V(H) \backslash\left\{v_{3}, v_{4}\right\}\right\}$ admits a system of distinct representatives. So we may assume that:

$$
\begin{equation*}
L\left(v_{3}\right) \cup L\left(v_{4}\right)=\emptyset . \tag{3}
\end{equation*}
$$

Suppose that $L\left(v_{4}\right) \cap L\left(v_{8}\right) \neq \emptyset$. Assign a color c from $L\left(v_{4}\right) \cap L\left(v_{8}\right)$ to v_{4} and v_{8}. Define $L^{\prime}(w)=L(w) \backslash\{c\}$ for every $w \in V(H) \backslash\left\{v_{4}, v_{8}\right\}$. By (3), we have $c \notin L\left(v_{3}\right)$, so $L^{\prime}\left(v_{3}\right)=L\left(v_{3}\right)$. By (11), (2) and (3), the family $\left\{L^{\prime}(w) \mid w \in V(H) \backslash\left\{v_{4}, v_{8}\right\}\right\}$ admits a system of distinct representatives. So we may assume that:

$$
\begin{equation*}
L\left(v_{4}\right) \cup L\left(v_{8}\right)=\emptyset \tag{4}
\end{equation*}
$$

By (11), (21), (3) and (4), we have $\left|L\left(v_{i}\right) \cup L\left(v_{j}\right)\right|=7$ if the pair $\{i, j\}$ is any of $\{1,5\},\{2,6\},\{3,7\}$ and $\{3,4\}$, and $\left|L\left(v_{4}\right) \cup L\left(v_{8}\right)\right|=8$. It follows easily that the family $\{L(w) \mid w \in V(H)\}$ admits a system of distinct representatives.

4 Elementary graphs

Now we can consider the case of any elementary graph G with $\omega(G) \leq 4$.
Theorem 4.1. Let G be an elementary graph with $\omega(G) \leq 4$. Then $\operatorname{ch}(G)=$ $\chi(G)$.

Proof. This theorem holds for every graph G with $\omega(G) \leq 3$ as proved in [8]. Hence we will assume that $\omega(G)=4$. By Theorem $1.8 G$ is the augmentation of the line-graph $\mathcal{L}(H)$ of a bipartite multigraph H. Let e_{1}, \ldots, e_{h} be the flat edges of $\mathcal{L}(H)$ that are augmented to obtain G. We prove the theorem by induction on h. If $h=0$, then $G=\mathcal{L}(H)$; in that case the equality $\operatorname{ch}(G)=\chi(G)$ follows from Galvin's theorem [5]. Now assume that $h>0$ and that the theorem holds for elementary graphs obtained by at most $h-1$ augmentations. Let (X, Y) be the augment in G that corresponds to the edge e_{h} of $\mathcal{L}(H)$. In $\mathcal{L}(H)$, let $e_{h}=x y$. So x, y are incident edges of H. In H, let $x=q_{x} q_{x y}$ and $y=q_{y} q_{x y}$; so their common vertex $q_{x y}$ has degree 2 in H. Let G_{h-1} be the graph obtained from $\mathcal{L}(H)$ by augmenting only the $h-1$ other edges e_{1}, \ldots, e_{h-1}. So G_{h-1} is an elementary graph.

Let L be a list assignment on $V(G)$ such that $|L(v)|=\omega(G)$ for all $v \in V(G)$. We will prove that G admits an L-coloring.

$$
\begin{equation*}
\text { We may assume that }|X \cup Y|>\omega(G) \text {. } \tag{1}
\end{equation*}
$$

Suppose that $|X \cup Y| \leq \omega(G)$. Let H^{\prime} be the graph obtained from H by duplicating $|X|-1$ times the edge x (so that there are exactly $|X|$ parallel edges between the two ends of x in $H)$ and duplicating $|Y|-1$ times the edge y. Let G_{h-1}^{\prime} be the graph obtained from $\mathcal{L}\left(H^{\prime}\right)$ by augmenting the $h-1$ edges e_{1}, \ldots, e_{h-1} as in G. Then G_{h-1}^{\prime} can also be obtained from G by adding all edges between non-adjacent vertices of $X \cup Y$. By the assumption, we have $\omega\left(G_{h-1}^{\prime}\right)=\omega(G)$. By the induction hypothesis, G_{h-1}^{\prime} admits an L-coloring. Then this is an L-coloring of G. Hence (11) holds.

Let $X=\left\{x_{1}, \ldots, x_{|X|}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{|Y|}\right\}$. Let $N_{X}=\{v \in V(G) \backslash$ $(X \cup Y) \mid v$ has a neighbor in $X\}$ and $N_{Y}=\{v \in V(G) \backslash(X \cup Y) \mid v$ has a neighbor in $Y\}$. By the definition of a line-graph and of an augment, the set N_{X} is a clique and is complete to X; hence $\left|N_{X}\right| \leq \omega(G)-|X|$. Likewise N_{Y} is a clique and is complete to Y, and $\left|N_{Y}\right| \leq \omega(G)-|Y|$. Let μ be the size of a maximum matching in the bipartite graph $\bar{G}[X \cup Y]$. By Kőnig's theorem we have $\mu+\omega(G)=|X|+|Y|$, so $\mu=|X|+|Y|-4$. Moreover, we may assume that the edges of $\bar{G}[X \cup Y]$ form a matching of size μ (for otherwise we can add some edges to G, in $X \cup Y$, which makes the coloring problem only harder).

The graph $G_{h-1} \backslash\{x, y\}$ is elementary, and it has $h-1$ augments, so, by the induction hypothesis, it admits an L-coloring f. We will try to extend f to G; if this fails, we will analyse why and then show that we can find another L-coloring of $G_{h-1} \backslash\{x, y\}$ that does extend to G. Let L^{\prime} be the list assignment defined on $X \cup Y$ as follows: for all $u \in X$, let $L^{\prime}(u)=L(u) \backslash f\left(N_{X}\right)$, and for all $v \in Y$, let $L^{\prime}(v)=L(v) \backslash f\left(N_{Y}\right)$. Clearly, f extends to an L-coloring of G if and only if $G[X \cup Y]$ admits an L^{\prime}-coloring. By (11) and up to symmetry, we may assume that either $|Y|=4$ (and $|X| \leq 4)$ or $(|X|,|Y|)$ is equal to $(3,3)$ or $(2,3)$. We deal with each case separately.

Case 1: $|Y|=4$ and $|X| \leq 4$. We have $\left|N_{X}\right| \leq 4-|X|$ and $\left|N_{Y}\right|=0$, so $\left|L^{\prime}(u)\right| \geq|X|$ for all $u \in X$ and $\left|L^{\prime}(v)\right|=4$ for all $v \in Y$. Since $\omega(G)=4$, there are $|X|$ non-edges between X and Y that form a matching in \bar{G}. By Lemma3.1, $G[X \cup Y]$ admits an L^{\prime}-coloring.

Case 2: $|X|=|Y|=3$. Here we have $\mu=2$, and we may assume that the non-edges between X and Y are $x_{2} y_{2}$ and $x_{3} y_{3}$. We have $\left|N_{X}\right| \leq 1$ and $\left|N_{Y}\right| \leq 1$, so $\left|L^{\prime}(u)\right| \geq 3$ for all $u \in X \cup Y$. If $G[X \cup Y]$ is L^{\prime}-colorable we are done, so assume the contrary. By Lemma 3.4 there is a clique $Q \subset X \cup Y$ such that $\left|L^{\prime}(Q)\right|<|Q|$. Thus $3 \leq\left|L^{\prime}(Q)\right|<|Q| \leq 4$. This implies that $|Q|=4$, and in particular Q contains x_{1} and y_{1}. Moreover $\left|L^{\prime}(Q)\right|=3$, so $L^{\prime}\left(x_{1}\right)$ and $L^{\prime}\left(y_{1}\right)$ are equal and have size 3, so $\left|N_{X}\right|=1$ and $\left|N_{Y}\right|=1$. Let $N_{X}=\{u\}$ and $N_{Y}=\{v\}$. Thus there are colors a, b, c, d, d^{\prime} such that $L\left(x_{1}\right)=\{a, b, c, d\}$, $L\left(y_{1}\right)=\left\{a, b, c, d^{\prime}\right\}, f(u)=d$ and $f(v)=d^{\prime}$ (possibly $d=d^{\prime}$). In other words, f satisfies the following "bad" property:

$$
\begin{align*}
& \text { Either } L\left(x_{1}\right)=L\left(y_{1}\right) \text { and } f(u)=f(v) \text {, or }\left|L\left(x_{1}\right) \cap L\left(y_{1}\right)\right|=3 \text { and } \\
& \{f(u)\}=L\left(x_{1}\right) \backslash L\left(y_{1}\right) \text { and }\{f(v)\}=L\left(y_{1}\right) \backslash L\left(x_{1}\right) . \tag{2}
\end{align*}
$$

Let G^{*} be the graph obtained from G by removing all edges between X and Y and adding two new vertices u^{*} and v^{*} with edges $u^{*} v^{*}, u^{*} x_{i}(i=1,2,3)$ and $v^{*} y_{i}(i=1,2,3)$. Let H^{*} be the graph obtained from H by removing the vertex $q_{x y}$ and adding three vertices q_{1}, q_{2}, q_{3}, with edges $q_{1} q_{2}$ and $q_{2} q_{3}$, plus three parallel edges between q_{x} and q_{1} and three parallel edges between q_{3} and q_{y}. So H^{*} is bipartite, and it is easy to see that G^{*} is obtained from $\mathcal{L}\left(H^{*}\right)$ by augmenting e_{1}, \ldots, e_{h-1} as in G. So G^{*} is elementary.

We define a list assignment L^{*} on G^{*} as follows. For all $v \in V(G \backslash(X \cup Y))$, let $L^{*}(v)=L(v)$. For all $v \in X \cup\left\{u^{*}, v^{*}\right\}$ let $L^{*}(v)=\{a, b, c, d\}$, and for all $v \in Y$ let $L^{*}(v)=\left\{a, b, c, d^{\prime}\right\}$. By the induction hypothesis on h, the graph G^{*} admits an L^{*}-coloring f^{*}. In particular f^{*} is an L-coloring of $G \backslash(X \cup Y)$. We claim that if $d=d^{\prime}$ then $f^{*}(u) \neq f^{*}(v)$, and if $d \neq d^{\prime}$ then either $f^{*}(u) \neq d$ or $f^{*}(v) \neq d^{\prime}$. Indeed we have $f^{*}(X)=\{a, b, c, d\} \backslash\left\{f^{*}(u)\right\}$ and $f^{*}(Y)=\left\{a, b, c, d^{\prime}\right\} \backslash\left\{f^{*}(v)\right\}$, so if the claim fails then $f^{*}(X)=f^{*}(Y)$ and consequently $f^{*}\left(u^{*}\right)=f^{*}\left(v^{*}\right)$, a
contradiction. So the claim holds. By the claim, we can use f^{*} instead of f above (as an L-coloring of $G \backslash(X \cup Y)$), because f^{*} does not satisfy (22); so we can extend it to an L-coloring of G.

Case 3: $|X|=3$ and $|Y|=2$. Here we have $\mu=1$, and we may assume that the only non-edge between X and Y is $x_{3} y_{2}$. We have $\left|N_{X}\right| \leq 1$ and $\left|N_{Y}\right| \leq 2$, so $\left|L^{\prime}(u)\right| \geq 3$ for all $u \in X$ and $\left|L^{\prime}(v)\right| \geq 2$ for all $v \in Y$. If $G[X \cup Y]$ is L^{\prime}-colorable we are done, so assume the contrary. By Lemma 3.3, there is a clique $Q \subset X \cup Y$ such that $\left|L^{\prime}(Q)\right|<|Q|$. This inequality implies that $Q \nsubseteq Y$, so $Q \cap X \neq \emptyset$. Thus $3 \leq\left|L^{\prime}(Q)\right|<|Q| \leq 4$. This implies that $|Q|=4$, and in particular Q contains x_{1}, x_{2} and y_{1}. Moreover $\left|L^{\prime}(Q)\right|=3$, so $L^{\prime}\left(x_{1}\right)$ and $L^{\prime}\left(x_{2}\right)$ are equal and have size 3 , so $\left|N_{X}\right|=1$, and $L^{\prime}\left(y_{1}\right)$ has size at most 3 , so $\left|N_{Y}\right| \geq 1$, and $L^{\prime}\left(y_{1}\right) \subseteq L^{\prime}\left(x_{1}\right)$. Let $N_{X}=\{u\}$. Thus $L\left(x_{1}\right)=L\left(x_{2}\right)$, and f satisfies the following "bad" property:

$$
\begin{equation*}
f(u) \in L\left(x_{1}\right) \text { and } L\left(y_{1}\right) \backslash f\left(N_{Y}\right) \subseteq L\left(x_{1}\right) \backslash\{f(u)\} \tag{3}
\end{equation*}
$$

Let $G^{*}=G \backslash\left\{x_{3}\right\}$. Clearly G^{*} is elementary. Let H^{*} be the graph obtained from H by duplicating the edge $q_{x} q_{x y}$ (so that there are two parallel edges between q_{x} and $q_{x y}$) and similarly duplicating $q_{y} q_{x y}$. It is easy to see that G^{*} is obtained from $\mathcal{L}\left(H^{*}\right)$ by augmenting e_{1}, \ldots, e_{h-1} as in G. We define a list assignment L^{*} on G^{*} as follows. For all $v \in V\left(G^{*}\right) \backslash\left\{y_{2}\right\}$, let $L^{*}(v)=L(v)$, and let $L^{*}\left(y_{2}\right)=L\left(y_{1}\right)$. By the induction hypothesis on h the graph G^{*} admits an L^{*}-coloring f^{*}. We claim that f^{*} does not satisfy the bad property (3). Indeed if it does, then $f^{*}(u) \in L^{*}\left(x_{1}\right)$ and $L^{*}\left(y_{1}\right) \backslash f^{*}\left(N_{Y}\right) \subseteq L^{*}\left(x_{1}\right) \backslash\left\{f^{*}(u)\right\}$. Since $L^{*}\left(y_{2}\right)=L^{*}\left(y_{1}\right)$, we also have $L^{*}\left(y_{2}\right) \backslash f^{*}\left(N_{Y}\right) \subseteq L^{*}\left(x_{1}\right) \backslash\left\{f^{*}(u)\right\}$, and this means that the four vertices $x_{1}, x_{2}, y_{1}, y_{2}$ (which induce a clique) are colored by f^{*} using colors from $L^{*}\left(x_{1}\right) \backslash\left\{f^{*}(u)\right\}$, which has size 3 ; but this is impossible. So the claim holds. By the claim, we can use f^{*} instead of f above (as an L-coloring of $G \backslash(X \cup Y))$ and we can extend it to an L-coloring of G. This completes the proof of the theorem.

5 Claw-free perfect graphs

Now we can prove Theorem 1.6, which we restate here.
Theorem 5.1. Let G be a claw-free perfect graph with $\omega(G) \leq 4$. Then $\operatorname{ch}(G)=$ $\chi(G)$.

Proof. We may assume that G is connected. Let L be a list assignment on G such that $|L(v)| \geq 4$ for all $v \in V(G)$. Let us prove that G is L-colorable by induction on the number of vertices of G. If G is peculiar, then by Lemma 2.2 we know that the theorem holds. So assume that G is not peculiar. By Theorem 1.7 and Lemma 2.1, we know that G can be decomposed by clique cutsets into elementary graphs. We may assume that:
G has no simplicial vertex.
Suppose that x is a simplicial vertex in G. By the induction hypothesis, $G \backslash\{x\}$ admits an L-coloring f. Since x is simplicial, it has at most three neighbors.

So f can be extended to x by choosing in $L(x)$ a color not assigned by f to its neighbors. Thus (11) holds.

By the discussion after the definition of a clique cutset (Section 1), G admits an extremal cutset C, i.e., a minimal clique cutset such that for some component A of $G \backslash C$ the induced subgraph $G[A \cup C]$ is an atom (i.e., has no clique cutset). Since C is minimal, every vertex x of C has a neighbor in every component of $G \backslash C$ (for otherwise $C \backslash\{x\}$ would be a clique cutset), and it follows that $G \backslash C$ has only two components A_{1}, A_{2} (for otherwise x would be the center of a claw). For $i=1,2$ let $G_{i}=G\left[C \cup A_{i}\right]$. Hence we may assume that G_{2} is elementary.

By the induction hypothesis, the graph $G\left[C \cup A_{1}\right]$ is 4-choosable, so it admits an L-coloring f. We will show that we can extend this coloring to G.

By Theorem 1.8, G_{2} is obtained by augmenting the line-graph $\mathcal{L}(H)$ of a bipartite graph H. For each augment (X, Y) of G_{2}, select a pair of adjacent vertices such that one is in X and the other is in Y. Also select all vertices of G_{2} that are not in any augment. It is easy to see that $\mathcal{L}(H)$ is isomorphic to the subgraph of G_{2} induced by the selected vertices. Without loss it will be convenient to view $\mathcal{L}(H)$ as equal to that induced subgraph. We claim that:

> If there is an augment (X, Y) in G_{2} such that both $C \cap X$ and $C \cap Y$ are non-empty, then $V\left(G_{2}\right)=X \cup Y$.

Suppose on the contrary, under the hypothesis of (2), that $V\left(G_{2}\right) \neq X \cup Y$. Let $Z=V\left(G_{2}\right) \backslash(X \cup Y)$. Let $Z_{X}=\{z \in Z \mid z$ has a neighbor in $X\}$ and $Z_{Y}=\{z \in Z \mid z$ has a neighbor in $Y\}$. By the definition of an augment, Z_{X} is complete to X and anticomplete to Y, and Z_{Y} is complete to Y and anticomplete to X, and $Z_{X} \cap Z_{Y}=\emptyset$. Since G_{2} is connected, we may assume up to symmetry that $Z_{X} \neq \emptyset$. Pick any $z \in Z_{X}$. Since G_{2} is an atom, X is not a cutset of G_{2} (separating z from Y), so $Z_{Y} \neq \emptyset$, which restores the symmetry between X and Y. Since C is a clique and has a vertex in Y, C contains no vertex from Z_{X}; similarly, C contains no vertex from Z_{Y}; hence $C \subset X \cup Y$. Pick any $x \in C \cap X$. Since C is a minimal cutset, x has a neighor a_{1} in A_{1}. Then a_{1} must be adjacent to every neighbor y of x in Y, for otherwise $\left\{x, a_{1}, z, y\right\}$ induces a claw; and it follows that $y \in C$. We can repeat this argument for every vertex in C; by the last item in Theorem 1.8 it follows that every vertex in $X \cup Y$ is adjacent to a_{1} and, consequently, is in C. But this is a contradiction because C is a clique and $X \cup Y$ is not a clique. Thus (2) holds.

Now we distinguish two cases.
(I) First suppose that G_{2} is not a cobipartite graph.

For every edge $u v$ in the bipartite multigraph H, let $C_{u v}$ be the subset of $V\left(G_{2}\right)$ defined as follows. If v has degree 2 in H, say $N_{H}(v)=\left\{u, u^{\prime}\right\}$, and $\left\{v u, v u^{\prime}\right\}$ is a flat edge in $\mathcal{L}(H)$ on which an augment $\left(X, X^{\prime}\right)$ of G_{2} is based (where X corresponds to $v u$ and X^{\prime} corresponds to $v u^{\prime}$), then let $C_{u v}=X$. If $u v$ is not such an edge, then let $C_{u v}$ be the set of parallel edges in H whose ends are u and v. Now for every vertex u in H, let $C_{u}=\bigcup_{u v \in E(H)} C_{u v}$. Note that C_{u} is a clique in G_{2}. We claim that:

$$
\begin{equation*}
\text { There is a vertex } u \text { in } H \text { such that } C=C_{u} \text {. } \tag{3}
\end{equation*}
$$

For every augment (X, Y) in G_{2} we have $V\left(G_{2}\right) \neq X \cup Y$, because G_{2} is not cobipartite, and so, by (2), either $C \cap X$ or $C \cap Y$ is empty. It follows that there
is a vertex u in H such that $C \subseteq C_{u}$. Suppose that $C \neq C_{u}$. Then we can pick vertices $x \in C$ and $x^{\prime} \in C_{u} \backslash C$ such that H has vertices v, v^{\prime} with $x \in C_{u v}$ and $x^{\prime} \in C_{u v^{\prime}}$. Since C is a minimal cutset, x has a neighbor a_{1} in A_{1}. Since G_{2} is an atom, the set $C_{u} \backslash C_{u v}$ is not a cutset, so x has a neighbor z in $V\left(G_{2}\right) \backslash C_{u}$. Then $\left\{x, a_{1}, x^{\prime}, z\right\}$ induces a claw, a contradiction. So $C=C_{u}$ and (3) holds.

By (33), let u be a vertex in H such that $C=C_{u}$. Let $D=\left\{d \in A_{1} \mid d\right.$ has a neighbor in $C\}$. We claim that:

$$
\begin{equation*}
D \cup C \text { is a clique. } \tag{4}
\end{equation*}
$$

Pick any d in D. First suppose that d is not complete to C. Then we can find vertices $x \in C \cap N(d)$ and $x^{\prime} \in C \backslash N(d)$ such that H has vertices v, v^{\prime} with $x \in C_{u v}$ and $x^{\prime} \in C_{u v^{\prime}}$. Since G_{2} is an atom, the set $C_{u} \backslash C_{u v}$ is not a cutset, so x has a neighbor z in $V\left(G_{2}\right) \backslash C_{u}$. Then $\left\{x, d, x^{\prime}, z\right\}$ induces a claw, a contradiction. It follows that D is complete to C. Now suppose that D contains non-adjacent vertices d, d^{\prime}. Pick any $x \in C$. Then x has a neighbor z in $V\left(G_{2}\right) \backslash C_{u}$. Then $\left\{x, d, d^{\prime}, z\right\}$ induces a claw, a contradiction. So D is a clique. Thus (4) holds.

$$
\begin{equation*}
G\left[D \cup C \cup A_{2}\right] \text { is an elementary graph. } \tag{5}
\end{equation*}
$$

Let H^{*} be the bipartite graph obtained from H by adding $|D|$ vertices of degree 1 adjacent to vertex u. Then it is easy to see (by (3) and (4)) that $G\left[D \cup C \cup A_{2}\right]$ can be obtained from $\mathcal{L}\left(H^{*}\right)$ by augmenting the same flat edges as for G_{2} and with the same augments. Thus (5) holds.

Let $D=\left\{d_{1}, \ldots, d_{p}\right\}$. (Actually we have $|C| \geq 2$ by (3) and consequently $|D| \leq 2$ by (4), but we will not use this fact.) Recall that f is an L-coloring of G_{1}; so for $i=1, \ldots, p$ let $c_{i}=f\left(d_{i}\right)$.

The maximum degree in H^{*} is $\Delta\left(H^{*}\right)=\omega\left(\mathcal{L}\left(H^{*}\right)\right) \leq \omega\left(G_{2}\right) \leq \omega(G) \leq 4$. So we can color the edges of H^{*} with 4 colors in such a way that vertices d_{1}, \ldots, d_{p} receive colors c_{1}, \ldots, c_{p} respectively. Let L^{*} be a list assignment on $\mathcal{L}\left(H^{*}\right)$ defined as follows. If $v \in V(\mathcal{L}(H))$, let $L^{*}(v)=L(v)$. For $i=1, \ldots, p$, let $L^{*}\left(d_{i}\right)=\left\{c_{1}, \ldots, c_{i}\right\}$. By Theorem 1.9, $\mathcal{L}\left(H^{*}\right)$ admits an L^{*}-coloring f^{*}. Now we can use the same technique as in the proof of Theorem 4.1 to extend f^{*} to an L-coloring of G_{2}. Moreover, we have $f^{*}\left(d_{1}\right)=c_{1}$ and consequently $f^{*}\left(d_{i}\right)=c_{i}=f\left(d_{i}\right)$ for all $i=1, \ldots, p$. Let f^{\prime} be defined as follows. For all $v \in V\left(G_{1}\right) \backslash C$, let $f^{\prime}(v)=f(v)$, and for all $v \in V\left(G_{2}\right)$, let $f^{\prime}(v)=f^{*}(v)$. Then f^{\prime} is an L-coloring of G. This completes the proof in case (I).
(II) We may now assume that G_{2} is a cobipartite graph. Let W be the set of vertices of A_{1} that have a neighbor in C. For all $x \in C$, let $N_{1}(x)=N(x) \cap A_{1}$, $N_{2}(x)=N(x) \cap A_{2}$ and $M_{2}(x)=A_{2} \backslash N(x)$. We observe that:

$$
\begin{equation*}
N_{1}(x) \text { and } N_{2}(x) \text { are non-empty cliques, and } M_{2}(x) \text { is a clique. } \tag{6}
\end{equation*}
$$

We know that $N_{1}(x)$ and $N_{2}(x)$ are non-empty because C is a minimal cutset. For $i=1,2$ pick any $n_{i} \in N_{i}(x)$; then $N_{i}(x)$ is a clique, for otherwise x is the center of a claw with n_{3-i} and two non-adjacent vertices from $N_{i}(x)$. Also $M_{2}(x)$ is a clique, for otherwise G_{2} contains a stable set of size 3 . Thus (6) holds.

Suppose that $|C|=1$. Let $C=\{x\}$. Then $M_{2}(x)$ is empty, for otherwise $N_{2}(x)$ is a clique cutset in G_{2} (separating x from $M_{2}(x)$). So G_{2} is a clique. Then every vertex in A_{2} is simplicial, a contradiction to (1). So $|C| \geq 2$.

Suppose that two vertices x and y of C have inclusionwise incomparable neighborhoods in A_{1}. So there is a vertex a in A_{1} adjacent to x and not to y, and there is a vertex b in A_{1} adjacent to y and not to x. If a vertex u in A_{2} is adjacent to x, then it is adjacent to y, for otherwise $\{x, a, y, u\}$ induces a claw, and viceversa. So $N_{2}(x)=N_{2}(y)$, and $\left|N_{2}(x)\right| \leq 2$ (because $N_{2}(x) \cup\{x, y\}$ is a clique), and $M_{2}(x)=M_{2}(y)$. Suppose that $M_{2}(x) \neq \emptyset$. Let $C^{\prime}=\{u \in C \backslash\{x, y\} \mid u$ is complete to $\left.N_{2}(x)\right\}$. Since $C^{\prime} \cup N_{2}(x)$ is a clique, it cannot be a cutset of G_{2}, so some vertex z in $C \backslash\left(C^{\prime} \cup\{x, y\}\right)$ has a neighbor v in $M_{2}(x)$. Since $z \notin C^{\prime}, z$ has a non-neighbor u in $N_{2}(x)$. Then $z a$ is an edge, for otherwise $\{x, a, z, u\}$ induces a claw. But then $\{z, a, y, v\}$ induces a claw, a contradiction. So $M_{2}(x)=\emptyset$. Thus $A_{2}=N_{2}(x)=N_{2}(y)$. If the vertices in A_{2} have pairwise comparable neighborhoods in C, then it follows easily that the vertex in A_{2} with the smallest degree is simplicial in G, a contradiction to (1). So there are two vertices u, v in A_{2} and two vertices z, t in C such that $t u, z v$ are edges and $t v, z u$ are not edges. Clearly $z, t \notin\{x, y\}$, so $|C|=4$. Then $z a$ is an edge, for otherwise $\{x, a, z, u\}$ induces a claw; and similarly, $z b, t a, t b$ are edges. Then $a b$ is an edge, for otherwise $\{z, a, b, v\}$ induces a claw. Recall that since G is perfect and claw-free, the neighborhood of every vertex can be partitioned into two cliques, and consequently (since $\omega(G) \leq 4$) every vertex has degree at most 6 . Hence $N(x)=\{y, z, t, a, u, v\}$ (because we already know that x is adjacent to these six vertices), and similarly $N(y)=\{x, z, t, b, u, v\}, N(z)=\{x, y, t, a, b, v\}$, and $N(t)=\{x, y, z, a, b, u\}$. It follows that $A_{2}=\{u, v\}$ and $W=\{a, b\}$. Here we view f as an L-coloring of $G_{1} \backslash(C \cup\{a, b\})$ rather than of G_{1}, and we try to extend it to $\{a, b\} \cup C \cup A_{2}$. Let $S=\left\{s \in V\left(G_{1}\right) \backslash(C \cup\{a, b\}) \mid s\right.$ has a neighbor in $\{a, b\}\}$. If a vertex $s \in S$ is adjacent to a and not to b, then $\{a, s, b, x\}$ induces a claw, a contradiction. By symmetry this implies that S is complete to $\{a, b\}$. Then S is a clique, for otherwise $\left\{a, s, s^{\prime}, x\right\}$ induces a claw from some non-adjacent $s, s^{\prime} \in S$. So $S \cup\{a, b\}$ is a clique, and so $|S| \leq 2$. We remove the colors of $f(S)$ from the lists of a and b. By Lemma 3.8 we can color the vertices of $W \cup C \cup\{u, v\}$ with colors from the lists thus reduced. So G is L-colorable.

Therefore we may assume that any two vertices of C have inclusionwise comparable neighborhoods in A_{1}. This implies that some vertex a_{1} in A_{1} is complete to C, and that some vertex x in C is complete to W. Since $\left\{a_{1}\right\} \cup C$ is a clique, we have $|C| \leq 3$. We have $W=N_{1}(x)$ and, by (6), W is a clique, so $|W| \leq 3$. Here we view f as an L-coloring of $G_{1} \backslash C$ rather than of G_{1}, and we try to extend it to $C \cup A_{2}$. If $|W|=1$ (i.e., $W=\left\{a_{1}\right\}$), we remove the color $f\left(a_{1}\right)$ from the list of the vertices in C. Then G_{2} is a cobipartite graph which, with the reduced lists, satisfies the hypothesis of Lemma 3.5 or 3.9, so f can be extended to G_{2}. Hence assume that $|W| \geq 2$.

Suppose that W is complete to C. Then $W \cup C$ is a clique, so $|W|=2$ and $|C|=2$. Let $C=\{x, y\}$. Let $X=N_{2}(x), Y=N_{2}(y)$, and $Z=A_{2} \backslash(X \cup Y)$. Suppose that $Z \neq \emptyset$. By (6) $Z \cup(X \backslash Y)$ is a clique, since it is a subset of $M_{2}(y)$. Likewise, $Z \cup(Y \backslash X)$ is a clique. Moreover $X \backslash Y$ is complete to $Y \backslash X$, for otherwise $\{x, y, v, z, u\}$ induces a C_{5} for some non-adjacent $u \in X \backslash Y$ and
$v \in Y \backslash X$ and for any $z \in Z$. It follows that $X \cup Y$ is a clique cutset in G_{2} (separating $\{x, y\}$ from Z), a contradiction. So $Z=\emptyset$, and $A_{2}=X \cup Y$. Here we view f as an L-coloring of $G_{1} \backslash C$ rather than of G_{1}, and we try to extend it to $C \cup A_{2}$. We remove the colors of $f(W)$ from the list of x and y. Since $|W|=2$, each of these lists loses at most two colors. By Lemma 3.5 we can color the vertices of $C \cup A_{2}$ with colors from the lists thus reduced. So G is L-colorable.

Now assume that W is not complete to C. So some vertex a_{2} in W has a non-neighbor y in C. Then $N_{2}(x) \cup\{y\}$ is a clique, for otherwise $\left\{x, a_{2}, u, v\right\}$ induces a clique for any two non-adjacent vertices $u, v \in X \cup\{y\}$. Suppose that $M_{2}(x)$ is empty. So $A_{2}=N_{2}(x)$. Then the vertices in A_{2} have comparable neighborhoods in C (because they are complete to $\{x, y\}$ and $|C| \leq 3$), so the vertex in A_{2} with the smallest degree is simplicial, a contradiction to (11). Therefore $M_{2}(x)$ is not empty. Since the clique $\{y\} \cup N_{2}(x)$ is not a cutset in G_{2}, some vertex z in $C \backslash\{x, y\}$ has a neighbor v in $M_{2}(x)$. Hence $|C|=3$. Then z has a non-neighbor u in $N_{2}(x)$, for otherwise $\{y, z\} \cup N_{2}(x)$ is a clique cutset in G_{2} (separating x from v). Then $z a_{2}$ is an edge, for otherwise $\left\{x, a_{2}, z, u\right\}$ induces a claw; and $y v$ is an edge, for otherwise $\left\{z, a_{2}, y, v\right\}$ induces a claw; and $u v$ is an edge since $N_{2}(y)$ is a clique. Moreover, if $N_{2}(x)$ contains a vertex u^{\prime} adjacent to z, then $v u^{\prime}$ is an edge since $N_{2}(z)$ is a clique. Since this holds for every vertex in $M_{2}(x) \cap N(z)$, we deduce that $\left(M_{2}(x) \cap N(z)\right) \cup\{y\} \cup N_{2}(x)$ is a clique Q. If v^{\prime} is any non-neighbor of z in $M_{2}(x)$, then Q is a clique cutset in G_{2} (separating $\{x, z\}$ from $\left.v^{\prime}\right)$, a contradiction. So $M_{2}(x) \subset N(z)$. Suppose that $|W|=3$. Pick $a_{3} \in W \backslash\left\{a_{1}, a_{2}\right\}$. Then $a_{3} z$ is not an edge, for otherwise $W \cup\{x, z\}$ is a clique of size 5 . So, by the same argument as for a_{2}, we deduce that $a_{3} y$ is an edge. But this means that y and z have inclusionwise incomparable neighborhoods in A_{1} (because of a_{2}, a_{3}), a contradiction. So $|W|=2$. We remove the color $f\left(a_{1}\right)$ from the lists of x, y, z and remove the color $f\left(a_{2}\right)$ from the list of x and z. By Lemma 3.7 we can color the vertices of $C \cup A_{2}$ with colors from the lists thus reduced. So G is L-colorable. This completes the proof of the theorem.

References

[1] N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica, 12(2):125-134, 1992.
[2] V. Chvàtal and N. Sbihi. Recognizing claw-free perfect graphs. Journal of Combinatorial Theory, Series B, 44(2):154-176, 1988.
[3] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem. Annals of Mathematics, 164:51-229, 2006.
[4] P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. Congressus Numerantium, 26:125-157, 1979.
[5] F. Galvin. The list chromatic index of a bipartite multigraph. Journal of Combinatorial Theory, Series B, 63(1):153-158, 1995.
[6] S. Gravier and F. Maffray. Choice number of 3-colorable elementary graphs. Discrete Math., 165-166(15):353-358, March 1997.
[7] S. Gravier and F. Maffray. Graphs whose choice number is equal to their chromatic number. J. Graph Theory, 27(2):87-97, February 1998.
[8] S. Gravier and F. Maffray. On the choice number of claw-free perfect graphs. Discrete Mathematics, 276(13):211-218, 2004. 6th International Conference on Graph Theory.
[9] R. Häggkvist and A. Chetwynd. Some upper bounds on the total and list chromatic numbers of multigraphs. Journal of Graph Theory, 16(5):503-516, 1992.
[10] P. Hall. On Representatives of Subsets. Classic Papers in Combinatorics, 55-62, 1987.
[11] F. Maffray and B.A. Reed. A description of claw-free perfect graphs. Journal of Combinatorial Theory, Series B, 75(1):134-156, 1999.
[12] K.R. Parthasarathy and G. Ravindra. The strong perfect-graph conjecture is true for $K_{1,3}$-free graphs. Journal of Combinatorial Theory, Series B, 21(3):212-223, 1976.
[13] A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency. Springer, 2003.
[14] R.E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55:221-232, 1985.
[15] S.H. Whitesides. An algorithm for finding clique cut-sets. Information Processing Letters, 12:31-32, 1981.

[^0]: * CNRS, Institut Fourier, University of Grenoble, France.
 ${ }^{\dagger}$ CNRS, Laboratoire G-SCOP, University of Grenoble, France.
 ${ }^{\ddagger}$ Laboratoire G-SCOP, University of Grenoble, France.

