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Abstract

A tree in an edge-colored connected graph G is called a rainbow tree if no two
edges of it are assigned the same color. For a vertex subset S ⊆ V (G), a tree
is called an S-tree if it connects S in G. A k-rainbow coloring of G is an edge-
coloring of G having the property that for every set S of k vertices of G, there
exists a rainbow S-tree in G. The minimum number of colors that are needed in
a k-rainbow coloring of G is the k-rainbow index of G, denoted by rxk(G). The
Steiner distance d(S) of a set S of vertices of G is the minimum size of an S-tree
T . The k-Steiner diameter sdiamk(G) of G is defined as the maximum Steiner
distance of S among all sets S with k vertices of G. In this paper, we focus on
the 3-rainbow index of graphs and find all finite families F of connected graphs,
for which there is a constant CF such that, for every connected F-free graph G,
rx3(G) ≤ sdiam3(G) + CF .

Keywords: rainbow tree, k-rainbow index, 3-rainbow index, forbidden sub-
graphs.
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1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We
follow the terminology and notation of Bondy and Murty [1] for those not defined here.

LetG be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , t},
t ∈ N, where adjacent edges may be colored with the same color. A path in G is called
a rainbow path if no two edges of the path are colored with the same color. The graph
G is called rainbow connected if for any two distinct vertices of G, there is a rainbow
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path connecting them. For a connected graph G, the rainbow connection number of
G, denoted by rc(G), is defined as the minimum number of colors that are needed to
make G rainbow connected. These concepts were first introduced by Chartrand et al.
in [4] and have been well-studied since then. For further details, we refer the reader to
a survey paper [8] and a book [9].

In [5], Chartrand et al. generalized the concept of rainbow path to rainbow tree.
A tree in an edge-colored graph G is called a rainbow tree if no two edges of it are
assigned the same color. For a vertex subset S ⊆ V (G), a tree is called an S-tree if it
connects S in G. Let G be a connected graph of order n. For a fixed integer k with
2 ≤ k ≤ n, a k-rainbow coloring of G is an edge-coloring of G having the property
that for every k-subset S of G, there exists a rainbow S-tree in G, and in this case,
the graph G is called k-rainbow connected. The minimum number of colors that are
needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by rxk(G).
Clearly, rx2(G) is just the rainbow connection number rc(G) of G. In the sequel, we
assume that k ≥ 3. It is easy to see that rx2(G) ≤ rx3(G) ≤ · · · ≤ rxn(G). Recently,
some results on the k-rainbow index have been published, especially on the 3-rainbow
index. We refer to [3, 6] for more details.

The Steiner distance d(S) of a set S of vertices in G is the minimum size of a tree
in G containing S. Such a tree is called a Steiner S-tree or simply a Steiner tree. The
k-Steiner diameter sdiamk(G) of G is defined as the maximum Steiner distance of S
among all k-subsets S of G. Then the following observation is immediate.

Observation 1. [5] For every connected graph G of order n ≥ 3 and each integer k
with 3 ≤ k ≤ n,

k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n− 1.

The authors of [5] showed that the k-rainbow index of trees can achieve the upper
bound.

Proposition 1. [5] Let T be a tree of order n ≥ 3. For each integer k with 3 ≤ k ≤ n,

rxk(T ) = n− 1.

From above, we notice that for a fixed integer k with k ≥ 3, the difference rxk(G)−
sdiamk(G) can be arbitrarily large. In fact, if G is a star K1,n, then we have rxk(G)−
sdiamk(G) = n− k.

They also determined the precise values for the k-rainbow index of the cycle Cn

and the 3-rainbow index of the complete graph Kn.

Theorem 1. [5] For integers k and n with 3 ≤ k ≤ n,

rxk(Cn) =

{
n− 2 if k = 3 and n ≥ 4
n− 1 if k = n = 3 or 4 ≤ k ≤ n.

Theorem 2. [5]

rx3(Kn) =

{
2 if 3 ≤ n ≤ 5
3 if n ≥ 6.

2



Let F be a family of connected graphs. We say that a graph G is F-free if G
does not contain any induced subgraph isomorphic to a graph from F . Specifically, for
F = {X} we say that G is X-free, for F = {X, Y } we say that G is (X,Y)-free, and
for F = {X, Y, Z} we say that G is (X,Y,Z)-free. The members of F will be referred
as forbidden induced subgraphs in this context. If F = {X1, X2, . . . , Xk}, we also refer
to the graphs X1, X2, . . . , Xk as a forbidden k-tuple, and for |F| = 2 and 3 we also say
forbidden pair and forbidden triple, respectively.

In [7], Holub et al. considered the question: For which families F of connected
graphs, a connected F -free graph G satisfies rc(G) ≤ diam(G) + CF , where CF is
a constant (depending on F), and they gave a complete answer for |F| ∈ {1, 2} in
the following two results (where N denotes the net, a graph obtained by attaching a
pendant edge to each vertex of a triangle).

Theorem 3. [7] Let X be a connected graph. Then there is a constant CX such that
every connected X-free graph G satisfies rc(G) ≤ diam(G)+CX , if and only if X = P3.

Theorem 4. [7] Let X, Y be connected graphs such that X, Y 6= P3. Then there
is a constant CXY such that every connected (X, Y )-free graph G satisfies rc(G) ≤
diam(G) +CXY , if and only if (up to symmetry) either X = K1,r (r ≥ 4) and Y = P4,
or X = K1,3 and Y is an induced subgraph of N .

Let k ≥ 3 be a positive integer. From Observation 1, we know that the k-rainbow
index is lower bounded by the k-Steiner diameter. So we wonder an analogous question
concerning the k-rainbow index of graphs. In this paper, we will consider the following
question.

For which families F of connected graphs, there is a constant CF such that rxk(G) ≤
sdiamk(G) + CF if a connected graph G is F-free ?

In general, it is very difficult to give answers to the above question, even if one
considers the case k = 4. So, in this paper we pay our attention only on the case
k = 3. In Sections 3, 4 and 5, we give complete answers for the 3-rainbow index when
|F| = 1, 2 and 3, respectively. Finally, we give a complete characterization for an
arbitrary finite family F .

2 Preliminaries

In this section, we introduce some further terminology and notation that will be used
in the sequel. Throughout the paper, N denotes the set of all positive integers.

Let G be a graph. We use V (G), E(G), and |G| to denote the vertex set, edge set,
and the order of G, respectively. For A ⊆ V (G), |A| denotes the number of vertices in
A, and G[A] denotes the subgraph of G induced by the vertex set A. For two disjoint
subsets X and Y of V (G), we use E[X, Y ] to denote the set of edges of G between X

and Y . For graphs X and G, we write X ⊆ G if X is a subgraph of G, X
IND

⊆ G if X
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is an induced subgraph of G, and X ∼= G if X is isomorphic to G. In an edge-colored
graph G, we use c(uv) to denote the color assigned to an edge uv ∈ E(G).

Let G be a connect graph. For u, v ∈ V (G), a path in G from u to v will be referred
as a (u, v)-path, and, whenever necessary, it will be considered with orientation from
u to v. The distance between u and v in G, denoted by dG(u, v), is the length of a
shortest (u, v)-path in G. The eccentricity of a vertex v is ecc(v) := maxx∈V (G)dG(v, x).
The diameter of G is diam(G) := maxx∈V (G)ecc(x), and the radius of G is rad(G) :=
minx∈V (G)ecc(x). One can easily check that rad(G) ≤ diam(G) ≤ 2rad(G). A vertex
x is central in G if ecc(x) = rad(G). Let D ⊆ V (G) and x ∈ V (G) \ D. Then
we call a path P = v0v1 . . . vk is a v-D path if v0 = v and V (P ) ∩ D = vk, and
dG(v,D) := minw∈DdG(v, w).

For a set S ⊆ V (G) and k ∈ N, we use Nk
G(S) to denote the neighborhood at

distance k of S, i.e., the set of all vertices of G at distance k from S. In the special
case when k = 1, we simply write NG(S) for N1

G(S) and if |S| = 1 with x ∈ S, we
write NG(x) for NG({x}). For a set M ⊆ V (G), we set NM(S) = NG(S) ∩ M and
NM(x) = NG(x) ∩ M . Finally, we will also use the closed neighborhood of a vertex
x ∈ V (G) defined by Nk

G[x] = (∪k
i=1N

i
G(x)) ∪ {x}.

A set D ⊆ V (G) is called dominating if every vertex in V (G) \ D has a neighbor
in D. In addition, if G[D] is connected, then we call D a connected dominating set.
A clique of a graph G is a subset Q ⊆ V (G) such that G[Q] is complete. A clique is
maximum if G has no clique Q′ with |Q′| > |Q|. For a graph G, a subset I ⊆ V (G) is
called an independent set of G if no two vertices of I are adjacent in G. An independent
set is maximum if G has no independent set I ′ with |I ′| > |I|.

For two positive integers a and b, the Ramsey number R(a, b) is the smallest integer
n such that in any two-coloring of the edges of a complete graph on n vertices Kn by
red and blue, either there is a red Ka (i.e., a complete subgraph on a vertices all of
whose edges are colored red) or there is a blue Kb. Ramsey [10] showed that R(a, b) is
finite for any a and b.

Finally, we will use Pn to denote the path on n vertices. An edge is called a pendant
edge if one of its end vertices has degree one.

3 Families with one forbidden subgraph

In this section, we characterize all possible connected graphs X such that every con-
nected X-free graph G satisfies rx3(G) ≤ sdiam3(G) + CX , where CX is a constant.

Theorem 5. Let X be a connected graph. Then there is a constant CX such that every
connected X-free graph G satisfies rx3(G) ≤ sdiam3(G) + CX , if and only if X = P3.

Proof. We have that the graph G is a complete graph since G is P3-free. Then from
Theorem 2, it follows that rx3(G) ≤ 3 = sdiam3(G) + 1.

4
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Figure 1: The graphs Gt
1 and Gt

2.

Let t be an arbitrarily large integer, set Gt
1 = K1,t, and let Gt

2 denote the graph
obtained by attaching a pendant edge to each vertex of the complete graph Kt (see
Figure 1). We also use Kh

t to denote Gt
2. Since rx3(G

t
1) = t but sdiam3(G

t
1) = 3, X is

an induced subgraph of Gt
1. Clearly, rx3(G

t
2) ≥ t + 2 but sdiam3(G

t
2) = 5, and Gt

2 is
K1,3-free. Hence, X = K1,2 = P3. The proof is thus complete.

4 Forbidden pairs

The following statement, which is the main result of this section, characterizes all
possible forbidden pairs X, Y for which there is a constant CXY such that rx3(G) ≤
sdiam3(G) +CXY if G is (X, Y )-free. Since any P3-free graph is a complete graph, we
exclude the case that one of X, Y is P3.

Theorem 6. Let X, Y 6= P3 be a pair of connected graphs. Then there is a constant
CXY such that every connected (X, Y )-free graph G satisfies rx3(G) ≤ sdiam3(G) +
CXY , if and only if (up to symmetry) X = K1,r, r ≥ 3 and Y = P4.

The proof of Theorem 6 will be divided into two parts. We prove the necessity in
Proposition 2, and then we establish the sufficiency in Theorem 7.

Proposition 2. Let X, Y 6= P3 be a pair of connected graphs for which there is
a constant CXY such that every connected (X, Y )-free graph G satisfies rx3(G) ≤
sdiam3(G) + CXY . Then, (up to symmetry) X = K1,r, r ≥ 3 and Y = P4.

Proof. Let t be an arbitrarily large integer, and set Gt
3 = Ct. We will also use the

graphs Gt
1 and Gt

2 shown in Figure 1.

Consider the graph Gt
1. Since sdiam3(G

t
1) = 3 but rx3(G

t
1) = t, we have, up to

symmetry, X = K1,r, r ≥ 3. Then we consider the graphs Gt
2 and Gt

3. It is easy
to verify that sdiam3(G

t
2) = 5 but rx3(G

t
2) ≥ t + 2, and sdiam3(G

t
3) = ⌈2

3
t⌉ while

rx3(G
t
3) ≥ t − 2 ≥ 3

2
(sdiam3(G

t
3) − 1) − 2, respectively. Clearly, Gt

2 and Gt
3 are both

K1,3-free, so neither of them contains X , implying that both Gt
2 and Gt

3 contain Y .
Since the maximum common induced subgraph of them is P4, we get that Y = P4.
This completes the proof.

Next, we can prove that the converse of Proposition 2 is true.
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Theorem 7. Let G be a connected (P4, K1,r)-free graph for some r ≥ 3. Then rx3(G) ≤
sdiam3(G) + r + 3.

Proof. Let G be a connected (P4, K1,r)-free graph (r ≥ 3). Then, sdiam3(G) ≥ 2.
For simplicity, we set V = V (G). Let S ⊆ V be the maximum clique of G.

Claim 1: S is a dominating set.

Proof. Assume that there is a vertex y at distance 2 from S. Let yxu be a shortest
path from y to S, where u ∈ S. Because S is the maximum clique, there is some v ∈ S
such that vx /∈ E(G). Thus the path vuxy ∼= P4, a contradiction. So S is a dominating
set.

Let X be the maximum independent set of G[V \ S] and Y = V \ (S ∪X). Then
for any vertex y ∈ Y , y is adjacent to some x ∈ X . Furthermore, for any independent
set W of graph G[Y ], |NX(W )| ≥ |W | since X is maximum.

Claim 2: There is a vertex v ∈ S such that v is adjacent to all the vertices in X .

Proof. Suppose that the claim fails. Let u be the vertex of S with the largest number
of neighbors in X . Set X1 = NX(u), X2 = X \ X1. Then, X2 6= ∅ according to our
assumption. Pick a vertex w in X2. Then, uw /∈ E(G). Let v be a neighbor of w in S.
For any vertex z in X1, G[w, v, u, z] can not be an induced P4, so vz must be an edge
of G. Thus, NX(v) ⊇ NX(u) ∪ {w}, contradicting the maximum of u.

Let z be the vertex in S which is adjacent to all the vertices of X . Set X =
{x1, x2, . . . , xℓ}. Then, 0 ≤ ℓ ≤ r − 1 since G is K1,r-free. Now we demonstrate a
3-rainbow coloring of G using at most ℓ + 6 colors. Assign color i to the edge zxi,
and i + 1 to the edge xiy where 1 ≤ i ≤ ℓ and y ∈ Y . Color E[S, Y ] with color ℓ + 2
and E(G[Y ]) with color ℓ + 3. Give a 3-rainbow coloring of G[S] using colors from
{ℓ + 4, ℓ + 5, ℓ + 6}. And color the remaining edges arbitrarily (e.g., all of them with
color 1). Next, we prove that this coloring is a 3-rainbow coloring of G.

Let W = {u, v, w} be a 3-subset of V .

(i) {u, v, w} ⊆ S ∪X . There is a rainbow tree containing W .

(ii) {u, v} ⊆ S ∪ X,w ∈ Y . We can find a rainbow tree containing an edge in
E[S, Y ] that connects W .

(iii) u ∈ S ∪X, {v, w} ⊆ Y .

a) If vw ∈ E(G), then there is a rainbow tree containing the edge vw that connects
W .

b) If vw /∈ E(G), then we have |NX({v, w})| ≥ |{v, w}| = 2. So there are two
vertices xi and xj(i 6= j) in X adjacent to v and w, respectively. As i + 1 6= j + 1,
so either i + 1 6= c(zu) or j + 1 6= c(zu). Without loss of generality, we assume that
i + 1 6= c(zu) and s is a neighbor of w in S. Then there is a rainbow tree containing
the edges zu, uv, sw, sz if u = xi or the edges zu, zxi, xiv, sw, sz if u 6= xi.

6



(iv) {u, v, w} ⊆ Y .

a) If {uv, vw, uw} ∩ E(G) 6= ∅, for example, uv ∈ E(G), then we have a rainbow
tree containing the edges zxi, xiu, uv, sw, sz where xi is a neighbor of u in X and s is
a neighbor of w in S.

b) If {uv, vw, uw}∩E(G) = ∅, then we have |NX{u, v, w}| ≥ |{u, v, w}| = 3, so we
can find three distinct vertices xi, xj , xk in X such that {xiu, xjv, xkw} ⊆ E(G). We
may assume that i < j < k, so k + 1 /∈ {i, j, k, i+ 1, j + 1} and k 6= i+ 1. Then there
is a rainbow tree containing the edges zxi, xiu, zxk, xkw, sv, sz where s is a neighbor of
v in S.

Thus the coloring is a 3-rainbow coloring of G using at most ℓ + 6 ≤ r + 5 ≤
sdiam3(G) + r + 3 colors. The proof is complete. �

Combining Proposition 2 and Theorem 7, we can easily get Theorem 6.

Remark When the maximum independent set of G[V \S], X , satisfies |X| = ℓ ≥ 4, we
just need ℓ+ 5 colors in the proof of Theorem 7: for the edges xℓy, we can color them
with color 1 instead of color ℓ + 1. It only matters when the case {u, v, w} ⊆ Y and
{uv, vw, uw} ∩ E(G) = ∅ happens. Suppose {xiu, xjv, xkw} ⊆ E(G) and i < j < k. If
i 6= 1 or k 6= ℓ, it is the case in the proof above. So we turn to the case when i = 1
and k = l. If j = 2, then j + 1 < 4 ≤ ℓ (that is why we need the condition ℓ ≥ 4).
Thus, there is a rainbow tree containing the edges zxj , xjv, zxk, xkw, su, sz where s
is a neighbor of u in S. If j 6= 2, then there is a rainbow tree containing the edges
zxi, xiu, zxj , xjv, sw, sz.

5 Forbidden triples

Now, we continue to consider more and obtain an analogous result which characterizes
all forbidden triples F for which there is a constant CF such that G being F -free implies
rx3(G) ≤ sdiam3(G) + CF . We exclude the cases which are covered by Theorems 5
and 6. We set:

F1 = {{P3}},

F2 = {{K1,r, P4}| r ≥ 3},

F3 = {{K1,r, Y, Pℓ}| r ≥ 3, Y
IND

⊆ Kh
s , s ≥ 3, ℓ > 4}.

Theorem 8. Let F be a family of connected graphs with |F| = 3 such that F + F ′ for
any F ′ ∈ F1 ∪ F2. Then there is a constant CF such that every connected F-free graph
G satisfies rx3(G) ≤ sdiam3(G) + CF , if and only if F ∈ F3.

First of all, we prove the necessity of the triples given by Theorem 8.

Proposition 3. Let X, Y, Z 6= P3 be connected graphs, {X, Y, Z} + F ′ for any F ′ ∈ F2,
for which there is a constant CXY Z such that every connected (X, Y )-free graph G

7



satisfies rx3(G) ≤ sdiam3(G)+CXY Z . Then, (up to symmetry) X = K1,r(r ≥ 3), Y
IND

⊆
Kh

s (s ≥ 3), and Z = Pℓ(ℓ > 4).

Proof. Let t be an arbitrarily large integer, and let Gt
1, G

t
2, G

t
3 be the graphs defined in

the proof of Proposition 2.

Firstly, we consider the graph Gt
1. Up to symmetry, we have X = K1,r, r ≥ 3 (for

the case r = 2 is excluded by the assumptions). Secondly, we consider the graph Gt
2.

The graph Gt
2 does not contain X , since it is K1,3-free. Thus, up to symmetry, we

have Gt
2 contains Y , implying Y

IND

⊆ Kh
s for some s ≥ 3 (for the case s ≤ 2 is excluded

by the assumptions). Finally, we consider the graphs Gt
3 and Gt+1

3 . Clearly, they are
(K1,3, K

h
3 )-free, so both of them contain neither X nor Y . Hence, we get that Z = Pℓ

for some ℓ > 4 (for the case ℓ ≤ 4 is excluded by the assumptions).

This completes the proof.

It is easy to observe that if X
IND

⊆ X ′, then every (X, Y, Z)-free graph is also
(X ′, Y, Z)-free. Thus, when proving the sufficiency of Theorem 8, we will be always
interested in maximal triples of forbidden subgraphs, i.e., triples X, Y, Z such that, if

replacing one of X, Y, Z, say X , with a graph X ′ 6= X such that X
IND

⊆ X ′, then the
statement under consideration is not true for (X ′, Y, Z)-free graphs.

For every vertex c ∈ V (G) and i ∈ N, we set αi(G, c) =max{|M |
∣∣M ⊆ N i

G[c],M is
independent} and α0

i (G, c) =max{|M0|
∣∣M0 ⊆ N i

G(c),M
0 is independent}.

Lemma 1. [2] Let r, s, i ∈ N. Then there is a constant α(r, s, i) such that, for every
connected (K1,r, K

h
s )-free graph G and for every c ∈ V (G), αi(G, c) < α(r, s, i).

We use the proof of Lemma 1 to get the following corollary concerning α0
i (G, c) for

each integer i ≥ 1.

Corollary 1. Let r, s, i ∈ N. Then there is a constant α0(r, s, i) such that, for every
connected (K1,r, K

h
s )-free graph G and for every c ∈ V (G), α0

i (G, c) < α0(r, s, i).

Proof. For the sake of completeness, here we give a brief proof concentrating on the
upper bound of α0

i (G, c). We prove the corollary by induction on i.

For i = 1, we have α0(r, s, 1) = r, for otherwise G contains a K1,r as an induced
subgraph.

Let, to the contrary, i be the smallest integer for which α0(r, s, i) does not exist(i.e.,
α0
i (G, c) can be arbitrarily large), choose a graph G and a vertex c ∈ V (G) such that

α0
i (G, c) ≥ (r−2)R(s(2r−3), α0(r, s, i−1)), and let M0 = {x0

1, . . . , x
0
k} ⊆ N i

G(c) be an
independent set in G of size α0

i (G, c). Obviously, k ≥ (r−2)R(s(2r−3), α0(r, s, i−1)).
Let Qj be a shortest (x0

j , c)-path in G, j = 1, . . . , k. We denote M1 ⊆ N i−1
G (c) the

set of all successors of the vertices from M0 on Qj, j = 1, . . . , k, and x1
j the successor

of x0
j on Qj (note that some distinct vertices in M0 can have a common successor in

M1). Every vertex in M1 has at most r − 2 neighbors in M0 since G is K1,r-free.

8



Thus, |M1| ≥ k
r−2

≥ R(s(2r− 3), α0(r, s, i− 1)). By the induction assumption and the
definition of Ramsey number, G[M1] contains a complete subgraph Ks(2r−3). Choose

the notation such that V (Ks(2r−3)) = {x1
1, . . . , x

1
s(2r−3)}, and set M̃0 = NM0(Ks(2r−3)).

Using a matching between Ks(2r−3) and M̃0, we can find in G an induced Kh
s with

vertices of degree 1 in M̃0, a contradiction. For more details about finding the Kh
s , we

refer the reader to [2].

Armed with Corollary 1, we can get the following important theorem.

Theorem 9. Let r ≥ 3, s ≥ 3, and ℓ > 4 be fixed integers. Then there is a con-
stant C(r, s, ℓ) such that every connected (K1,r, K

h
s , Pℓ)-free graph G satisfies rx3(G) ≤

sdiam3(G) + C(r, s, ℓ).

Proof. We have diam(G) ≤ ℓ − 2 since G is Pℓ-free. Let c be a central vertex of G,
i.e., ecc(c) = rad(G) ≤ diam(G) ≤ ℓ − 2. And we set Si = ∪i

j=1N
j
G[c] for an integer

i ≥ 1.

Claim: rx3(G[Si ∪N i+1
G (c)]) ≤ rx3(G[Si]) + α0

i+1(G, c) + 3

Proof. LetX = {x1, x2, . . . , xα0
i+1

(G,c)} be the maximum independent set of N i+1
G (c) and

Y = N i+1
G (c) \X . Then for any vertex y ∈ Y , y is adjacent to some x ∈ X and s ∈ S.

Further more, for any independent set W of graph G[Y ], we have |NX(W )| ≥ |W | since
X is maximum.

Now we demonstrate a 3-rainbow coloring of G[Si ∪ N i+1
G (c)] using at most k +

α0
i+1(G, c) + 3 colors, where k = rx3(G[Si]). We color the edges of G[Si] using colors

1, 2, . . . , k. Color E[Si, Y ] with color k + 1 and E(G[Y ]) with color k + 2. And assign
color j + k + 2 to the edges E[{xj}, Si], and j + k + 3 to the edges E[{xj}, Y ] where
1 ≤ j ≤ α0

i+1(G, c). With the same argument as the proof of Theorem 7, we can prove
that this coloring is a 3-rainbow coloring of G[Si ∪N i+1

G (c)].

From the proof of Corollary 1, it follows that α0
1(G, c) ≤ r − 1 and α0

i (G, c) ≤

(r−2)R(s(2r−3), α0(r, s, i−1))−1 for each integer i ≥ 2. Let R(r, s) = Σ
ecc(c)
i=2 R(s(2r−

3), α0(r, s, i− 1)). Recall that ecc(c) ≤ ℓ− 2. Repeated application of Claim gives the
following:

rx3(G) ≤ rx3(G[N
ecc(c)−1
G [c]]) + α0

ecc(c)(G, c) + 3

≤ . . .

≤ rx3(c) + α0
1(G, c) + · · ·+ α0

ecc(c)(G, c) + 3ecc(c)

≤ 0 + r + (r − 2)R(r, s) + 2(ℓ− 2)

≤ sdiam3(G) + (r − 2)(R(r, s) + 1) + 2(ℓ− 1).

Thus, we complete our proof. �

Remark The same as the remark in Section 4: for i ≥ 1, every time α0
i+1(G, c) ≥ 4

happens, we can save one color in the Claim of Theorem 9.
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6 Forbidden k-tuples for any k ∈ N

Let F = {X1, X2, X3, . . . , Xk} be a finite family of connected graphs with k ≥ 4 for
which there is a constant kF such that every connected F -free graph satisfies rx3(G) ≤
sdiam3(G)+CF . Let t be an arbitrarily large integer, and let Gt

1, G
t
2 and Gt

3 be defined
in Proposition 2. For the graph Gt

1, Up to symmetry, we suppose that X1 = Kr, r ≥ 3
(for the case r = 2 has been discussed in Section 3). Then, we consider the graphs
Gt

2 and Gt
3. Notice that Gt

2 and Gt
3 are both K1,3-free, so neither of them contains

X1, implying that Gt
2 or Gt

3 contains Xi, where i 6= 1. We may assume that X2 is an
induced subgraph of Gt

2. If Gt
3 contains X2, then X2 = P4, which is just the case in

Section 4. So we turn to the case that Gt
3 contains Xi for some i > 2. Now consider the

graphs Gt
3, G

t+1
3 , Gt+2

3 , . . . , Gt+k
3 , each of which contains at least one of X3, X4, . . . , Xk

as an induced subgraph due to the analysis above. So it is forced that at least one
of these Xi(i ≥ 3) is isomorphic to Pl for some l ≥ 5, which goes back to the case in
Section 5. Thus, the conclusion comes out.

Theorem 10. Let F be a finite family of connected graphs. Then there is a constant
CF such that every connected F-free graph satisfies rx3(G) ≤ sdiam3(G) + CF , if and
only if F contains a subfamily F ′ ∈ F1 ∪ F2 ∪ F3.
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