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Abstract

It has been conjectured that for every claw-free graph G the choice

number of G is equal to its chromatic number. We focus on the special

case of this conjecture where G is perfect. Claw-free perfect graphs can

be decomposed via clique-cutset into two special classes called elementary

graphs and peculiar graphs. Based on this decomposition we prove that

the conjecture holds true for every claw-free perfect graph with maximum

clique size at most 4.

1 Introduction

We consider finite, undirected graphs, without loops. Given a graph G and an
integer k, a k-coloring of the vertices of G is a mapping c : V (G)→ {1, 2, . . . , k}
for which every pair of adjacent vertices x, y satisfies c(x) 6= c(y). A coloring is a
k-coloring for any k. The graph G is called k-colorable if it admits a k-coloring.
The chromatic number of G, denoted by χ(G), is the smallest integer k such
that G is k-colorable.

The list-coloring variant of the coloring problem, introduced by Erdős, Rubin
and Taylor [4] and by Vizing [9], is as follows. Assume that each vertex v has
a list L(v) of prescribed colors; then we want to find a coloring c such that
c(v) ∈ L(v) for all v ∈ V (G). When such a coloring exists we say that the graph
G is L-colorable and that c is an L-coloring of G. Given an integer k, a graph G
is k-choosable if it is L-colorable for every assignment L that satisfies |L(v)| = k
for all v ∈ V (G) (equivalently, if it is L-colorable for every assignment L that
satisfies |L(v)| = k for all v ∈ V (G)). The choice number or list-chromatic
number ch(G) of G is the smallest k such that G is k-choosable. It is easy
to see that every k-choosable graph G is k-colorable (consider the assignment
L(v) = {1, 2, . . . , k} for all v ∈ V (G)), and so χ(G) ≤ ch(G) holds for every
graph. There are graphs for which the difference between ch(G) and χ(G) is
arbitrarily large. (For example, it is easy to see that the choice number of the
complete bipartite graph Kp,pp is p+ 1.)

The above notions can be extended to the problem of coloring the edges of a
graph. The least number of colors necessary to color all edges of a graph in such
a way that no two adjacent edges receive the same color is its chromatic index
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χ′(G). The least k such that G is L′-edge-colorable for any assignment L′ of
colors to the edges of G with |L′(e)| = k for all e ∈ E is called the choice index
or list-chromatic index of G. Vizing (see [9]), proposed the following conjecture:

Conjecture 1.1. Every graph G satisfies ch′(G) = χ′(G).

The special case of this conjecture dealing with list-coloring the edges of a
complete bipartite graph was known as the Dinitz conjecture, as it was equiva-
lent to a problem on Latin squares posed by Jeffrey Dinitz. Galvin [5] established
the following more general result.

Theorem 1.2 (Galvin [5]). Every bipartite graph G satisfies ch′(G) = χ′(G).

The problem of edge-coloring can be reduced to a special instance of the
problem of vertex-coloring via the line-graph. Given a graph H , the line-graph
L(H) of H is the graph whose vertices are the edges of H and whose edges
are the pairs of adjacent edges of H . Conversely, H is called the root graph of
L(H). It is clear that χ(L(H)) = χ′(H) and ch(L(H)) = ch′(H).

In a graph G, we say that a vertex v is complete to a set S ⊆ V (G) when v
is adjacent to every vertex in S, and anticomplete to S when v has no neighbor
in S. Given two sets S, T ⊆ V (G) we say that S is complete to T is every vertex
in S is adjacent to every vertex in T , and anticomplete to T when no vertex in
S is adjacent to any vertex in T . The neighborhood of a vertex v is denoted by
NG(v) (and the subscript G may be dropped when there is no ambiguity). The
complement of graph G is denoted by G.

A graph is cobipartite if its complement is bipartite, in other words if its
vertex-set can be partitioned into at most two cliques. We let Pn, Cn and Kn

respectively denote the path, cycle and complete graph on n vertices.
Given any graph F , a graph G is F -free if no induced subgraph of G is

isomorphic to F . The claw is the graph with four vertices a, b, c, d and edges
ab, ac, ad; vertex a is called the center of the claw.

A graphG is perfect if every induced subgraphH ofG satisfies χ(H) = ω(H).
A Berge graph is any graph that does not contain as an induced subgraph an
odd cycle of length at least five or the complement of an odd cycle of length at
least five. Chudnovsky, Robertson, Seymour, Thomas solved the long-standing
and famous problem known as the Strong Perfect Graph Conjecture by proving
the following theorem.

Theorem 1.3 ([3]). A graph G is perfect if and only if it is Berge.

The special case of the Strong Perfect Graph Conjecture concerning claw-free
graphs had been resolved much earlier by Parthasarathy and Ravindra.

Theorem 1.4 (Parthasarathy and Ravindra [12]). Every claw-free Berge graph
G is perfect.

Here we are interested in a restricted version of a question posed by two
of us [6, 7], asking whether it is true that every claw-free graph G satisfies
ch(G) = χ(G).

Conjecture 1.5. Every claw-free perfect graph G satisfies ch(G) = χ(G).
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This conjecture was proved in [8] for every claw-free perfect graph G with
ω(G) ≤ 3. Here we will prove it for the case ω(G) ≤ 4. Our main result is the
following.

Theorem 1.6. Let G be a claw-free perfect graph with ω(G) ≤ 4. Then ch(G) =
χ(G).

Our proof is based on a decomposition theorem for claw-free perfect graphs
due to Chvátal and Sbihi [2]. They proved that every claw-free perfect graph
either admits a clique cutset or belongs to two specific classes of graphs, which
we defined precisely below.

Definition (Clique cutset). A clique cutset in a graph G is a clique C of G
such that G \C is disconnected. A minimal clique cutset is a clique cutset that
does not contain another clique cutset.

If C is a minimal clique cutset in a graph G and A1, . . . , Ak are the vertex-
sets of the components of G \ C, we consider that G is decomposed into the
collection of induced subgraphs G[Ai ∪ C] for i = 1, . . . , k. These subgraphs
themselves may admit clique cutsets, so the decomposition (via minimal clique
cutsets) can be applied further. This decomposition can be represented by a
tree, where each non-leaf node corresponds to an induced subgraph G′ of G
and a minimal clique cutset C′ of G′, and the children of the node are the
induced subgraphs into which G′ is decomposed along C′. The leaves of T are
indecomposable subgraphs of G (subgraphs that have no clique cutset), which
we call atoms. (This tree may not be unique, depending on the choice of a
clique cutset at each node.) Whitesides [15] and Tarjan [14] proved that for
every graph G on n vertices every clique-cutset decomposition tree has at most
n leaves and that such a decomposition can be obtained in polynomial time
O(n3). A nice feature is that every graph G admits an extremal clique cutset,
that is, a minimal clique cutset C such that there is a component H of G \ C
such that G[V (H) ∪ C] is an atom.

Definition (Elementary graph [2]). A graph is elementary if its edges can be
colored with two colors (one color on each edge) in such a way that every induced
two-edge path has its two edges colored differently.

Definition (Peculiar graph [2]). A graph G is peculiar if V (G) can be parti-
tioned into nine sets Ai, Bi, Qi (i = 1, 2, 3) that satisfy the following properties
for each i, where subsbcripts are understood modulo 3:

• Each of the nine sets is non-empty and induces a clique.

• Ai is complete to Bi ∪Ai+1 ∪ Ai+2 ∪Bi+2 and not complete to Bi+1.

• Bi is complete to Ai ∪Bi+1 ∪Bi+2 ∪ Ai+1 and not complete to Ai+2.

• Qi is complete to Ai+1∪Bi+1∪Ai+2 ∪Bi+2 and anticomplete to Ai∪Bi∪
Qi+1 ∪Qi+2.

We say that (A1, B1, A2, B2, A3, B3, Q1, Q2, Q3) is a peculiar partition of G.

Theorem 1.7 (Chvátal and Sbihi [2]). Every claw-free perfect graph either has
a clique cutset or is a peculiar graph or an elementary graph.
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The structure of peculiar graphs is clear from their definition. Concerning
elementary graphs, their structure was elucidated by Maffray and Reed [11] as
follows. Let us say that an edge is flat if it is not contained in a triangle.

Definition (Flat edge augmentation). Let xy be a flat edge in a graph G, and
let A be a cobipartite graph such that V (A) is disjoint from V (G) and V (A) can
be partitioned into two cliques X,Y . We obtain a new graph G′ by removing x
and y from G and adding all edges between X and NG(x) \ {y} and all edges
between Y and NG(y) \ {x}. This operation is called augmenting the flat edge
xy with the cobipartite graph A. In G′ the pair (X,Y ) is called the augment.

When x1y1, . . . , xkyk are pairwise non-adjacent flat edges in a graph G, and
A1, . . . , Ak are pairwise vertex-disjoint cobipartite graphs, also vertex-disjoint
from G, one can augment each edge xiyi with the graph Ai. Clearly the result
is the same whatever the order in which the k operations are performed. We
say that the resulting graph is an augmentation of G.

Theorem 1.8 (Maffray and Reed [11]). A graph G is elementary if and only if
it is an augmentation of the line-graph H of a bipartite multigraph B. Moreover
we may assume that each augment Ai satisfies the following:

• There is at least one pair of non-adjacent vertices in Ai,

• The bipartite graph whose vertex-set is Xi ∪ Yi and whose edges are the
edges of Ai with one end in Xi and one in Yi is connected (and conse-
quently both |Xi|, |Yi| ≥ 2).

In a directed graph D, for every vertex v we let d+(v) denote the number of
vertices w such that vw is an arc of D.

Theorem 1.9 (Galvin [5]). Let G be the line-graph of a bipartite graph B, where
V (B) is partitioned into two stable set X,Y . Let f be an ω(G)-coloring of the
vertices of G, with colors 1, 2, . . . , ω(G). Let D be the directed graph obtained
from G by directing every edge uv as follows, assuming that f(u) < f(v): when
the common end of edges u, v in B is in X, then give the orientation u→ v, and
when it is in Y give the orientation u← v. Assume that L is a list assignment
on V (G) such that every vertex v of G satisfies |L(v)| ≥ d+D(v) + 1. Then G is
L-colorable.

Let G be a graph and let L be a list assignment on V (G). For every set
S ⊆ V (G) we set L(S) =

⋃
x∈S L(x). If f is a coloring of G, we set f(S) =

{f(x) | x ∈ S}. If H is an induced subgraph of G, we may also write L(H) and
f(H) instead of L(V (H)) and f(V (H)) respectively.

For the sake of completeness we recall the classical theorems of Kőnig and
Hall. Let X1, . . . , Xk be a family of sets. A system of distinct representatives
for the family is a subset {x1, . . . , xk} of k distinct elements of X1 ∪ · · · ∪ Xk

such that xi ∈ Xi for all i = 1, . . . , k. Note that if G is a graph and L is a
list assignment on V (G), and the family {L(v) | v ∈ V (G)} admits a system of
distinct representatives, then this is an L-coloring of G.

Theorem 1.10 (Hall’s theorem [10, 13]). A family F of k sets has a system of
distinct representatives if and only if, for all ℓ ∈ {1, . . . , k}, the union of any ℓ
members of F has size at least ℓ.
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A matching in a graph G is a set of pairwise non-incident edges.

Theorem 1.11 (Kőnig’s theorem [13]). In a bipartite graph on n vertices, let
µ be the size of a maximum matching and α be the size of a maximum stable
set. Then µ+ α = n.

2 Peculiar graphs

Lemma 2.1. Let G be a connected claw-free graph that contains a peculiar
subgraph, and assume that G is also C5-free. Then G is peculiar.

Proof. Let H be a peculiar subgraph of G that is maximal. If H = G we are
done. So let us assume that H 6= G. Since G is connected there is a vertex x of
V (G) \ V (H) that has a neighbor in H . Let A1, B1, A2, B2, A3, B3, Q1, Q2, Q3

be nine cliques that form a partition of V (H) as in the definition of a peculiar
graph. For i = 1, 2, 3 we pick a pair of non-adjacent vertices ai ∈ Ai and
bi+1 ∈ Bi+1, and we pick any qi ∈ Qi. (All subscripts are modulo 3.)

If x has no neighbor in Q1 ∪Q2 ∪Q3, then it has a neighbor a in Ai ∪Bi for
some i; but then {a, x, qi+1, qi+2} induces a claw. Therefore x has a neighbor
in Q1 ∪Q2 ∪Q3.

Suppose that x has a neighbor k in Q1 and none in Q2 ∪ Q3. Then x has
no neighbor z in A1 ∪ B1, for otherwise {z, x, q2, q3} induces a claw. Also x
is adjacent to one of a2, b3, for otherwise {x, k, a2, b3} induces a claw; up to
symmetry we assume that x is adjacent to a2. Then x is adjacent to every
vertex a ∈ A3, for otherwise {a2, q3, a, x} induces a claw; and to every vertex
y ∈ A2 ∪ B2 ∪ Q1, for otherwise {a3, y, x, q2} induces a claw; and to every
vertex b ∈ B3, for otherwise {b2, b, q3, x} induces a claw. Hence x is complete to
A2 ∪B2 ∪A3 ∪B3 ∪Q1 and anticomplete to A1 ∪B1 ∪Q2 ∪Q3. So V (H)∪ {x}
induces a peculiar subgraph of G, because x can be added to Q1, a contradiction
to the choice of H .

Therefore we may assume up to symmetry that x has a neighbor k ∈ Q1

and a neighbor k′ ∈ Q2. Note that x has no neighbor k′′ ∈ Q3, for otherwise
{x, k, k′, k′′} induces a claw.

Suppose that x has a non-neighbor a ∈ A1. Then x is adjacent to every
vertex u ∈ A2, for otherwise {x, k, u, a, k′} induces a C5; and then to every
vertex v ∈ B2, for otherwise either {a2, a, x, v} induces a claw (if av /∈ E(G))
or {x, k, v, a, k′} induces a C5 (if av ∈ E(G)); and then to every vertex w ∈
A3 ∪ B3 ∪ Q1, for otherwise {b2, x, w, q3} induces a claw. Then a is adjacent
to every vertex b ∈ B2, for otherwise {x, k′, a, q3, b} induces a C5; and by the
same argument the set A1 \N(x) is complete to B2. It follows that a1 ∈ N(x)
since a1 is not complete to B2. Then x is adjacent to every vertex q ∈ Q2, for
otherwise {a1, x, q3, q} induces a claw. But now we observe that V (H) ∪ {x}
induces a larger peculiar subgraph of G, because x can be added to A3 and the
vertices of A1 \N(x) can be moved to B1.

Therefore we may assume that x is complete to A1, and, similarly, to B2.
Then x is adjacent to every vertex u in Q2 ∪ B3, for otherwise {a1, x, u, q3}
induces a claw, and similarly x is complete to Q1 ∪ A3. It cannot be that x
has both a non-neighbor a′ ∈ A2 and a non-neighbor b′ ∈ B1, for otherwise
{x, k, a′, b′, k′} induces a C5. So, up to symmetry, x is complete to A2. But now
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V (H) ∪ {x} induces a larger peculiar subgraph of G, because x can be added
to A3. This completes the proof of the lemma. �

We observe that (up to isomorphism) there is a unique peculiar graph G
with ω(G) = 4. Indeed if G is such a graph, with the same notation as in the
definition of a peculiar graph, then for each i the set Qi ∪ Ai+1 ∪ Bi+1 ∪ Ai+2

is a clique, so, since G has no clique of size 5, the four sets Qi, Ai+1, Bi+1, Ai+2

have size 1; and so the nine sets Ai, Bi, Qi (i = 1, 2, 3) all have size 1. Hence G
is the unique peculiar graph on nine vertices.

Lemma 2.2. Let G be a peculiar graph with ω(G) = 4. Then G is 4-choosable.

Proof. Let (A1, B1, A2, B2, A3, B3, Q1, Q2, Q3) be a peculiar partition of G. As
observed above, we have |Ai| = |Bi| = |Qi| = 1 for all i = 1, 2, 3. Hence let
Ai = {ai}, Bi = {bi} and Qi = {qi}, for all i = 1, 2, 3. Recall that ai is not
adjacent to bi+1, for each i. Let Q = {q1, q2, q3}.

Let L be a list assignment that satisfies |L(v)| = 4 for all v ∈ V (G). Let us
prove that G is L-colorable.

First suppose that for some i ∈ {1, 2, 3} we have L(ai) ∩ L(bi+1) 6= ∅, say
for i = 1. Pick any c ∈ L(a1) ∩ L(b2). Let G′ = G \ {a1, b2} and let L′(x) =
L(x) \ {c} for all x ∈ V (G′). Clearly, G′ is a claw-free perfect graph and
ω(G′) = 3. Moreover, G′ is elementary. To see this, define an egde coloring of
G′ by coloring blue the edges in {q3b1, q3a2, b1a2, b3a3, q2a3, b3q1} and red the
edges in {q2b1, q2b3, b3b1, q1a2, q1a3, a2a3}; it is a routine matter to check that
this edge coloring is an elementary coloring. By [8], G′ is 3-choosable, so it
admits an L′-coloring. We can extend this coloring to a1 and b2 by assigning
color c to them. Therefore we may assume that:

L(ai) ∩ L(bi+1) = ∅ for all i = 1, 2, 3. (1)

Now suppose that there are vertices u, v ∈ Q such that L(u) ∩ L(v) 6= ∅.
Let w be the unique vertex in Q \ {u, v}. Pick any c ∈ L(u) ∩ L(v). Let
G′ = G \ {u, v}. Let L′(x) = L(x) \ {c} for all x ∈ V (G′) \ {w}, and let
L′(w) = L(w). We claim that the family {L′(x) | x ∈ V (G′)} admits a system
of distinct representatives. Suppose the contrary. By Hall’s theorem, there is
a set S ⊆ V (G′) such that |L′(S)| < |S|. Since |L′(x)| ≥ 3 for all x ∈ V (G′),
we have |L′(S)| ≥ 3, so |S| ≥ 4; this implies that either (a) S ⊇ {ai, bi+1} for
some i ∈ {1, 2, 3} or (b) S contains w. In case (a), (1) implies that c belongs to
at most one of L(ai) and L(bi+1), and so |L′(S)| ≥ |L′(ai) ∪ L′(bi+1)| ≥ 7, so
|S| ≥ 8, which is impossible because |V (G′)| = 7. In case (b), since |L′(w)| = 4,
we have |L′(S)| ≥ 4, so |S| ≥ 5, which implies that S satisfies (a) again, a
contradiction. Thus the family {L′(x) | x ∈ V (G′)} admits a system of distinct
representatives, which is an L′-coloring of G′. We can extend this coloring to u
and v by assigning color c to them. Therefore we may assume that

L(u) ∩ L(v) = ∅ for all u, v ∈ Q. (2)

We claim that the family {L(x) | x ∈ V (G)} admits a system of distinct
representatives. Suppose the contrary. By Hall’s theorem, there is a set T ⊆
V (G) such that |L(T )| < |T |. Since |L(x)| = 4 for all x ∈ V (G), we have
|L(T )| ≥ 4, so |T | ≥ 5; this implies that either (a) T ⊇ {ai, bi+1} for some
i ∈ {1, 2, 3} or (b) T contains two vertices from Q. In either case, (1) or (2)
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implies that |L(T )| ≥ 8, so |T | ≥ 9, that is, T = V (G). But then T ⊃ Q,
so (2) implies that |L(T )| ≥ 12 and |T | ≥ 13, which is impossible. Thus the
family {L(x) | x ∈ V (G)} admits a system of distinct representatives, which is
an L-coloring of G. �

3 Cobipartite graphs

In this section we analyze the list-colorability of certain cobipartite graphs with
certain list assignments.

Lemma 3.1. Let H be a cobipartite graph, where V (H) is partitioned into two
cliques X and Y . Assume that |X | ≤ |Y | and that there are |X | non-edges
between X and Y and they form a matching in H. Let L be a list assignment
on V (H) such that |L(x)| ≥ |X | for all x ∈ X and |L(y)| ≥ |Y | for all y ∈ Y .
Then H is L-colorable.

Proof. Let X = {x1, . . . , xp}, and let y1, . . . , yp be vertices of Y such that
{x1, y1}, . . . , {xp, yp} are the non-edges of H . The hypothesis implies that
y1, . . . , yp are pairwise distinct. Since a clique in H can contain at most one of
xi, yi for each i = 1, . . . , p, we have ω(H) = |Y |.

We proceed by induction on |X |. If |X | = 0, then H is a clique with
|L(v)| = |V (H)| for all v ∈ V (H); so H is L-colorable by Hall’s theorem.
Now suppose that |X | > 0. If the family {L(v) | v ∈ V (H)} admits a system of
distinct representatives, then this is an L-coloring. So suppose the contrary. By
Hall’s theorem there is a set T ⊆ V (H) such that |L(T )| < |T |. Then |T | > |X |,
so T contains a vertex y from Y , and so |T | > |L(y)| ≥ |Y |. Since ω(H) = |Y |,
it follows that T is not a clique. So T contains non-adjacent vertices x, y with
x ∈ X and y ∈ Y . We have |L(x) ∪ L(y)| ≤ |L(T )| < |T | ≤ |X | + |Y |, which
implies L(x) ∩ L(y) 6= ∅. Pick a color c ∈ L(x) ∩ L(y). Set L′(w) = L(w) \ {c}
for all w ∈ V (H)\ {x, y}. Let X ′ = X \ {x}, Y ′ = Y \ {y}, and H ′ = H \ {x, y}.
Clearly every vertex x′ ∈ X ′ satisfies |L′(x′)| ≥ |X ′| and every vertex y′ ∈ Y ′

satisfies |L′(y′)| ≥ |Y ′|, and |X ′| ≤ |Y ′|, and there are |X ′| non-edges between
X ′ and Y ′, and they form a matching in H ′. By the induction hypothesis, H ′

admits an L′-coloring. We can extend it to an L-coloring of H by assigning the
color c to x and y. �

Lemma 3.2. Let H be a cobipartite graph, where V (H) is partitioned into
two cliques X = {x1, x2} and Y = {y1, y2}, and E(H) = {x2y2}. Let L be a
list assignment on V (H) such that |L(u)| ≥ 2 for all u ∈ V (H). Then H is
L-colorable if and only if every clique Q of H satisfies |L(Q)| ≥ |Q|.

Proof. This is a corollary of Claim 1 in [6]. For completeness, we restate the
claim here: The graph H is not L-colorable if and only if for some v ∈ {x2, y2}
we have L(x1) = L(y1) = L(v) and these three lists are of size two.

Clearly, if H is L-colorable, then every clique Q of H satisfies |L(Q)| ≥ |Q|.
Conversely, if every clique Q of H satisfies |L(Q)| ≥ |Q|, then by the above
claim, applied to the cliques {x1, y1, x2} and {x1, y1, y2}, we obtain that H is
L-colorable. �
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Lemma 3.3. Let H be a cobipartite graph, where V (H) is partitioned into two
cliques X = {x1, x2, x3} and Y = {y1, y2}, and E(H) = {x3y2}. Let L be a
list assignment on V (H) such that |L(x)| ≥ 3 for all x ∈ X and |L(y)| ≥ 2 for
all y ∈ Y . Then H is L-colorable if and only if every clique Q of H satisfies
|L(Q)| ≥ |Q|.

Proof. IfH is L-colorable then clearly every clique Q ofH satisfies |L(Q)| ≥ |Q|.
Now let us prove the converse.

First suppose that L(y2) ⊆ L(x3). Since H \ {x3} is a clique, every subset
T of V (H) \ {x3} satisfies |L(T )| ≥ |T |, and so, by Hall’s theorem there is an
L-coloring of H \ {x3}. Then we can extend any such coloring by assigning to
x3 the color assigned to y2.

Now assume that L(y2) 6⊆ L(x3). This implies |L(x3)∪L(y2)| ≥ 4. Suppose
that the family {L(x) | x ∈ V (H)} does not have a system of distinct repre-
sentatives. By Hall’s theorem there is a set T ⊆ V (H) such that |L(T )| < |T |.
By the assumption, T is not a clique, so it contains x3 and y2. It follows that
|L(T )| ≥ 4. Hence |T | = 5, so T = V (H), and |L(T )| = 4, and we may as-
sume that L(x3) = {1, 2, 3} and L(y2) = {3, 4} and L(T ) = {1, 2, 3, 4}. Assign
color 3 to x3 and y2. Now assign a color c from L(y1) \ {3} to y1 (there may
be two choices for c). We may assume that this coloring fails to be extended
to {x1, x2}; so it must be that L(x1) \ {3, c} and L(x2) \ {3, c} are equal and
of size 1; so L(x1) = L(x2) = {b, c, 3} for some b 6= c, with b ∈ {1, 2, 4}. Sup-
pose that 3 /∈ L(y1). Then there is a second choice for c, and we may assume
that this attempt fails similarly. Hence L(y1) = {b, c}, with b, c ∈ {1, 2, 4}.
If {b, c} = {1, 2}, then the clique Q1 = {x1, x2, x3, y1} violates the assump-
tion because L(Q1) = {1, 2, 3}. If {b, c} = {1, 4} or {2, 4}, then the clique
Q2 = {x1, x2, y1, y2} violates the assumption because L(Q2) = {b, c, 3}. So we
may assume that 3 ∈ L(y1), i.e., L(y1) = {c, 3}. If c = 4, then Q2 violates the
assumption because L(Q2) = {b, 3, 4}. So, up to symmetry, c = 1. If b = 2, then
Q1 violates the assumption because L(Q1) = {1, 2, 3}. If b = 4, then Q2 violates
the assumption because L(Q2) = {1, 3, 4}. Hence the family {L(x) | x ∈ V (H)}
admits a system of distinct representatives, which is an L-coloring of G. �

Lemma 3.4. Let H be a cobipartite graph, where V (H) is partitioned into two
cliques X = {x1, x2, x3} and Y = {y1, y2, y3}, and E(H) = {x2y2, x3y3}. Let
L be a list assignment on V (H) such that |L(x)| ≥ 3 for all x ∈ V (H). Then
H is L-colorable if and only if every clique Q of H satisfies |L(Q)| ≥ |Q|. In
particular, if |L(x1) ∪ L(y1)| ≥ 4, then H is L-colorable.

Proof. IfH is L-colorable then clearly every clique Q ofH satisfies |L(Q)| ≥ |Q|.
Now let us prove the converse. We first claim that:

We may assume that |L(xi) ∩ L(yi)| ≤ 1 for each i ∈ {2, 3}. (1)

Suppose on the contrary, and up to symmetry, that |L(x2) ∩ L(y2)| ≥ 2. Let
H ′ = H \ {x2}, and set L′(y2) = L(x2) ∩ L(y2) and L′(u) = L(u) for all
u ∈ {x1, x3, y1, y3}. Thus H ′ and L′ satisfy the hypothesis of Lemma 3.3. If
every clique Q in H ′ satifies |L′(Q)| ≥ |Q|, then Lemma 3.3 implies that H ′

admits an L′-coloring, and we can extend it to an L-coloring of H by giving to
x2 the color assigned to y2. Hence assume that some clique Q in H ′ satisfies
|L′(Q)| < |Q|. We have |L′(Q)| ≥ 2, so |Q| ≥ 3, so 3 ≤ |L′(Q)| < |Q| ≤ 4, and
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so |L′(Q)| = 3 and |Q| = 4. Since x3 and y3 play symmetric roles here, we may
assume up to symmetry that Q = {x1, y1, y2, y3}, and L′(Q) = {a, b, c}, where
a, b, c are three distinct colors. Hence L(x1) = L(y1) = L(y3) = {a, b, c}. Since
|L(Q)| ≥ 4, there is a color d ∈ L(y2) \ {a, b, c}. Since |L({x1, y1, x2, y3})| ≥ 4,
there is a color e ∈ L(y2) \ {a, b, c}. If a ∈ L(x3), then we can assign color a to
x3 and y3, colors b and c to x1 and y1, color e to x2 and color d to y2. So assume
that a /∈ L(x3), and similarly that b, c /∈ L(x3). Then we can assign colors a, b, c
to x1, y1, y3, color e to x2, color d to y2, and a color from L(x3) \ {d, e} to x3.
Thus (1) holds.

It follows from (1) that |L(xi) ∪ L(yi)| ≥ 5 for i = 2, 3. If the family
{L(x) | x ∈ V (H)} admits a system of distinct representatives, then this is
an L-coloring. So suppose the contrary. By Hall’s theorem there is a set T ⊆
V (H) such that |L(T )| < |T |. By the assumption, T is not a clique, so it
contains xi and yi for some i ∈ {2, 3}. By (1) we have |L(T )| ≥ 5, so |T | ≥ 6,
hence T = V (H), and |L(T )| = 5, and consequently |L(xi)| = |L(yi)| = 3 and
|L(xi) ∩ L(yi)| = 1 for each i = 2, 3. Let L(xi) ∩ L(yi) = {ci} for i = 2, 3.

Suppose that c2 6= c3. We assign color ci to xi and yi for each i = 2, 3. If this
coloring can be extended to {x1, y1} we are done. So suppose the contrary. Then
it must be that L(x1) = L(y1) = {b, c2, c3} for some color b ∈ L(H) \ {c2, c3}.
Then we can color H as follows. Assign colors c2 and c3 to x1 and y1. There
are four ways to color x2 and y2 with one color from L(x2)\ {c2} for x2 and one
color from L(y2) \ {c2} for y2; at most two of them use a pair of colors equal
to L(x3) \ {c3} or L(y3) \ {c3}, so we can choose another way, and there will
remain a color for x3 and a color for y3.

Now suppose that c2 = c3; call this color c. Let L′(v) = L(v) \ {c} for all
v ∈ V (H)\{x3, y3}. We may assume that the graph H \{x3, y3} does not admit
an L′-coloring, for otherwise such a coloring can be extended to H by assigning
color c to x3 and y3. Hence, by Lemma 3.2 there is a clique Q of size 3 in
H \ {x3, y3} such that |L′(Q)| = 2, say L′(Q) = {a, b}. So L(u) = {a, b, c} for
all u ∈ Q. Moreover Q consists of x1, y1 and one of x2, y2. We assign color a to
x1, color b to y1, and color c to x2 and y2. Since |L(Q ∪ {x3})| ≥ 4, there is a
color d ∈ L(x3) \ {a, b, c}, and similarly there is a color e ∈ L(y3) \ {a, b, c}. We
assign d to x3 and e to y3, and we obtain an L-coloring of H .

Finally we prove the last sentence of the lemma. Since x1 and y1 are in all
cliques of size 4, the assumption that |L(x1) ∪ L(y1)| ≥ 4 implies that every
clique Q of H satisfies |L(Q)| ≥ |Q|. So H is L-colorable. �

Lemma 3.5. Let H be a cobipartite graph with ω(H) ≤ 4. Let x, y be two
adjacent vertices in H such that N(x) \ {y} and N(y) \ {x} are cliques and
V (H) = N(x)∪N(y). Let L be a list assignment such that |L(x)| ≥ 2, |L(y)| ≥
2, and |L(v)| ≥ 4 for all v ∈ V (H) \ {x, y}. Then H is L-colorable.

Proof. Let X = N(x)\{y} and Y = N(y)\{x}. Let I = X∩Y . Since {x, y}∪I
is a clique, we have |I| ≤ 2.

First suppose that |I| = 2. Let I = {w,w′}. Since {x} ∪X is a clique that
contains I, we have |X \ I| ≤ 1. Likewise |Y \ I| ≤ 1. We may assume that we
are in the situation where X \ I and Y \ I are non-empty and complete to each
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other, because any other situation can be reduced to that one by adding vertices
or edges (which makes the coloring problem only harder). Let X \ I = {u} and
Y \ I = {v}. Suppose that L(x)∩L(v) 6= ∅. Pick a color a ∈ L(x)∩L(v), assign
it to x and v, and remove it from the lists of all other vertices. Pick a color
b from L(y) \ {a}, assign it to y and remove it from the list of the vertices in
I. Let L′ be the reduced list assignment. Then |L′(w)| ≥ 2, |L′(w′)| ≥ 2, and
|L′(u)| ≥ 3, so we can L′-color greedily w,w′, u in this order. Hence assume that
L(x) ∩ L(v) = ∅, and similarly that L(y) ∩ L(u) = ∅. Then |L(x) ∪ L(v)| ≥ 6
and |L(y) ∪ L(u)| ≥ 6. It follows that the family {L(z) | z ∈ V (H)} satisfies
Hall’s condition, so H is L-colorable.

Now suppose that |I| = 1. Let I = {w}. Then |X \{w}| ≤ 2 and |Y \{w}| ≤
2. We may assume that we are in the situation where X \ I and Y \ I have
size 2 and there are three edges between them, because any other situation
can be reduced to that one by adding vertices or edges. Let X \ I = {u, v}
and Y \ I = {s, t}, and let us, ut, vs ∈ E(H) and vt /∈ E(H). Suppose that
L(x) ∩ L(s) 6= ∅. We pick a color a ∈ L(x) ∩ L(s), assign it to x and s, and
remove it from the lists of all other vertices. Then it is easy to see that we can
color y, t, w, u, v in this order, using colors from the reduced lists. Hence assume
that L(x) ∩ L(s) = ∅, and similarly that L(y) ∩ L(u) = ∅. So |L(x) ∪ L(s)| ≥ 6
and |L(y) ∪ L(u)| ≥ 6.
Suppose that L(x)∩L(t) 6= ∅. We pick a color a ∈ L(x)∩L(t), assign it to x and
t, and remove it from the lists of all other vertices. Since L(x) ∩ L(s) = ∅, the
list L(s) loses no color (a /∈ L(s)). If L(y) \ {a} and L(v) \ {a} have a common
element b, we assign it to y and v, and it is easy to see that w, u, s can be colored
in this order with the reduced lists. On the other hand if L(y)\{a} and L(v)\{a}
are disjoint, then it is easy to see that the family {L(z)\{a} | z ∈ V (H)\{x, t}}
satisfies Hall’s condition, soH is L-colorable. Hence assume that L(x)∩L(t) = ∅,
and similarly that L(y) ∩ L(v) = ∅. So |L(x) ∪ L(t)| ≥ 6 and |L(y) ∪ L(v)| ≥ 6.
Suppose that L(t) ∩ L(v) 6= ∅. Pick a color a ∈ L(t) ∩ L(v) and assign it to t
and v. Since L(y) ∩ L(v) = ∅ and L(x) ∩ L(t) = ∅ we have L(y) = L(y) \ {a}
and similarly L(x) = L(x) \ {a}. It follows that the family {L(z) \ {a} | z ∈
V (H)\{t, v}} satisfies Hall’s condition. Finally assume that L(t)∩L(v) = ∅. So
|L(t) ∪L(v)| ≥ 8. Then the family {L(z) | z ∈ V (H)} satisfies Hall’s condition,
so H is L-colorable.

Finally suppose that I = ∅. We may assume that X and Y have size 3
and that the non-edges between them form a matching of size 2, because any
other situation can be reduced to that one by adding vertices or edges. Let
X = {u1, u2, u3}, Y = {v1, v2, v3}, and E(H) = {u2v2, u3v3}. We can choose a
color a from L(x) and a color b from L(y) such that L(u1) \ {a} 6= L(v1) \ {b}.
Let L′(u) = L(u) \ {a} for all u ∈ X and L′(v) = L(v) \ {b} for all v ∈ Y . By
the last sentence of Lemma 3.4, H \ {x, y} admits an L′-coloring, and we can
extend it to an L-coloring of H by assigning color a to x and color b to y. �

Lemma 3.6. Let H be a cobipartite graph, where V (H) is partitioned into two
cliques X = {x1, x2, x3} and Y = {y1, y2, y3}, and E(H) = {x1y1, x2y2, x3y3,
x3y1, x1y2}. Let L be a list assignment on V (H) such that |L(x3)| = 2, |L(y2)| =
2, and |L(w)| = 3 for every w ∈ V (H) \ {x3, y2}. Then H is L-colorable.

Proof. Suppose that L(x2) ∩ L(y2) 6= ∅. Assign a color a from L(x2) ∩ L(y2)
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to x2 and y2. Let L′(u) = L(u) \ {a} for all u ∈ {x1, x3, y1, y3}. Then we can
L′-color x3, x1, y3, y1 greedily in this order, because x3-x1-y3-y1 is an induced
path and the reduced lists’ size pattern is (≥ 1,≥ 2,≥ 2,≥ 2). The proof is
similar when L(x3) ∩ L(y3) 6= ∅. So we may assume that:

L(x2) ∩ L(y2) = ∅ and L(x3) ∪ L(y3) = ∅. (1)

Suppose that L(x1) ∩ L(y2) 6= ∅. Assign a color a from L(x1) ∩ L(y2) to
x1 and y2. Let L′(u) = L(u) \ {a} for all u ∈ {x2, x3, y1, y3}. By (1), we have
a /∈ L(x2), so L′(x2) = L(x2), and a is in at most one of L(x3) and L(y3). If
a ∈ L(x3), then we can L′-color greedily x3, x2, y1, y3 in this order. If a ∈ L(y3),
then we can L′-color greedily y3, y1, x2, x3 in this order. The proof is similar
when L(x3) ∩ L(y1) 6= ∅. So we may assume that:

L(x1) ∩ L(y2) = ∅ and L(x3) ∩ L(y1) = ∅. (2)

Suppose that L(x1) ∩ L(y1) 6= ∅. Assign a color a from L(x1) ∩ L(y1) to
x1 and y1. Let L′(u) = L(u) \ {a} for all u ∈ {x2, x3, y2, y3}. By (2), we
have a /∈ L(x3) and a /∈ L(y2). The graph H \ {x1, y1} is an even cycle, and
|L′(u)| ≥ 2 for every vertex u in that graph, so it is L′-colorable. So we may
assume that:

L(x1) ∩ L(y1) = ∅. (3)

By (1), (2) and (3), we have |L(u) ∪ L(v)| = 5 whenever {u, v} is any of
{x2, y2}, {x3, y3}, {x1, y2}, {x3, y1}, and |L(x1)∩L(y1)| = 6. It follows that the
family {L(w) | w ∈ V (H)} admits a system of distinct representatives, which is
an L-coloring for H . �

Lemma 3.7. Let H be a cobipartite graph with ω(G) ≤ 4. Let V (H) be parti-
tioned into two cliques X,Y with X = {x1, x2, x3}, such that x1 is complete to
Y . Let L be a list assignment such that |L(x1)| ≥ 3, |L(x2)| ≥ 2, |L(x3)| ≥ 2,
and |L(y)| ≥ 4 for all y ∈ Y . Then H is L-colorable.

Proof. Since Y ∪ {x1} is a clique, we have |Y | ≤ 3. If |Y | ≤ 2, then Lemma 3.3
implies that H is L-colorable. So we may assume that |Y | = 3, say Y =
{y1, y2, y3}, and we may assume that E(H) = {x2y2, x3y3}. If the family {L(w) |
w ∈ V (H)} admits a system of distinct representatives, then this is an L-coloring
ofH , so assume the contrary. So there is a set T ⊆ V (H) such that |L(T )| < |T |.
We have |L(T )| ≥ 2, so |T | ≥ 3, so |L(T )| ≥ 3, so |T | ≥ 4, so T ∩ Y 6= ∅, so
|L(T )| ≥ 4, and so |T | ≥ 5. It follows that T is not a clique. Hence assume
that x2, y2 ∈ T . If L(x2) ∩ L(y2) = ∅, then |L(T )| ≥ |L(x2) ∪ L(y2)| = 6, so
|T | ≥ 7, which is impossible. Hence L(x2) ∩ L(y2) 6= ∅. Assign a color c2 from
L(x2)∩L(y2) to x2 and y2. Define L′(u) = L(u)\{c2} for all u ∈ V (H)\{x2, y2}.
If L′(x3)∩L′(y3) 6= ∅ assign a color c3 from L′(x3)∩L′(y3) to x3 and y3. Then we
have |(L′(x1)∪L

′(y1))\{c2}| ≥ 2, so we can extend the coloring to {x1, y1}. On
the other hand, if L′(x3)∩L′(y3) = ∅, the family {L′(w) | w ∈ V (H) \ {x2, y2}}
admits a system of distinct representatives. So H admist an L-coloring. �

Lemma 3.8. Let H be a cobipartite graph, where V (H) is partitioned into two
cliques X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4}, and E(H) = {x1y1, x1y3,
x1y4, x2y2, x2y3, x2y4, x3y3, x4y4}. Let L be a list assignment on V (H) such
that |L(x1)| = 2, |L(x2)| = 2 and |L(w)| = 4 for all w ∈ V (H) \ {x1, x2}. Then
H is L-colorable.
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Proof. We choose colors c1, c2 with c1 ∈ L(x1), c2 ∈ L(x2) and c1 6= c2,
such that if |L(y1) ∩ L(y2)| = 3, then either {c1} 6= L(y2) \ L(y1) or {c2} 6=
L(y1) \ L(y2). This is possible as follows: if |L(y1) ∩ L(y2)| = 3, let α be the
color in L(y1) \ L(y2), then choose c2 ∈ L(x2) \ {α} and c1 ∈ L(x1) \ {c2}.
We assign color c1 to x1 and c2 to x2. Let L′(y1) = L(y1) \ {c2}, L′(y2) =
L(y2) \ {c1}, L′(x3) = L(x3) \ {c1, c2}, L′(x4) = L(x4) \ {c1, c2}, L′(y3) = L(y3)
and L′(y4) = L(y4). So |L′(u)| ≥ 2 for u ∈ {x3, x4}, |L′(v)| ≥ 3 for v ∈ {y1, y2},
and |L′(w)| = 4 for w ∈ {y3, y4}. Note that the choice of c1 and c2 implies that
|L′(y1) ∪ L′(y2)| ≥ 4. Now we show that H \ {x1, x2} is L′-colorable.

Suppose that L′(x3) ∩ L′(y3) 6= ∅. Assign a color c3 from L′(x3) ∩ L′(y3) to
x3 and y3. Define L′′(u) = L′(u) \ {c3} for all u ∈ {x4, y1, y2, y4}. Note that
|L′′(x4)| ≥ 1, |L′′(u)| ≥ 2 for u ∈ {y1, y2}, and |L′′(y4)| ≥ 3. Assign a color c4
from L′′(x4) to x4. Since |L′(y1)∪L′(y2)| ≥ 4, it follows that |(L′′(y1)∪L′′(y2))\
{c4}| ≥ 2. So we can L′′-color greedily {y1, y2} and then y4. The proof is similar
if L′(x4) ∩ L′(y4) 6= ∅. Therefore we may assume that L′(x3) ∩ L′(y3) = ∅ and
L′(x4)∩L

′(y4) = ∅, and so |L′(x3)∪L
′(y3)| = 6 and |L′(x4)∪L

′(y4)| = 6. This
and the choice of c1, c2 implies that the family {L′(w) | w ∈ V (H) \ {x1, x2}}
admits a system of distinct representatives. �

Lemma 3.9. Let H be a cobipartite graph with ω(G) ≤ 4. Let C be a clique
of size 3 in H such that for every w ∈ C, the set N(w) \ C is a clique. Let L
be a list assignment such that |L(w)| = 3 for all w ∈ C and |L(v)| = 4 for all
v ∈ V (H) \ C. Then H is L-colorable.

Proof. If H is not connected, it has two components H1, H2 and both are
cliques of size at most 4. The hypothesis implies easily that for each i ∈ {1, 2}
the family {L(u) | u ∈ V (Hi)} satisfies Hall’s theorem, and consequently H
is L-colorable. Hence we assume that H is connected. Let n = |V (H)| and
V (H) = {v1, . . . , vn}. The hypothesis implies that n ≤ 8. Let µ = n− 4. Since
ω(H) = 4, Kőnig’s theorem implies that H has a matching of size µ. We may
assume that the pairs {vi, vi+µ} (i = 1, . . . , µ) form such a matching. We may
also assume that E(H) is maximal under the hypothesis of the lemma, since
adding edges can only make the problem harder.

First suppose that n = 4. The hypothesis implies that the family {L(u) |
u ∈ V (H)} satisfies Hall’s theorem, and consequently H is L-colorable.

Now suppose that n = 5. So µ = 1 and v1v2 ∈ E(H). Up to symmetry, we
have either C = {v3, v4, v5} or C = {v1, v3, v4}. If C = {v3, v4, v5}, then we can
L-color greedily the vertices v3, v4, v5, v1, v2 in this order. If C = {v1, v3, v4},
then we can L-color greedily the vertices v1, v3, v4, v5, v2 in this order.

Now suppose that n = 6. So µ = 2 and {v1v3, v2v4} ⊆ E(H). Up to
symmetry, we have either C = {v1, v5, v6} or C = {v1, v2, v5}. Suppose that
C = {v1, v5, v6}. Since {v1, v2, v4} is not a stable set of size 3 and N(v1) \ C is
a clique, v1 is adjacent to exactly one of v2, v4, say to v4 and not to v2. Then
we can L-color greedily the vertices v1, v5, v6, v4, v3, v2 in this order. Suppose
that C = {v1, v2, v5}. By the maximality of E(H) we may assume that E(H) =
{v1v2, v3v4}. Then Lemma 3.4 (with X = C, Y = V (H) \ C, x1 = v5 and
y1 = v6) implies that H is L-colorable.
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Now suppose that n = 7. So µ = 3, and {v1v4, v2v5, v3v6} ⊆ E(H). Up
to symmetry, we have either C = {v1, v2, v3} or C = {v1, v2, v7}. If C =
{v1, v2, v3}, then, by the maximality of E(H) we may assume that E(H) =
{v1v4, v2v5, v3v6}, and by Lemma 3.1 (with X = C and Y = V (H) \ C), H
is L-colorable. So suppose that C = {v1, v2, v7}. For each i ∈ {1, 2}, vi has
exactly one neighbor in {v3, v6}, for otherwise either {vi, v3, v6} is a stable set
of size 3 or N(vi) \ C is not a clique. This leads to the following two cases (a)
and (b):

(a) v1 and v2 have the same neighbor in {v3, v6}. We may assume that
v1v3, v2v3 ∈ E(H) and v1v6, v2v6 /∈ E(H). Since H is cobipartite, {v1, v2, v3}
and {v4, v5, v6} are cliques, and by the maximality of E(H) we may assume
that {v1v5, v2v4, v3v4, v3v5} ⊆ E(H) and that v7 is complete to {v1, . . . , v6}.
Pick a color c from L(v7), assign it to v7, and set L′(u) = L(u) \ {c} for all
u ∈ V (H) \ {v7}. By Lemma 3.1 (with X = {v1, v2} and Y = {v3, v4, v5}),
H \{v6, v7} admits an L′-coloring. This can be extended to v6 since v6 has only
two neighbors in H \ {v7}. So H is L-colorable.

(b) v1 and v2 do not have the same neighbor in {v3, v6}. We may assume that
v1v3, v2v6 ∈ E(H) and v1v6, v2v3 /∈ E(H). Since H is cobipartite, {v1, v3, v5}
and {v2, v4, v6} are cliques, and by the maximality of E(H) we may assume that
v4v5, v5v6 ∈ E(H) and that v7 is complete to {v1, . . . , v6}. Pick a color c from
L(v7), assign it to v7, and set L′(u) = L(u) \ {c} for all u ∈ V (H) \ {v7}. By
Lemma 3.6, H \ {v7} is L′-colorable. So H is L-colorable.

Now suppose that n = 8. So µ = 4 and {v1v5, v2v6, v3v7, v4v8} ⊆ E(H).
Up to symmetry we have C = {v1, v2, v3}. For each i ∈ {1, 2, 3}, vi has exactly
one neighbor in {v4, v8}, for otherwise either {vi, v4, v8} is a stable set of size
3 or N(vi) \ C is not a clique. This leads to two cases: (a) v1, v2, v3 have the
same neighbor in {v4, v8}; (b) only two of v1, v2, v3 have a common neighbor in
{v4, v8}.

Suppose that (a) holds. We may assume that v1, v2, v3 are all adjacent to
v4 and not adjacent to v8. Since H is cobipartite, {v1, . . . , v4} and {v5, . . . , v8}
are cliques, and by the maximality of E(H) we may assume that E(H) =
{v1v5, v2v6, v3v7, v4v8, v1v8, v2v8, v3v8}. By Lemma 3.1 (with X = {v1, v2, v3}
and Y = {v4, v5, v6, v7}), H \ {v8} admits an L′-coloring. This can be extended
to v8 since v8 has only three neighbors in H . So H is L-colorable.

Therefore we may assume that (b) holds. We may assume that v1v4, v2v4,
v3v8 ∈ E(H) and v1v8, v2v8, v3v4 /∈ E(H). SinceH is cobipartite, {v1, v2, v4, v7}
and {v3, v5, v6, v8} are cliques, and by the maximality of E(H) we may assume
that E(H) = {v1v5, v2v6, v3v7, v4v8, v1v8, v2v8, v3v4}.

Suppose that L(v3) ∩ L(v7) 6= ∅. Assign a color c from L(v3) ∩ L(v7) to v3
and v7. Define L′(w) = L(w)\{c} for every w ∈ V (H)\{v3, v7}. By Lemma 3.3,
H \ {v3, v7, v8} admits an L′-coloring. This can be extended to v8 since v8 has
only two neighbors in H \ {v3, v7}. So we may assume that:

L(v3) ∩ L(v7) = ∅. (1)

Suppose that L(v1) ∩ L(v5) 6= ∅. Assign a color c from L(v1) ∩ L(v5) to v1
and v5. Define L′(w) = L(w)\{c} for every w ∈ V (H)\{v1, v5}. By Lemma 3.6
the graph H \ {v1, v5} is L′-colorable. The proof is similar if L(v2)∩L(v6) 6= ∅.
So we may assume that:

L(v1) ∩ L(v5) = ∅ and L(v2) ∪ L(v6) = ∅. (2)

13



Suppose that L(v3) ∩ L(v4) 6= ∅. Assign a color c from L(v3) ∩ L(v4) to
v3 and v4. Define L′(w) = L(w) \ {c} for every w ∈ V (H) \ {v3, v4}. By (1),
we have c /∈ L(v7), so L′(v7) = L(v7). Hence and by (1) and (2), the family
{L′(w) | w ∈ V (H) \ {v3, v4}} admits a system of distinct representatives. So
we may assume that:

L(v3) ∪ L(v4) = ∅. (3)

Suppose that L(v4) ∩ L(v8) 6= ∅. Assign a color c from L(v4) ∩ L(v8) to
v4 and v8. Define L′(w) = L(w) \ {c} for every w ∈ V (H) \ {v4, v8}. By
(3), we have c /∈ L(v3), so L′(v3) = L(v3). By (1), (2) and (3), the family
{L′(w) | w ∈ V (H) \ {v4, v8}} admits a system of distinct representatives. So
we may assume that:

L(v4) ∪ L(v8) = ∅. (4)

By (1), (2), (3) and (4), we have |L(vi) ∪ L(vj)| = 7 if the pair {i, j} is any
of {1, 5}, {2, 6}, {3, 7} and {3, 4}, and |L(v4)∪L(v8)| = 8. It follows easily that
the family {L(w) | w ∈ V (H)} admits a system of distinct representatives. �

4 Elementary graphs

Now we can consider the case of any elementary graph G with ω(G) ≤ 4.

Theorem 4.1. Let G be an elementary graph with ω(G) ≤ 4. Then ch(G) =
χ(G).

Proof. This theorem holds for every graph G with ω(G) ≤ 3 as proved in [8].
Hence we will assume that ω(G) = 4. By Theorem 1.8, G is the augmentation of
the line-graph L(H) of a bipartite multigraphH . Let e1, . . . , eh be the flat edges
of L(H) that are augmented to obtain G. We prove the theorem by induction
on h. If h = 0, then G = L(H); in that case the equality ch(G) = χ(G) follows
from Galvin’s theorem [5]. Now assume that h > 0 and that the theorem holds
for elementary graphs obtained by at most h − 1 augmentations. Let (X,Y )
be the augment in G that corresponds to the edge eh of L(H). In L(H), let
eh = xy. So x, y are incident edges of H . In H , let x = qxqxy and y = qyqxy; so
their common vertex qxy has degree 2 in H . Let Gh−1 be the graph obtained
from L(H) by augmenting only the h− 1 other edges e1, . . . , eh−1. So Gh−1 is
an elementary graph.

Let L be a list assignment on V (G) such that |L(v)| = ω(G) for all v ∈ V (G).
We will prove that G admits an L-coloring.

We may assume that |X ∪ Y | > ω(G). (1)

Suppose that |X ∪ Y | ≤ ω(G). Let H ′ be the graph obtained from H by
duplicating |X | − 1 times the edge x (so that there are exactly |X | parallel
edges between the two ends of x in H) and duplicating |Y | − 1 times the edge
y. Let G′

h−1 be the graph obtained from L(H ′) by augmenting the h− 1 edges
e1, . . . , eh−1 as in G. Then G′

h−1 can also be obtained from G by adding all
edges between non-adjacent vertices of X ∪ Y . By the assumption, we have
ω(G′

h−1) = ω(G). By the induction hypothesis, G′
h−1 admits an L-coloring.

Then this is an L-coloring of G. Hence (1) holds.
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Let X = {x1, . . . , x|X|} and Y = {y1, . . . , y|Y |}. Let NX = {v ∈ V (G) \
(X ∪ Y ) | v has a neighbor in X} and NY = {v ∈ V (G) \ (X ∪ Y ) | v has a
neighbor in Y }. By the definition of a line-graph and of an augment, the set
NX is a clique and is complete to X ; hence |NX | ≤ ω(G) − |X |. Likewise NY

is a clique and is complete to Y , and |NY | ≤ ω(G)− |Y |. Let µ be the size of a
maximum matching in the bipartite graph G[X ∪ Y ]. By Kőnig’s theorem we
have µ + ω(G) = |X | + |Y |, so µ = |X | + |Y | − 4. Moreover, we may assume
that the edges of G[X ∪Y ] form a matching of size µ (for otherwise we can add
some edges to G, in X ∪ Y , which makes the coloring problem only harder).

The graph Gh−1 \ {x, y} is elementary, and it has h − 1 augments, so, by
the induction hypothesis, it admits an L-coloring f . We will try to extend f
to G; if this fails, we will analyse why and then show that we can find another
L-coloring of Gh−1 \ {x, y} that does extend to G. Let L′ be the list assignment
defined on X ∪ Y as follows: for all u ∈ X , let L′(u) = L(u) \ f(NX), and for
all v ∈ Y , let L′(v) = L(v) \ f(NY ). Clearly, f extends to an L-coloring of G
if and only if G[X ∪ Y ] admits an L′-coloring. By (1) and up to symmetry, we
may assume that either |Y | = 4 (and |X | ≤ 4) or (|X |, |Y |) is equal to (3, 3) or
(2, 3). We deal with each case separately.

Case 1: |Y | = 4 and |X | ≤ 4. We have |NX | ≤ 4 − |X | and |NY | = 0, so
|L′(u)| ≥ |X | for all u ∈ X and |L′(v)| = 4 for all v ∈ Y . Since ω(G) = 4, there
are |X | non-edges between X and Y that form a matching in G. By Lemma 3.1,
G[X ∪ Y ] admits an L′-coloring.

Case 2: |X | = |Y | = 3. Here we have µ = 2, and we may assume that
the non-edges between X and Y are x2y2 and x3y3. We have |NX | ≤ 1 and
|NY | ≤ 1, so |L′(u)| ≥ 3 for all u ∈ X ∪ Y . If G[X ∪ Y ] is L′-colorable we are
done, so assume the contrary. By Lemma 3.4, there is a clique Q ⊂ X ∪ Y such
that |L′(Q)| < |Q|. Thus 3 ≤ |L′(Q)| < |Q| ≤ 4. This implies that |Q| = 4,
and in particular Q contains x1 and y1. Moreover |L′(Q)| = 3, so L′(x1) and
L′(y1) are equal and have size 3, so |NX | = 1 and |NY | = 1. Let NX = {u}
and NY = {v}. Thus there are colors a, b, c, d, d′ such that L(x1) = {a, b, c, d},
L(y1) = {a, b, c, d′}, f(u) = d and f(v) = d′ (possibly d = d′). In other words,
f satisfies the following “bad” property:

Either L(x1) = L(y1) and f(u) = f(v), or |L(x1) ∩ L(y1)| = 3 and
{f(u)} = L(x1) \ L(y1) and {f(v)} = L(y1) \ L(x1).

(2)

Let G∗ be the graph obtained from G by removing all edges between X and
Y and adding two new vertices u∗ and v∗ with edges u∗v∗, u∗xi (i = 1, 2, 3)
and v∗yi (i = 1, 2, 3). Let H∗ be the graph obtained from H by removing the
vertex qxy and adding three vertices q1, q2, q3, with edges q1q2 and q2q3, plus
three parallel edges between qx and q1 and three parallel edges between q3 and
qy. So H∗ is bipartite, and it is easy to see that G∗ is obtained from L(H∗) by
augmenting e1, . . . , eh−1 as in G. So G∗ is elementary.

We define a list assignmentL∗ onG∗ as follows. For all v ∈ V (G\(X∪Y )), let
L∗(v) = L(v). For all v ∈ X ∪ {u∗, v∗} let L∗(v) = {a, b, c, d}, and for all v ∈ Y
let L∗(v) = {a, b, c, d′}. By the induction hypothesis on h, the graph G∗ admits
an L∗-coloring f∗. In particular f∗ is an L-coloring of G\(X∪Y ). We claim that
if d = d′ then f∗(u) 6= f∗(v), and if d 6= d′ then either f∗(u) 6= d or f∗(v) 6= d′.
Indeed we have f∗(X) = {a, b, c, d}\{f∗(u)} and f∗(Y ) = {a, b, c, d′}\{f∗(v)},
so if the claim fails then f∗(X) = f∗(Y ) and consequently f∗(u∗) = f∗(v∗), a
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contradiction. So the claim holds. By the claim, we can use f∗ instead of f
above (as an L-coloring of G \ (X ∪ Y )), because f∗ does not satisfy (2); so we
can extend it to an L-coloring of G.

Case 3: |X | = 3 and |Y | = 2. Here we have µ = 1, and we may assume that
the only non-edge between X and Y is x3y2. We have |NX | ≤ 1 and |NY | ≤ 2,
so |L′(u)| ≥ 3 for all u ∈ X and |L′(v)| ≥ 2 for all v ∈ Y . If G[X ∪ Y ] is
L′-colorable we are done, so assume the contrary. By Lemma 3.3, there is a
clique Q ⊂ X ∪ Y such that |L′(Q)| < |Q|. This inequality implies that Q 6⊆ Y ,
so Q ∩ X 6= ∅. Thus 3 ≤ |L′(Q)| < |Q| ≤ 4. This implies that |Q| = 4, and
in particular Q contains x1, x2 and y1. Moreover |L′(Q)| = 3, so L′(x1) and
L′(x2) are equal and have size 3, so |NX | = 1, and L′(y1) has size at most 3,
so |NY | ≥ 1, and L′(y1) ⊆ L′(x1). Let NX = {u}. Thus L(x1) = L(x2), and f
satisfies the following “bad” property:

f(u) ∈ L(x1) and L(y1) \ f(NY ) ⊆ L(x1) \ {f(u)}. (3)

Let G∗ = G\ {x3}. Clearly G∗ is elementary. Let H∗ be the graph obtained
from H by duplicating the edge qxqxy (so that there are two parallel edges
between qx and qxy) and similarly duplicating qyqxy. It is easy to see that G∗

is obtained from L(H∗) by augmenting e1, . . . , eh−1 as in G. We define a list
assignment L∗ on G∗ as follows. For all v ∈ V (G∗)\{y2}, let L∗(v) = L(v), and
let L∗(y2) = L(y1). By the induction hypothesis on h the graph G∗ admits an
L∗-coloring f∗. We claim that f∗ does not satisfy the bad property (3). Indeed
if it does, then f∗(u) ∈ L∗(x1) and L∗(y1) \ f∗(NY ) ⊆ L∗(x1) \ {f∗(u)}. Since
L∗(y2) = L∗(y1), we also have L∗(y2) \ f∗(NY ) ⊆ L∗(x1) \ {f∗(u)}, and this
means that the four vertices x1, x2, y1, y2 (which induce a clique) are colored by
f∗ using colors from L∗(x1) \ {f∗(u)}, which has size 3; but this is impossible.
So the claim holds. By the claim, we can use f∗ instead of f above (as an
L-coloring of G \ (X ∪ Y )) and we can extend it to an L-coloring of G. This
completes the proof of the theorem. �

5 Claw-free perfect graphs

Now we can prove Theorem 1.6, which we restate here.

Theorem 5.1. Let G be a claw-free perfect graph with ω(G) ≤ 4. Then ch(G) =
χ(G).

Proof. Wemay assume thatG is connected. Let L be a list assignment onG such
that |L(v)| ≥ 4 for all v ∈ V (G). Let us prove that G is L-colorable by induction
on the number of vertices of G. If G is peculiar, then by Lemma 2.2 we know
that the theorem holds. So assume that G is not peculiar. By Theorem 1.7
and Lemma 2.1, we know that G can be decomposed by clique cutsets into
elementary graphs. We may assume that:

G has no simplicial vertex. (1)

Suppose that x is a simplicial vertex in G. By the induction hypothesis, G\{x}
admits an L-coloring f . Since x is simplicial, it has at most three neighbors.
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So f can be extended to x by choosing in L(x) a color not assigned by f to its
neighbors. Thus (1) holds.

By the discussion after the definition of a clique cutset (Section 1), G admits
an extremal cutset C, i.e., a minimal clique cutset such that for some component
A of G\C the induced subgraph G[A∪C] is an atom (i.e., has no clique cutset).
Since C is minimal, every vertex x of C has a neighbor in every component of
G \C (for otherwise C \ {x} would be a clique cutset), and it follows that G \C
has only two components A1, A2 (for otherwise x would be the center of a claw).
For i = 1, 2 let Gi = G[C ∪ Ai]. Hence we may assume that G2 is elementary.

By the induction hypothesis, the graph G[C∪A1] is 4-choosable, so it admits
an L-coloring f . We will show that we can extend this coloring to G.

By Theorem 1.8, G2 is obtained by augmenting the line-graph L(H) of a
bipartite graph H . For each augment (X,Y ) of G2, select a pair of adjacent
vertices such that one is in X and the other is in Y . Also select all vertices of
G2 that are not in any augment. It is easy to see that L(H) is isomorphic to
the subgraph of G2 induced by the selected vertices. Without loss it will be
convenient to view L(H) as equal to that induced subgraph. We claim that:

If there is an augment (X,Y ) in G2 such that both C∩X and C∩Y
are non-empty, then V (G2) = X ∪ Y .

(2)

Suppose on the contrary, under the hypothesis of (2), that V (G2) 6= X ∪ Y .
Let Z = V (G2) \ (X ∪ Y ). Let ZX = {z ∈ Z | z has a neighbor in X} and
ZY = {z ∈ Z | z has a neighbor in Y }. By the definition of an augment,
ZX is complete to X and anticomplete to Y , and ZY is complete to Y and
anticomplete to X , and ZX ∩ ZY = ∅. Since G2 is connected, we may assume
up to symmetry that ZX 6= ∅. Pick any z ∈ ZX . Since G2 is an atom, X is not
a cutset of G2 (separating z from Y ), so ZY 6= ∅, which restores the symmetry
between X and Y . Since C is a clique and has a vertex in Y , C contains no
vertex from ZX ; similarly, C contains no vertex from ZY ; hence C ⊂ X ∪ Y .
Pick any x ∈ C∩X . Since C is a minimal cutset, x has a neighor a1 in A1. Then
a1 must be adjacent to every neighbor y of x in Y , for otherwise {x, a1, z, y}
induces a claw; and it follows that y ∈ C. We can repeat this argument for
every vertex in C; by the last item in Theorem 1.8 it follows that every vertex
in X∪Y is adjacent to a1 and, consequently, is in C. But this is a contradiction
because C is a clique and X ∪ Y is not a clique. Thus (2) holds.

Now we distinguish two cases.
(I) First suppose that G2 is not a cobipartite graph.
For every edge uv in the bipartite multigraph H , let Cuv be the subset of

V (G2) defined as follows. If v has degree 2 in H , say NH(v) = {u, u′}, and
{vu, vu′} is a flat edge in L(H) on which an augment (X,X ′) of G2 is based
(where X corresponds to vu and X ′ corresponds to vu′), then let Cuv = X . If
uv is not such an edge, then let Cuv be the set of parallel edges in H whose
ends are u and v. Now for every vertex u in H , let Cu =

⋃
uv∈E(H) Cuv. Note

that Cu is a clique in G2. We claim that:

There is a vertex u in H such that C = Cu. (3)

For every augment (X,Y ) in G2 we have V (G2) 6= X ∪ Y , because G2 is not
cobipartite, and so, by (2), either C ∩X or C ∩Y is empty. It follows that there
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is a vertex u in H such that C ⊆ Cu. Suppose that C 6= Cu. Then we can pick
vertices x ∈ C and x′ ∈ Cu \C such that H has vertices v, v′ with x ∈ Cuv and
x′ ∈ Cuv′ . Since C is a minimal cutset, x has a neighbor a1 in A1. Since G2 is
an atom, the set Cu \Cuv is not a cutset, so x has a neighbor z in V (G2) \Cu.
Then {x, a1, x′, z} induces a claw, a contradiction. So C = Cu and (3) holds.

By (3), let u be a vertex in H such that C = Cu. Let D = {d ∈ A1 | d has
a neighbor in C}. We claim that:

D ∪ C is a clique. (4)

Pick any d in D. First suppose that d is not complete to C. Then we can
find vertices x ∈ C ∩ N(d) and x′ ∈ C \ N(d) such that H has vertices v, v′

with x ∈ Cuv and x′ ∈ Cuv′ . Since G2 is an atom, the set Cu \ Cuv is not
a cutset, so x has a neighbor z in V (G2) \ Cu. Then {x, d, x′, z} induces a
claw, a contradiction. It follows that D is complete to C. Now suppose that D
contains non-adjacent vertices d, d′. Pick any x ∈ C. Then x has a neighbor
z in V (G2) \ Cu. Then {x, d, d′, z} induces a claw, a contradiction. So D is a
clique. Thus (4) holds.

G[D ∪ C ∪A2] is an elementary graph. (5)

LetH∗ be the bipartite graph obtained fromH by adding |D| vertices of degree 1
adjacent to vertex u. Then it is easy to see (by (3) and (4)) that G[D∪C ∪A2]
can be obtained from L(H∗) by augmenting the same flat edges as for G2 and
with the same augments. Thus (5) holds.

Let D = {d1, . . . , dp}. (Actually we have |C| ≥ 2 by (3) and consequently
|D| ≤ 2 by (4), but we will not use this fact.) Recall that f is an L-coloring of
G1; so for i = 1, . . . , p let ci = f(di).

The maximum degree in H∗ is ∆(H∗) = ω(L(H∗)) ≤ ω(G2) ≤ ω(G) ≤ 4.
So we can color the edges of H∗ with 4 colors in such a way that vertices
d1, . . . , dp receive colors c1, . . . , cp respectively. Let L∗ be a list assignment on
L(H∗) defined as follows. If v ∈ V (L(H)), let L∗(v) = L(v). For i = 1, . . . , p,
let L∗(di) = {c1, . . . , ci}. By Theorem 1.9, L(H∗) admits an L∗-coloring f∗.
Now we can use the same technique as in the proof of Theorem 4.1 to extend
f∗ to an L-coloring of G2. Moreover, we have f∗(d1) = c1 and consequently
f∗(di) = ci = f(di) for all i = 1, . . . , p. Let f ′ be defined as follows. For all
v ∈ V (G1) \C, let f ′(v) = f(v), and for all v ∈ V (G2), let f

′(v) = f∗(v). Then
f ′ is an L-coloring of G. This completes the proof in case (I).

(II) We may now assume that G2 is a cobipartite graph. Let W be the set of
vertices of A1 that have a neighbor in C. For all x ∈ C, let N1(x) = N(x)∩A1,
N2(x) = N(x) ∩ A2 and M2(x) = A2 \N(x). We observe that:

N1(x) and N2(x) are non-empty cliques, and M2(x) is a clique. (6)

We know that N1(x) and N2(x) are non-empty because C is a minimal cutset.
For i = 1, 2 pick any ni ∈ Ni(x); then Ni(x) is a clique, for otherwise x is
the center of a claw with n3−i and two non-adjacent vertices from Ni(x). Also
M2(x) is a clique, for otherwise G2 contains a stable set of size 3. Thus (6)
holds.
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Suppose that |C| = 1. Let C = {x}. Then M2(x) is empty, for otherwise
N2(x) is a clique cutset in G2 (separating x from M2(x)). So G2 is a clique.
Then every vertex in A2 is simplicial, a contradiction to (1). So |C| ≥ 2.

Suppose that two vertices x and y of C have inclusionwise incomparable
neighborhoods in A1. So there is a vertex a in A1 adjacent to x and not to y, and
there is a vertex b in A1 adjacent to y and not to x. If a vertex u in A2 is adjacent
to x, then it is adjacent to y, for otherwise {x, a, y, u} induces a claw, and vice-
versa. So N2(x) = N2(y), and |N2(x)| ≤ 2 (because N2(x) ∪ {x, y} is a clique),
and M2(x) = M2(y). Suppose that M2(x) 6= ∅. Let C′ = {u ∈ C \ {x, y} | u
is complete to N2(x)}. Since C′ ∪ N2(x) is a clique, it cannot be a cutset of
G2, so some vertex z in C \ (C′ ∪ {x, y}) has a neighbor v in M2(x). Since
z /∈ C′, z has a non-neighbor u in N2(x). Then za is an edge, for otherwise
{x, a, z, u} induces a claw. But then {z, a, y, v} induces a claw, a contradiction.
So M2(x) = ∅. Thus A2 = N2(x) = N2(y). If the vertices in A2 have pairwise
comparable neighborhoods in C, then it follows easily that the vertex in A2

with the smallest degree is simplicial in G, a contradiction to (1). So there are
two vertices u, v in A2 and two vertices z, t in C such that tu, zv are edges and
tv, zu are not edges. Clearly z, t /∈ {x, y}, so |C| = 4. Then za is an edge, for
otherwise {x, a, z, u} induces a claw; and similarly, zb, ta, tb are edges. Then ab is
an edge, for otherwise {z, a, b, v} induces a claw. Recall that since G is perfect
and claw-free, the neighborhood of every vertex can be partitioned into two
cliques, and consequently (since ω(G) ≤ 4) every vertex has degree at most 6.
Hence N(x) = {y, z, t, a, u, v} (because we already know that x is adjacent to
these six vertices), and similarly N(y) = {x, z, t, b, u, v}, N(z) = {x, y, t, a, b, v},
and N(t) = {x, y, z, a, b, u}. It follows that A2 = {u, v} and W = {a, b}. Here
we view f as an L-coloring of G1 \ (C ∪ {a, b}) rather than of G1, and we try
to extend it to {a, b} ∪ C ∪ A2. Let S = {s ∈ V (G1) \ (C ∪ {a, b}) | s has
a neighbor in {a, b}}. If a vertex s ∈ S is adjacent to a and not to b, then
{a, s, b, x} induces a claw, a contradiction. By symmetry this implies that S is
complete to {a, b}. Then S is a clique, for otherwise {a, s, s′, x} induces a claw
from some non-adjacent s, s′ ∈ S. So S ∪ {a, b} is a clique, and so |S| ≤ 2. We
remove the colors of f(S) from the lists of a and b. By Lemma 3.8 we can color
the vertices of W ∪ C ∪ {u, v} with colors from the lists thus reduced. So G is
L-colorable.

Therefore we may assume that any two vertices of C have inclusionwise
comparable neighborhoods in A1. This implies that some vertex a1 in A1 is
complete to C, and that some vertex x in C is complete to W . Since {a1} ∪ C
is a clique, we have |C| ≤ 3. We have W = N1(x) and, by (6), W is a clique,
so |W | ≤ 3. Here we view f as an L-coloring of G1 \ C rather than of G1, and
we try to extend it to C ∪A2. If |W | = 1 (i.e., W = {a1}), we remove the color
f(a1) from the list of the vertices in C. Then G2 is a cobipartite graph which,
with the reduced lists, satisfies the hypothesis of Lemma 3.5 or 3.9, so f can be
extended to G2. Hence assume that |W | ≥ 2.

Suppose that W is complete to C. Then W ∪ C is a clique, so |W | = 2 and
|C| = 2. Let C = {x, y}. Let X = N2(x), Y = N2(y), and Z = A2 \ (X ∪ Y ).
Suppose that Z 6= ∅. By (6) Z ∪ (X \ Y ) is a clique, since it is a subset of
M2(y). Likewise, Z ∪ (Y \X) is a clique. Moreover X \ Y is complete to Y \X ,
for otherwise {x, y, v, z, u} induces a C5 for some non-adjacent u ∈ X \ Y and
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v ∈ Y \ X and for any z ∈ Z. It follows that X ∪ Y is a clique cutset in G2

(separating {x, y} from Z), a contradiction. So Z = ∅, and A2 = X ∪ Y . Here
we view f as an L-coloring of G1 \ C rather than of G1, and we try to extend
it to C ∪ A2. We remove the colors of f(W ) from the list of x and y. Since
|W | = 2, each of these lists loses at most two colors. By Lemma 3.5 we can
color the vertices of C ∪ A2 with colors from the lists thus reduced. So G is
L-colorable.

Now assume that W is not complete to C. So some vertex a2 in W has a
non-neighbor y in C. Then N2(x) ∪ {y} is a clique, for otherwise {x, a2, u, v}
induces a clique for any two non-adjacent vertices u, v ∈ X ∪{y}. Suppose that
M2(x) is empty. So A2 = N2(x). Then the vertices in A2 have comparable
neighborhoods in C (because they are complete to {x, y} and |C| ≤ 3), so
the vertex in A2 with the smallest degree is simplicial, a contradiction to (1).
ThereforeM2(x) is not empty. Since the clique {y}∪N2(x) is not a cutset in G2,
some vertex z in C \ {x, y} has a neighbor v in M2(x). Hence |C| = 3. Then z
has a non-neighbor u in N2(x), for otherwise {y, z}∪N2(x) is a clique cutset in
G2 (separating x from v). Then za2 is an edge, for otherwise {x, a2, z, u} induces
a claw; and yv is an edge, for otherwise {z, a2, y, v} induces a claw; and uv is an
edge since N2(y) is a clique. Moreover, if N2(x) contains a vertex u′ adjacent to
z, then vu′ is an edge since N2(z) is a clique. Since this holds for every vertex
in M2(x)∩N(z), we deduce that (M2(x)∩N(z))∪{y}∪N2(x) is a clique Q. If
v′ is any non-neighbor of z in M2(x), then Q is a clique cutset in G2 (separating
{x, z} from v′), a contradiction. So M2(x) ⊂ N(z). Suppose that |W | = 3. Pick
a3 ∈ W \ {a1, a2}. Then a3z is not an edge, for otherwise W ∪ {x, z} is a clique
of size 5. So, by the same argument as for a2, we deduce that a3y is an edge.
But this means that y and z have inclusionwise incomparable neighborhoods in
A1 (because of a2, a3), a contradiction. So |W | = 2. We remove the color f(a1)
from the lists of x, y, z and remove the color f(a2) from the list of x and z. By
Lemma 3.7 we can color the vertices of C ∪ A2 with colors from the lists thus
reduced. So G is L-colorable. This completes the proof of the theorem. �
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