
ar
X

iv
:1

51
2.

06
96

6v
1

 [
cs

.D
M

]
 2

2
D

ec
 2

01
5

Covering Arrays on Product Graphs

Yasmeen Akhtar Soumen Maity

Indian Institute of Science Education and Research

Pune, India

Abstract

Two vectors x, y in Z
n
g are qualitatively independent if for all pairs

(a, b) ∈ Zg×Zg, there exists i ∈ {1, 2, . . . , n} such that (xi, yi) = (a, b).
A covering array on a graph G, denoted by CA(n,G, g), is a |V (G)|×n
array on Zg with the property that any two rows which correspond to
adjacent vertices in G are qualitatively independent. The number of
columns in such array is called its size. Given a graph G, a covering
array on G with minimum size is called optimal. Our primary concern
in this paper is with constructions that make optimal covering arrays
on large graphs those are obtained from product of smaller graphs. We
consider four most extensively studied graph products in literature and
give upper and lower bounds on the the size of covering arrays on graph
products. We find families of graphs for which the size of covering array
on the Cartesian product achieves the lower bound. Finally, we present
a polynomial time approximation algorithm with approximation ratio
log(V

2k−1) for constructing covering array on graph G = (V,E) with
k > 1 prime factors with respect to the Cartesian product.

1 Introduction

A covering array CA(n, k, g) is a k × n array on Zg with the property that
any two rows are qualitatively independent. The number n of columns in
such array is called its size. The smallest possible size of a covering array is
denoted

CAN(k, g) = min
n∈N

{n : there exists a CA(n, k, g)}

Covering arrays are generalisations of both orthogonal arrays and Sperner
systems. Bounds and constructions of covering arrays have been derived
from algebra, design theory, graph theory, set systems and intersecting codes
[1, 2, 3, 4]. Covering arrays have industrial applications in many disparate
applications in which factors or components interact, for example, software
and circuit testing, switching networks, drug screening and data compression
[6, 7, 8]. In [17], the definition of a covering array has been extended to
include a graph structure.

1

http://arxiv.org/abs/1512.06966v1

Definition 1. (Covering arrays on graph). A covering array on a graph
G with alphabet size g and k = |V (G)| is a k × n array on Zg. Each row
in the array corresponds to a vertex in the graph G. The array has the
property that any two rows which correspond to adjacent vertices in G are
qualitatively independent.

A covering array on a graph G will be denoted by CA(n,G, g). The smallest
possible covering array on a graph G will be denoted

CAN(G, g) = min
n∈N

{n : there exists a CA(n,G, g)}

Given a graph G and a positive integer g, a covering array on G with min-
imum size is called optimal. Seroussi and Bshouly proved that determining
the existence of an optimal binary covering array on a graph is an NP-
complete problem [7]. We start with a review of some definitions and results
from product graphs in Section 2. In Section 3, we show that for all graphs
G1 and G2,

max
i=1,2

{CAN(Gi, g)} ≤ CAN(G12G2, g) ≤ CAN(max
i=1,2

{χ(Gi)}, g).

We look for graphs G1 and G2 where the lower bound on CAN(G12G2)
is achieved. In Section 4, we give families of Cayley graphs that achieves
this lower bound on covering array number on graph product. In Section 5,
we present a polynomial time approximation algorithm with approximation
ratio log(V

2k−1
) for constructing covering array on graph G = (V,E) having

more than one prime factor with respect to the Cartesian product.

2 Preliminaries

In this section, we give several definitions from product graphs that we use
in this article. A graph product is a binary operation on the set of all
finite graphs. However among all possible associative graph products the
most extensively studied in literature are the Cartesian product, the direct
product, the strong product and the lexicographic product.

Definition 2. The Cartesian product of graphs G andH, denoted by G2H,
is the graph with

V (G2H) = {(g, h)|g ∈ V (G) and h ∈ V (H)},
E(G2H) = {(g, h)(g′ , h′)|g = g′, hh′ ∈ E(H), or gg′ ∈ E(G), h = h′}.

The graphs G and H are called the factors of the product G2H.

In general, given graphs G1, G2, ..., Gk, then G12G22 · · ·2Gk, is the graph
with vertex set V (G1)×V (G2)×· · ·×V (Gk), and two vertices (x1, x2, . . . , xk)
and (y1, y2, . . . , yk) are adjacent if and only if xiyi ∈ E(Gi) for exactly one
index 1 ≤ i ≤ k and xj = yj for each index j 6= i.

2

Definition 3. The direct product of graphs G1, G2, ..., Gk, denoted by G1×
G2×· · ·×Gk, is the graph with vertex set V (G1)×V (G2)×· · ·×V (Gk), and
for which vertices (x1, x2, ..., xk) and (y1, y2, ..., yk) are adjacent precisely if
xiyi ∈ E(Gi) for each index i.

Definition 4. The strong product of graphs G1, G2, ..., Gk , denoted by G1⊠

G2 ⊠ · · · ⊠Gk, is the graph with vertex set V (G1)× V (G2) × · · · × V (Gk),
and distinct vertices (x1, x2, . . . , xk) and (y1, y2, . . . , yk) are adjacent if and
only if either xiyi ∈ E(Gi) or xi = yi for each 1 ≤ i ≤ k. We note that in
general E(⊠k

i=1Gi) 6= E(2k
i=1Gi) ∪ E(×k

i=1Gi), unless k = 2.

Definition 5. The lexicographic product of graphs G1, G2, ..., Gk , denoted
by G1◦G2◦· · ·◦Gk, is the graph with vertex set V (G1)×V (G2)×· · ·×V (Gk),
and two vertices (x1, x2, ..., xk) and (y1, y2, ..., yk) are adjacent if and only if
for some index j ∈ {1, 2, ..., k} we have xjyj ∈ E(Gj) and xi = yi for each
index 1 ≤ i < j.

Let G and H be graphs with vertex sets V (G) and V (H), respectively.
A homomorphism from G to H is a map ϕ : V (G) → V (H) that preserves
adjacency: if uv is an edge in G, then ϕ(u)ϕ(v) is an edge in H. We say
G → H if there is a homomorphism from G to H, and G ≡ H if G → H and
H → G. A weak homomorphism from G to H is a map ϕ : V (G) → V (H)
such that if uv is an edge in G, then either ϕ(u)ϕ(v) is an edge in H,
or ϕ(u) = ϕ(v). Clearly every homomorphism is automatically a weak
homomorphism.

Let ∗ represent either the Cartesian, the direct or the strong product of
graphs, and consider a product G1 ∗G2 ∗ . . .∗Gk. For any index i, 1 ≤ i ≤ k,
a projection map is defined as:

pi : G1 ∗G2 ∗ . . . ∗Gk → Gi where pi(x1, x2, . . . , xk) = xi.

By the definition of the Cartesian, the direct, and the strong product of
graphs, each pi is a weak homomorphism. In the case of direct product,
as (x1, x2, . . . , xk)(y1, y2, . . . , yk) is an an edge of G1 ×G2×, . . . ,×Gk if and
only if xiyi ∈ E(Gi) for each 1 ≤ i ≤ k., each projection pi is actually a
homomorphism. In the case of lexicographic product, the first projection
map that is projection on first component is a weak homomorphism, where
as in general the projections to the other components are not weak homo-
morphisms.

A graph is prime with respect to a given graph product if it is nontrivial
and cannot be represented as the product of two nontrivial graphs. For the
Cartesian product, it means that a nontrivial graphG is prime ifG = G12G2

implies that either G1 or G2 isK1. Similar observation is true for other three
products. The uniqueness of the prime factor decomposition of connected

3

graphs with respect to the Cartesian product was first shown by Subidussi
(1960), and independently by Vizing (1963). Prime factorization is not
unique for the Cartesian product in the class of possibly disconnected simple
graphs [9]. It is known that any connected graph factors uniquely into prime
graphs with respect to the Cartesian product.

Theorem 1. (Sabidussi-Vizing) Every connected graph has a unique repre-
sentation as a product of prime graphs, up to isomorphism and the order of
the factors. The number of prime factors is at most log2 V .

For any connected graph G = (V,E), the prime factors of G with respect
to the Cartesian product can be computed in O(E log V) times and O(E)
space. See Chapter 23, [9].

3 Graph products and covering arrays

Let ∗ represent either the Cartesian, the direct, the strong, or the lex-
icographic product operation. Given covering arrays CA(n1, G1, g) and
CA(n2, G2, g), one can construct covering array on G1 ∗ G2 as follows: the
row corresponds to the vertex (a, b) is obtained by horizontally concate-
nating the row corresponds to the vertex a in CA(n1, G1, g) with the row
corresponds to the vertex b in CA(n2, G2, g). Hence an obvious upper bound
for the covering array number is given by

CAN(G1 ∗G2, g) ≤ CAN(G1, g) +CAN(G2, g)

We now propose some improvements of this bound. A column of a covering
array is constant if, for some symbol v, every entry in the column is v. In
a standardized CA(n,G, g) the first column is constant. Because symbols
within each row can be permuted independently, if a CA(n,G, g) exists,
then a standardized CA(n,G, g) exists.

Theorem 2. Let G = G1⊠G2⊠ · · ·⊠Gk, k ≥ 2 and g be a positive integer.
Suppose for each 1 ≤ i ≤ k there exists a CA(ni, Gi, g), then there exists a

CA(n,G, g) where n =
k∑

i=1
ni− k. Hence, CAN(G, g) ≤

k∑

i=1
CAN(Gi, g)− k.

Proof. Without loss of generality, we assume that for each 1 ≤ i ≤ g, the
first column of CA(ni, Gi, g) is a constant column on symbol i and for each
g + 1 ≤ i ≤ k, the first column of CA(ni, Gi, g) is a constant column on
symbol 1. Let Ci be the array obtained from CA(ni, Gi, g) by removing the

first column. Form an array A with
k∏

i=1
|V (Gi)| rows and

k∑

i=1
ni − k columns,

indexing rows as (v1, v2, ..., vk), where vi ∈ V (Gi). Row (v1, v2, ..., vk) is
obtained by horizontally concatenating the rows correspond to the vertex
vi of Ci, for 1 ≤ i ≤ k. Consider two distinct rows (u1, u2, . . . , uk) and

4

(v1, v2, . . . , vk) of A which correspond to adjacent vertices in G. Two distinct
vertices (u1, u2, . . . , uk) and (v1, v2, . . . , vk) are adjacent if and only if either
uivi ∈ E(Gi) or ui = vi for each 1 ≤ i ≤ k. Since the vertices are distinct,
uivi ∈ E(Gi) for at least one index i. When ui = vi, all pairs of the
form (a, a) are covered. When uivi ∈ E(Gi) all remaining pairs are covered
because two different rows of Ci correspond to adjacent vertices in Gi are
selected.

Using the definition of strong product of graphs we have following result as
a corollary.

Corollary 1. Let G = G1 ∗G2 ∗ · · · ∗Gk, k ≥ 2 and g be a positive integer,

where ∗ ∈ {2,×}. Then, CAN(G, g) ≤
k∑

i=1
CAN(Gi, g)− k.

The lemma given below will be used in Theorem 3.

Lemma 1. (Meagher and Stevens [17]) Let G and H be graphs. If G → H
then CAN(G, g) ≤ CAN(H, g).

Theorem 3. Let G = G1×G2×· · ·×Gk, k ≥ 2 and g be a positive integer.
Suppose for each 1 ≤ i ≤ k there exists a CA(ni, Gi, g). Then there exists a
CA(n,G, g) where n = min

i
ni. Hence, CAN(G, g) ≤ min

i
CAN(Gi, g).

Proof. Without loss of generality assume that n1 = min
i

ni. It is known

that G1 × G2 × · · · × Gk → G1. Using Lemma 1, we have CAN(G, g) ≤
CAN(G1, g).

Theorem 4. Let G = G1 ◦G2 ◦ · · · ◦Gk, k ≥ 2 and g be a positive integer.
Suppose for each 1 ≤ i ≤ k there exists a CA(ni, Gi, g). Then there exists a

CA(n,G, g) where n =
k∑

i=1
ni−k+1. Hence, CAN(G, g) ≤

k∑

i=1
CAN(Gi, g)−

k + 1.

Proof. We assume that for each 1 ≤ i ≤ k, the first column of CA(ni, Gi, g)
is a constant column on symbol 1. Let C1 = CA(n1, G1, g). For each 2 ≤ i ≤
k remove the first column of CA(ni, Gi, g) to form Ci with ni − 1 columns.
Without loss of generality assume first column of each CA(ni, Gi, g) is con-
stant vector on symbol 1 while for each 2 ≤ i ≤ k, Ci is the array obtained
from CA(ni, Gi, g) by removing the first column. Form an array A with
k∏

i=1
|V (Gi)| rows and

k∑

i=1
ni − k + 1 columns, indexing rows as (v1, v2, .., vk),

vi ∈ V (Gi). Row (v1, v2, . . . , vk) is obtained by horizontally concatenating
the rows correspond to the vertex vi of Ci, for 1 ≤ i ≤ k. If two vertices

5

(v1, v2, ..., vk) and (u1, u2, ..., uk) are adjacent in G then either v1u1 ∈ E(G1)
or vjuj ∈ E(Gj) for some j ≥ 2 and vi = ui for each i < j. In first case rows
from C1 covers each ordered pair of symbols while in second case rows from
Cj covers each ordered pair of symbol probably except (1, 1). But this pair
appears in each Ci for i < j. Hence A is a covering array on G.

Definition 6. A proper colouring on a graph is an assignment of colours
to each vertex such that adjacent vertices receive a different colour. The
chromatic number of a graph G, χ(G), is defined to be the size of the
smallest set of colours such that a proper colouring exists with that set.

Definition 7. A maximum clique in a graph G is a maximum set of pairwise
adjacent vertices. The maximum clique number of a graph G, ω(G), is
defined to be the size of a maximum clique.

Since there are homomorphisms Kω(G) → G → Kχ(G), we can find bound on
the size of a covering array on a graph from the graph’s chromatic number
and clique number. For all graphs G,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g).

We have the following results on proper colouring of product graphs [15]

χ(G12G2) = max{χ(G1), χ(G2)}.

For other graph products there are no explicit formulae for chromatic num-
ber but following bounds are mentioned in [9].

χ(G1 ×G2) ≤ min{χ(G1), χ(G2)}

χ(G1 ⊠G2) ≤ χ(G1 ◦G2) ≤ χ(G1)χ(G2).

A proper colouring of G1 ∗ G2 with χ(G1 ∗ G2) colours is equivalent to a
homomorphism from G1 ∗G2 to Kχ(G1∗G2) for any ∗ ∈ {2,×,⊠, ◦}. Hence

CAN(G12G2, g) ≤ CAN(Kmax{χ(G1),χ(G2)}, g)

CAN(G1 ×G2, g) ≤ CAN(Kmin{χ(G1),χ(G2)}, g)

CAN(G1 ⊠G2, g) ≤ CAN(Kχ(G1)χ(G2), g)

CAN(G1 ◦G2, g) ≤ CAN(Kχ(G1)χ(G2), g).

Note that G1 → G1 ∗G2 and G2 → G1 ∗G2 for ∗ ∈ {2,⊠, ◦} which gives

max{CAN(G1, g), CAN(G2, g)} ≤ CAN(G1 ∗G2, g).

We now describe colouring construction of covering array on graph G. If G
is a k-colourable graph then build a covering array CA(n, k, g) and without
loss of generality associate row i of CA(n, k, g) with colour i for 1 ≤ i ≤ k.
In order to construct CA(n,G, g), we assign row i of CA(n, k, g) to all the
vertices having colour i in G.

6

Definition 8. An orthogonal array OA(k, g) is a k × g2 array with entries
from Zg having the properties that in every two rows, each ordered pair of
symbols from Zg occurs exactly once.

Theorem 5. [5] If g is prime or power of prime, then one can construct
OA(g + 1, g).

The set of rows in an orthogonal array OA(k, g) is a set of k pairwise

qualitatively independent vectors from Z
g2

g . For g = 2, by Theorem 5, there
are three qualitatively independent vectors from Z

4
2. Here we give some

examples where the lower bound on CAN(G12G2, g) is achieved, that is,
CAN(G12G2, g) = max{CAN(G1, g), CAN(G2, g)}.

Example 1. If G1 and G2 are bicolorable graphs, then χ(G12G2) = 2. Let

x1 and x2 be two qualitatively independent vectors in Z
g2

g . Assign vector xi
to all the vertices of G12G2 having colour i for i = 1, 2 to get a covering
array with CAN(G12G2, g) = g2.

Example 2. If G1 and G2 are complete graphs, then CAN(G12G2, g) =
max{CAN(G1, g), CAN(G2, g)}.

Example 3. If G1 is bicolorable and G2 is a complete graph on k ≥ 3 ver-
tices, then CAN(G12G2, g) = CAN(G2, g). In general, if χ(G1) ≤ χ(G2)
and G2 is a complete graph, then CAN(G12G2, g) = CAN(G2, g).

Example 4. If Pm is a path of length m and Cn is an odd cycle of length n,
then χ(Pm2Cn) = 3. Using Theorem 5, we get a set of three qualitatively

independent vectors in Z
g2

g for g ≥ 2. Then the colouring construction of
covering arrays gives us a covering array on Pm2Cn with CAN(Pm2Cn, g) =
g2.

Lemma 2. [9] Let G1 and G2 be graphs and Q be a clique of G1 ⊠ G2.
Then Q = p1(Q)⊠ p2(Q), where p1(Q) and p2(Q) are cliques of G1 and G2,
respectively.

Hence a maximum size clique of G1 ⊠ G2 is product of maximum size
cliques from G1 and G2. That is, ω(G1 ⊠ G2) = ω(G1)ω(G2). Using the
graph homomorphism, this results into another lower bound on CAN(G1 ⊠

G2, g) as CAN(Kω(G1)ω(G2), g) ≤ CAN(G1 ⊠ G2, g). Following are some
examples where this lower bound can be achieved.

Example 5. If G1 and G2 are nontrivial bipartite graphs then ω(G1⊠G2) =
χ(G1 ⊠ G2) which is 4. Hence CAN(G1 ⊠ G2, g) = CAN(K4, g), which is
of optimal size.

Example 6. If G1 and G2 are complete graphs, then G1 ⊠ G2 is again a
complete graph. Hence CAN(G1 ⊠G2, g) = CAN(Kω(G1⊠G2), g).

7

Example 7. If G1 is a bipartite graph and G2 is a complete graph on k ≥ 2
vertices, then ω(G1 ⊠G2) = χ(G1 ⊠G2) = 2k. Hence CAN(G1 ⊠G2, g) =
CAN(K2k, g).

Example 8. If Pm is a path of length m and Cn is an odd cycle of length
n, then ω(Pm⊠Cn) = 4 and χ(Pm⊠Cn) = 5. Here we have CAN(K4, g) ≤
CAN(G, g) ≤ CAN(K5, g). For g ≥ 4, using Theorem 5, we get a set of five

qualitatively independent vectors in Z
g2

g . Then the colouring construction
of covering arrays gives us a covering array on Pm ⊠ Cn with CAN(Pm ⊠

Cn, g) = g2.

4 Optimal size covering arrays over the Cartesian

product of graphs

Definition 9. Two graphs G1 = (V,E) and G2 = (V ′, E′) are said to be
isomorphic if there is a bijection mapping ϕ from the vertex set V to the
vertex set V ′ such that (u, v) ∈ E if and only if (ϕ(u), ϕ(v)) ∈ E′. The
mapping ϕ is called an isomorphism. An automorphism of a graph is an
isomorphism from the graph to itself.

The set of all automorphisms of a graph G forms a group, denoted Aut(G),
the automorphism group of G.

Theorem 6. Let G1 be a graph having the property that Aut(G1) contains
a fixed point free automorphism which maps every vertex to its neighbour.
Then for any bicolourable graph G2,

CAN(G1�G2, g) = CAN(G1, g).

Proof. Consider the set Γ = {φ ∈ Aut(G1) | φ(u) ∈ N(u) − {u} for all u ∈
V (G1)} where N(u) denotes the set of neighbours of u. From the assump-
tion, Γ is not empty. Consider a 2-colouring of G2 with colours 0 and
1. Let W0 = {(u, v) ∈ V (G1�G2) | colour(v) = 0} and W1 = {(u, v) ∈
V (G1�G2) | colour(v) = 1}. Note that W0 and W1 partition V (G1�G2)
in two two parts. Let the rows of covering array CA(G1, g) be indexed by
u1, u2, . . . , uk. Form an array C with |V (G12G2)| rows and CAN(G1, g)
columns, indexing rows as (u, v) for 1 ≤ u ≤ |V (G1)|, 1 ≤ v ≤ |V (G2)|.
If (u, v) ∈ W0, row (u, v) is row u of CA(G1, g); otherwise if (u, v) ∈ W1,
row (u, v) is row φ(u) of CA(G1, g). We verify that C is a CA(G12G2, g).
Consider two adjacent vertices (u1, v1) and (u2, v2) of C.
(i) Let (u1, v1) and (u2, v2) belong to Wi, then (u1, v1) ∼ (u2, v2) if and
only if u1 ∼ u2 and v1 = v2. When (u1, v1) and (u2, v2) belong to W0,
rows (u1, v1) and (u2, v2) are rows u1 and u2 of CA(G1, g) respectively. As
u1 ∼ u2, rows u1 and u2 are qualitatively independent in CA(G1, g). When
(u1, v1) and (u2, v2) belong to W1, rows (u1, v1) and (u2, v2) are rows φ(u1)

8

and φ(u2) of CA(G1, g) respectively. As φ(u1) ∼ φ(u2), rows φ(u1) and
φ(u2) are qualitatively independent in CA(G1, g). Therefore, rows (u1, v1)
and (u2, v2) are qualitatively independent in C.
(ii) Let (u1, v1) ∈ W0 and (u2, v2) ∈ W1. In this case, (u1, v1) ∼ (u2, v2) if
and only if u1 = u2 and v1 ∼ v2. Let u1 = u2 = u. Rows (u, v1) and (u, v2)
are rows u and φ(u) of CA(G1, g). As φ is a fixed point free automorphism
that maps every vertex to its neighbour, u and φ(u) are adjacent in G1.
Therefore, the rows indexed by u and φ(u) are qualitatively independent in
CA(G1, g); therefore, rows (u1, v1) and (u2, v2) are qualitatively indepen-
dent in C.

Definition 10. Let H be a finite group and S be a subset of H r {id}
such that S = −S (i.e., S is closed under inverse). The Cayley graph of
H generated by S, denoted Cay(H,S), is the undirected graph G = (V,E)
where V = H and E = {(x, sx) | x ∈ H, s ∈ S}. The Cayley graph is
connected if and only if S generates H.

Through out this article by S = −S we mean, S is closed under inverse for
a given group operation

Definition 11. A circulant graph G(n, S) is a Cayley graph on Zn. That is,
it is a graph whose vertices are labelled {0, 1, . . . , n − 1}, with two vertices
labelled i and j adjacent iff i− j (mod n) ∈ S, where S ⊂ Zn with S = −S
and 0 /∈ S.

Corollary 2. Let G1(n, S) be a circulant graph and G2 be a bicolorable
graph, then CAN(G1(n, S)2G2, g) = CAN(G1(n, S), g).

Proof. Let i and j be any two adjacent vertices in G1(n, S). We define a
mapping φ from Zn as follows:

φ(k) = k + j − i (mod n)

It is easy to verify that φ is an automorphism and it sends every vertex to
its neighbour. Hence φ ∈ Γ and the result follows.

For a group H and S ⊆ H, we denote conjugation of S by elements of
itself as

SS = {ss′s−1|s, s′ ∈ S}

Corollary 3. Let H be a finite group and S ⊆ H r {id} is a generating set
for H such that S = −S and SS = S. Then for G1 = Cay(H,S) and any
bicolorable graph G2,

CAN(G12G2, g) = CAN(G1, g)

9

Proof. We will show that there exists a φ ∈ Aut(G1) such that φ is stabilizer
free. Define φ : H → H as φ(h) = sh for some s ∈ S. It it easy to check
that φ is bijective and being s 6= id it is stabilizer free. Now to prove it is a
graph homomorphism we need to show it is an adjacency preserving map.
It is sufficient to prove that (h, s′h) ∈ E(G1) implies (sh, ss′h) ∈ E(G1). As
ss′h = ss′s−1sh and ss′s−1 ∈ S, we have (sh, ss′h) ∈ E(G1). Hence φ ∈ Γ
and Theorem 6 implies the result.

Example 9. For any abelian group H and S be a generating set such that
S = −S and id /∈ S, we always get SS = S.

Example 10. For H = Q8 = {±1,±i,±j,±k} and S = {±i,±j}, we have
SS = S and S = −S.

Example 11. For H = D8 = 〈a, b|a2 = 1 = b4, aba = b3〉 and S = {ab, ba},
we have SS = S and S = −S.

Example 12. For H = Sn and S = set of all even cycles, we have SS = S
and S = −S

Theorem 7. Let H be a finite group and S be a generating set for H such
that

1. S = −S and id /∈ S

2. SS = S

3. there exist s1 and s2 in S such that s1 6= s2 and s1s2 ∈ S

then for G1 = Cay(H,S) and any three colourable graph G2

CAN(G12G2, g) = CAN(G1, g)

Proof. Define three distinct automorphisms of G1, σi : H → H, for i =
0, 1, 2, as σ0(u) = u, σ1(u) = s1u, σ2(u) = s−1

2 u. Consider a three colouring
ofG2 using the colours 0, 1 and 2. LetWi = {(u, v) ∈ V (G1�G2) | colour(v) =
i} for i = 0, 1, 2. Note that W0, W1, and W2 partition V (G1�G2) into three
parts. Let the rows of covering array CA(G1, g) be indexed by u1, u2, . . . , uk.
Using CA(G1, g), form an array C with |V (G12G2)| rows and CAN(G1, g)
columns, indexing rows as (u, v) for 1 ≤ u ≤ |V (G1)|, 1 ≤ v ≤ |V (G2)|. If
(u, v) ∈ Wi, row (u, v) is row σi(u) of CA(G1, g). Consider two adjacent
vertices (u1, v1) and (u2, v2) of C.
(i) Let (u1, v1) and (u2, v2) belong to Wi. In this case, (u1, v1) ∼ (u2, v2)
if and only if u1 ∼ u2 and v1 = v2. When (u1, v1) and (u2, v2) belong to
W0, rows (u1, v1) and (u2, v2) are rows u1 and u2 of CA(G1, g). As u1 ∼ u2
in G1, the rows u1 and u2 are qualitatively independent in CA(G1, g). Let
(u1, v1) and (u2, v2) belong to W1 (res. W2). Similarly, as s1u1 ∼ s1u2 (res.
s−1
2 u1 ∼ s−1

2 u1) the rows indexed by s1u1 and s1u2 (res. s−1
2 u1 and s−1

2 u2)

10

are qualitatively independent in CA(G1, g). Hence the rows (u1, v1) and
(u2, v2) are qualitatively independent in C.
(ii) Let (u1, v1) ∈ Wi and (u2, v2) ∈ Wj for 0 ≤ i 6= j ≤ 2. In this case,
(u1, v1) ∼ (u2, v2) if and only if u1 = u2 and v1 ∼ v2. Let u1 = u2 = u.
Let (u, v1) ∈ W0 and (u, v2) ∈ W1, then rows (u, v1) and (u, v2) are rows u
and s1u of CA(G1, g) respectively. Then as u ∼ s1u the rows indexed by
(u, v1) ∈ W0 and (u, v2) ∈ W1 are qualitatively independent in C.
Let (u, v1) ∈ W0 and (u, v2) ∈ W2. Then, as u ∼ s−1

2 u, the rows indexed by
(u, v1) ∈ W0 and (u, v2) ∈ W2 are qualitatively independent in C.
Let (u, v1) ∈ W1 and (u, v2) ∈ W2. Then, as s1u ∼ s−1

2 u, the rows indexed
by (u, v1) ∈ W1 and (u, v2) ∈ W2 are qualitatively independent in C.

Theorem 8. Let H be a finite group and S is a generating set for H such
that

1. S = −S and id /∈ S

2. SS = S

3. ∃s1 and s2 in S such that s1 6= s2 and s1s2, s1s
−1
2 ∈ S

then for G1 = Cay(H,S) and any four colourable graph G2

CAN(G12G2, g) = CAN(G1, g)

Proof. Define four distinct automorphisms of G1, σi : H → H, i = 0, 1, 2, 3
as σ0(u) = u, σ1(u) = s1u, σ2(u) = s2u and σ3(u) = s1s2u. Consider a
four colouring of G2 using the colours 0, 1, 2 and 3. Let Wi = {(u, v) ∈
V (G1�G2) | colour(v) = i} for i = 0, 1, 2, 3. Let the rows of covering array
CA(G1, g) be indexed by u1, u2, . . . , uk. Form an array C with |V (G12G2)|
rows and CAN(G1, g) columns, indexing rows as (u, v) for 1 ≤ u ≤ |V (G1)|,
1 ≤ v ≤ |V (G2)|. If (u, v) ∈ Wi, row (u, v) is row σi(u) of CA(G1, g). Con-
sider two adjacent vertices (u1, v1) and (u2, v2) of C.
(i) Let (u1, v1) and (u2, v2) belong to Wi. It is easy to verify that (u1, v1)
and (u2, v2) are qualitatively independent.
(ii) Let (u1, v1) ∈ Wi and (u2, v2) ∈ Wj for 0 ≤ i 6= j ≤ 3. In this case,
(u1, v1) ∼ (u2, v2) if and only if u1 = u2 and v1 ∼ v2. Let u1 = u2 = u.
Let (u, v1) ∈ W0 and (u, v2) ∈ Wi for i = 1, 2, 3, then row (u, v1) and (u, v2)
are rows u and σi(u) of CA(G1, g) respectively. Then as u ∼ σi(u) the rows
(u, v1) and (u, v2) are qualitatively independent.

Let (u, v1) ∈ W1 and (u, v2) ∈ W2. Then rows (u, v1) and (u, v2) are rows s1u
and s2u of CA(G1, g). As s1u = s1s

−1
2 s2u and s1s

−1
2 ∈ S, we get s1u ∼ s2u.

Hence the rows (u, v1) ∈ W1 and (u, v2) ∈ W2 are qualitatively independent.
Similarly, as s1u = s1s

−1
2 s−1

1 s1s2u and s1s
−1
2 s−1

1 ∈ S being SS = S, we have
s1u ∼ s1s2u. Hence the rows (u, v1) ∈ W1 and (u, v2) ∈ W3 are qualitatively

11

Figure 1: Cay(Q8, {−1,±i,±j})2K3

independent.
Let (u, v1) ∈ W2 and (u, v2) ∈ W3. As s2u = s−1

1 s1s2u and s−1
1 ∈ S, we get

s2u ∼ s1s2u. Hence the rows (u, v1) ∈ W2 and (u, v2) ∈ W3 are qualitatively
independent.

Example 13. G = Q8 and S = {±i,±j,±k}. Here s1 = i and s2 = j.

Example 14. G = Q8 and S = {−1,±i,±j}. Here s1 = −1 and s2 = i.

5 Approximation algorithm for covering array on

graph

In this section, we present an approximation algorithm for construction of
covering array on a given graph G = (V,E) with k > 1 prime factors with
respect to the Cartesian product. In 1988, G. Seroussi and N H. Bshouty
proved that the decision problem whether there exists a binary covering
array of strength t ≥ 2 and size 2t on a given t-uniform hypergraph is NP-
complete [13]. Also, construction of an optimal size covering array on a
graph is at least as hard as finding its optimal size.
We give an approximation algorithm for the Cartesian product with ap-
proximation ratio O(logs |V |), where s can be obtained from the number of

12

symbols corresponding to each vertex. The following result by Bush is used
in our approximation algorithm.

Theorem 9. [10] Let g be a positive integer. If g is written in standard
form:

g = pn1

1 pn2

2 . . . pnl

l

where p1, p2, . . . , pl are distinct primes, and if

r = min(pn1

1 , pn2

2 , . . . , pnl

l),

then one can construct OA(s, g) where s = 1 +max (2, r).

We are given a wighted connected graph G = (V,E) with each vertex
having the same weight g. In our approximation algorithm, we use a tech-
nique from [9] for prime factorization of G with respect to the Cartesian
product. This can be done in O(E log V) time. For details see [9]. After ob-
taining prime factors of G, we construct strength two covering array C1 on
maximum size prime factor. Then using rows of C1, we produce a covering
array on G.

APPROX CA(G, g):
Input: A weighted connected graph G = (V,E) with k > 1 prime fac-
tors with respect to the Cartesian product. Each vertex has weight g;
g = pn1

1 pn2

2 . . . pnl

l where p1, p2, . . . , pl are primes.
Output: CA(ug2, G, g).
Step 1: Compute s = 1 +max{2, r} where r = min(pn1

1 , pn2

2 , . . . , pnl

l).
Step 2: Factorize G into prime factors with respect to the Cartesian prod-
uct; say G = 2

k
i=1Gi where Gi = (Vi, Ei) is a prime factor.

Step 3: Suppose V1 ≥ V2 ≥ . . . ≥ Vk. For prime factor G1 = (V1, E1) do

1. Find the smallest positive integer u such that su ≥ V1. That is, u =
⌈logsV1⌉.

2. Let OA(s, g) be an orthogonal array and denote its ith row by Ri for
i = 1, 2, . . . , s. Total su many row vectors (Ri1 , Ri2 , . . . Riu), each of
length ug2, are formed by horizontally concatenating u rows Ri1 , Ri2 ,
. . . , Riu where 1 ≤ i1, . . . , iu ≤ s.

3. Form an V1×ug2 array C1 by choosing any V1 rows out of su concate-
nated row vectors. Each row in the array corresponds to a vertex in
the graph G1.

Step 4: From C1 we can construct an V ×ug2 array C. Index the rows of C
by (u1, u2, . . . , uk), ui ∈ V (Gi). Set the row (u1, u2, . . . , uk) to be identical
to the row corresponding to u1 + u2 + . . .+ uk mod V1 in C1. Return C.

13

Theorem 10. Algorithm APPROX CA(G, g) is a polynomial-time ρ(V)
approximation algorithm for covering array on graph problem, where

ρ(V) ≤ ⌈logs
V

2k−1
⌉.

Proof. Correctness: The verification that C is a CA(ug2, G, g) is straight-
forward. First, we show that C1 is a covering array of strength two with |V1|
parameters. Pick any two distinct rows of C1 and consider the sub matrix
induced by these two rows. In the sub matrix, there must be a column
(Ri, Rj)

T where i 6= j. Hence each ordered pair of values appears at least
once. Now to show that C is a covering array on G, it is sufficient to show
that the rows in C for any pair of adjacent vertices u = (u1, u2, . . . , uk) and
v = (v1, v2, . . . , vk) in G will be qualitatively independent. We know u and
v are adjacent if and only if (ai, bi) ∈ E(Gi) for exactly one index 1 ≤ i ≤ k
and aj = bj for j 6= i. Hence u1 + u2 + . . .+ uk 6= v1 + v2 + . . .+ vk mod V1

and in Step 6, two distinct rows from C1 are assigned to the vertices u and
v.
Complexity : The average order of l in Step 1 is ln ln g [14]. Thus, the
time to find s in Step 1 is O(ln ln g). The time to factorize graph G = (V,E)
in Step 2 is O(E log V). In Step 3(1), the smallest positive integer u can
be found in O(logsV1) time. In Step 3(2), forming one row vector requires
logsV1 assignments; hence, forming V1 row vectors require O(V1logV1) time.
Thus the total running time of APPROX CA(G, g) is O(E log V + ln ln g).
Observing that, in practice, ln ln g ≤ E log V , we can restate the running
time of APPROX CA(G, g) as O(E log V).
Approximation ratio: We show that APPROX CA(G, g) returns a cov-
ering array that is at most ρ(V) times the size of an optimal covering array
on G. We know the smallest n for which a CA(n,G, g) exists is g2, that is,
CAN(G, g) ≥ g2. The algorithm returns a covering array on G of size ug2

where
u = ⌈logs V1⌉.

As G has k prime factors, the maximum number of vertices in a factor can
be V

2k−1
, that is, V1 ≤

V
2k−1

. Hence

u = ⌈logs V1⌉ ≤ ⌈logs
V

2k−1
⌉.

By relating to the size of the covering array returned to the optimal size, we
obtain our approximation ratio

ρ(V) ≤ ⌈logs
V

2k−1
⌉.

14

6 Conclusions

One motivation for introducing a graph structure was to optimise covering
arrays for their use in testing software and networks based on internal struc-
ture. Our primary concern in this paper is with constructions that make
optimal covering arrays on large graphs from smaller ones. Large graphs
are obtained by considering either the Cartesian, the direct, the strong, or
the Lexicographic product of small graphs. Using graph homomorphisms,
we have

max
i=1,2

{CAN(Gi, g)} ≤ CAN(G12G2, g) ≤ CAN(max
i=1,2

{χ(Gi)}, g).

We gave several classes of Cayley graphs where the lower bound on covering
array number CAN(G12G2) is achieved. It is an interesting problem to find
out other classes of graphs for which lower bound on covering array number
of product graph can be achieved. We gave an approximation algorithm for
construction of covering array on a graph G having more than one factor
with respect to the Cartesian product. Clearly, another area to explore is to
consider in details the other graph products, that is, the direct, the strong,
and the Lexicographic product.

References

[1] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher, Covering Arrays
of Strength Three, Designs, Codes and Cryptography 16 (1) (1999), 235-
242.

[2] D.J. Kleitman, J. Spencer, Families of k-independent sets, Discrete
Math. 6, 1973, 255-262.

[3] N.J.A. Sloane, Covering arrays and intersecting codes, J. Combin. Des.
1 (1993), 51-63.

[4] B. Stevens, A. Ling, E. Mendelsohn, A direct constriction of transversal
covers using group divisible designs, Ars Combin., 63 (2002) 145-159.

[5] Colbourn, C. and Dinitz, J. (Ed.) The CRC Handbook of Combinatorial
Design, CRC Press, 1996.

[6] J. Korner, M. Lucertini, Compressing inconsistent data, IEEE Trans.
Inform. Theory, 40(3) (1994), 706-715.

[7] G. Seroussi, and N. H. Bshouty, Vector sets for exhaustive testing of
logic circuits, IEEE Trans. on Infor. Theory 34 (1988), 513-522.

15

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, The AETG
system: An Approach to Testing Based on Combinatorial Design, IEEE
Transaction on Software Engineering 23 (7) (1997), 437-443.

[9] Hammack, R., Imrich, W. and Klavžar, S.: Hand Book of Product
Graphs, Second edition, CRC Press, 2011.

[10] K.A. Bush, A generalization of the theorem due to MacNeish, Ann.
Math. Statist. 23 (1952) 293-295.

[11] K.A. Bush, Orthogonal arrays of index unity, Ann. Math. Statist. 23
(1952) 426-434.

[12] A. Hartman, L. Raskin, Problems and algorithms for covering arrays,
Discrete Mathematics. 284 (2004) 149-156.

[13] G. Seroussi, N H. Bshouty, Vector sets for Exhaustive Testing of Logic
Circuits, IEEE Transaction on Information Theory. 34 (1988), 513-522.

[14] H. Riesel, Prime numbers and computer methods for factorisation,
Progress in Mathematics; 57, Springer Science & Business Media, New
York, 1985.

[15] Sabidussi, G., Graphs with given group and given graph-theoretical
properties, Canad. J. Math. 9 (1957), 515-525.

[16] Meagher, K., Moura, L., Latifa Zekaoui., Mixed Covering arrays on
Graphs. J. Combin. Designs. 15, 393-404 (2007)

[17] Meagher, K., Stevens, B., Covering Arrays on Graphs. J. Combin. The-
ory. Series B 95, 134-151 (2005)

[18] Hammack, R., Imrich, W.: On Cartesian skeletons of graphs, Ars Math.
Contemp. 2(2) (2009) 191-205.

[19] Hellmuth, H.: A local prime factor decomposition algorithm, Discrete
Math. 311(12) (2011) 944-965.

16

	1 Introduction
	2 Preliminaries
	3 Graph products and covering arrays
	4 Optimal size covering arrays over the Cartesian product of graphs
	5 Approximation algorithm for covering array on graph
	6 Conclusions

