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Abstract

Given a c-edge-coloured multigraph, a proper Hamiltonian path is a path that con-
tains all the vertices of the multigraph such that no two adjacent edges have the
same colour. In this work we establish sufficient conditions for an edge-coloured
multigraph to guarantee the existence of a proper Hamiltonian path, involving var-
ious parameters as the number of edges, the number of colours, the rainbow degree
and the connectivity.
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1 Introduction

The study of problems modelled by edge-coloured graphs have resulted in im-
portant developments recently. For instance, the research on long coloured
cycles and paths for edge-coloured graphs has provided interesting results [3].
From a practical perspective, problems arising in molecular biology are often
modeled using coloured graphs, i.e., graphs with coloured edges and/or ver-
tices [9]. Given an edge-coloured graph, the original problems are equivalent
to extract subgraphs coloured in a specified pattern. The most natural pat-
tern in such a context is that of proper colourings, i.e., adjacent edges have
different colours.

In this work we give sufficient conditions involving various parameters as
the number of edges, rainbow degree, etc, in order to guarantee the existence
of proper Hamiltonian paths in edge-coloured multigraphs where parallel edges
with same colours are not allowed. Notice that the proper Hamiltonian path
and proper Hamiltonian cycle problems are both NP -complete in the general
case. However it is polynomial to find a proper Hamiltonian path in c-edge-
coloured complete graphs, c ≥ 2 [7]. It is also polynomial to find a proper
Hamiltonian cycle in 2-edge-coloured complete graphs [4], but it is still open
to determine the computational complexity for c ≥ 3 [5]. Many other results
for edge-coloured multigraphs can be found in the survey by Bang-Jensen and
Gutin [2]. Results involving only degree conditions can be found in [1].

Formally, let Ic = {1, 2, . . . , c} be a set of c ≥ 2 colours. Throughout
this paper, Gc denotes a c-edge-coloured multigraph such that each edge is
coloured with one colour in Ic and no two parallel edges joining the same pair
of vertices have the same colour. Let n be the number of vertices and m be
the number of edges of Gc. If H is a subgraph of Gc, then N i

H(x) denotes the
set of vertices of H adjacent to x with an edge of colour i. Whenever H is
isomorphic to Gc, we write N i(x) instead of N i

Gc(x). The coloured i-degree of a
vertex x, denoted by di(x), is the cardinality of N i(x). As usual N(x) denotes
the neighbourhood of x, d(x) its degree and δ(G) the minimum degree among
all vertices of Gc. The rainbow degree of a vertex x, denoted by rd(x), is the
number of different colours on the edges incident to x. The rainbow degree of a
multigraph Gc, denoted by rd(Gc), is the minimum rainbow degree among its
vertices. An edge with endpoints x and y is denoted by xy, and its colour by
c(xy). A rainbow complete multigraph is the one having all possible coloured
edges between any pair of vertices (its number of edges is therefore c

(

n

2

)

). The

complement of a multigraph Gc denoted by Gc, is a multigraph with the same
vertices as Gc and an edge vw ∈ E(Gc) on colour i if and only if vw /∈ E(Gc)
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on that colour. We say that an edge xy is a missing edge of Gc if xy ∈ E(Gc).
The graph Gi is the spanning subgraph of Gc with edges only in colour i. A
subgraph of Gc is said to be properly edge-coloured if any two adjacent edges
in this subgraph differ in colour. A Hamiltonian path (cycle) is a path (cycle)
containing all vertices of the multigraph. A path is said to be compatible with
a given matching M if the edges of the path are alternatively in M and not in
M . We assume that the first and the last edge of the path are in M otherwise
we just remove one (or both) of them in order to have this property. All
multigraphs are assumed to be connected.

This paper is organized as follows: In Section 2 we present some prelim-
inary results that will be useful for the rest of the paper. In Section 3 we
study proper Hamiltonian paths in 2-edge-coloured multigraphs. In Section 4
we study proper Hamiltonian paths in c-edge-coloured multigraphs, for c ≥ 3.
Notice that in this work we focus only on edge-coloured multigraphs since it
makes no sense to study such conditions for simple edge-coloured graphs.

2 Preliminary results

Lemma 2.1 Let G be a connected non-coloured simple graph on n vertices,
n ≥ 9. If m ≥

(

n−2
2

)

+ 3, then G has a matching M of size |M | = ⌊n
2
⌋.

Proof. By a theorem in [6], a 2-connected graph on n ≥ 10 vertices and
m ≥

(

n−2
2

)

+ 5 edges has a Hamiltonian cycle. So if we add a new vertex v to

G and we join it to all the vertices of G we have that G+{v} hasm ≥
(

n−1
2

)

+5
edges. Therefore G + {v} has a Hamiltonian cycle, i.e., G has a Hamiltonian
path and this implies that there exists a matching M in G of size |M | = ⌊n

2
⌋.✷

Lemma 2.2 ([8]) Let G be a simple non-coloured graph on n ≥ 14 vertices.
If m ≥

(

n−3
2

)

+4 and δ(G) ≥ 1, then G has a matching M of size |M | ≥ ⌈n−2
2
⌉.

Lemma 2.3 Let Gc be a 2-edge-coloured multigraph on n ≥ 14 vertices coloured
with {r, b} (red and blue). If rd(Gc) = 2 and m ≥

(

n

2

)

+
(

n−3
2

)

+ 4, then Gc

has two matchings M r and M b of colours red and blue respectively, such that
|M r| = ⌊n

2
⌋ and |M b| ≥ ⌈n−2

2
⌉.

Proof. Let Er and Eb denote the set of edges coloured in red and blue re-
spectively. Set |Er| = mr and |Eb| = mb. Observe that, as for every vertex
x in Gc, rd(x) = 2, we have that di(x) ≥ 1 for i ∈ {r, b}. Observe also that
mi ≥

(

n−3
2

)

+4 for i ∈ {r, b}, since this threshold is tight when the multigraph
is complete on one of the colours.
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Now, if n is odd, by Lemma 2.2 there exist two matchingsM r andM b, each
one of size n−1

2
, so the result follows straightforward. Next, if n is even, suppose

without loss of generality that mr ≥ mb. Then mr ≥ (
(

n

2

)

+
(

n−3
2

)

+ 4)/2 >
(

n−2
2

)

+ 3. It is sufficient to show that Gr has a matching of size ⌊n
2
⌋ because

Gb has one of size ⌈n−2
2
⌉ by Lemma 2.2. Since δ(Gr) ≥ 1, Gr is connected,

thus, Lemma 2.1 implies that Gr has a matching of size ⌊n
2
⌋ as desired. ✷

Lemma 2.4 Let Gc be a connected c-edge-coloured multigraph, c ≥ 2. Sup-
pose that Gc contains a proper path P = x1y1x2y2 . . . xpyp, p ≥ 3, such that
each edge xiyi is red. If Gc does not contain a proper cycle C such that
V (C) = V (P ) then there are at least (c− 1)(2p− 2) missing edges in Gc.

Proof. We show that there are at least 2p− 2 missing edges in Gc per colour
different from red. As there are c− 1 such colours the total number of miss-
ing edges will be (c − 1)(2p − 2) as claimed. Let us consider some colour,
say blue, different from red. The blue edge x1yp cannot be in Gc otherwise
x1y1 . . . xpypx1 is a proper cycle. Suppose that the blue edge x1xi is present in
Gc for some i = 2, . . . , p. Then the blue edge yi−1yp cannot be in Gc otherwise
the proper cycle x1xi . . . ypyi−1 . . . x1 contradicts our hypothesis. Therefore for
each edge yi−1xi either the blue edge x1xi or the blue edge yi−1yp is miss-
ing. So there are p− 1 blue missing edges in Gc. Now suppose that the blue
edge x1yi is present in Gc, for some i = 2, . . . , p − 2. Then the blue edge
xi+1yp cannot be together with the blue edges xiyi+1, yi−1xi+2 or yi−1yi+1,
xixi+2 in Gc, otherwise the proper cycles x1yixiyi+1xi+1yp . . . xi+2yi−1 . . . x1 or
x1yixixi+2 . . . ypxi+1yi+1yi−1 . . . x1 contradict again our hypothesis. Then for
each edge yixi+1, at least one of the edges xi+1yp, x1yi is missing in Gc for
i = 2, . . . , p− 2. Therefore there are p− 3 blue missing edges.

Up to now we have 2p− 3 blue missing edges. To obtain the last missing
edge observe that one of the blue edges x2yp, x1y2, y1x3 (x2yp, x1x3, y1y2)
is missing in Gc, otherwise we obtain the proper cycle x1y2x2yp . . . x3y1x1

(x1x3 . . . ypx2y2y1x1). We remark that the blue edges x2yp and y1x3 (y1y2) were
not counted before. The edge x1y2 (x1x3) was supposed to exist, otherwise,
to obtain the last missing edge we consider the symmetric case, i.e., using the
blue edge x1yp−1 (if it exists).

In conclusion there are 2p− 2 blue missing edges in Gc as required. This
completes the argument and the proof. ✷

Lemma 2.5 Let Gc be a connected c-edge-coloured multigraph, c ≥ 2. Let
M be a matching of Gc in one colour, say red, of size |M | ≥ ⌈n−2

2
⌉. Let

P = x1y1x2y2 . . . xpyp, p ≥ 3, be a longest proper path compatible with M .
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Let f(n, c) denote the minimum number of missing edges in Gc on colours
different from red. Then the following holds:

f(n, c) =



















(2n− 4)(c− 1) if n is even, |M | = n
2
and 2p < n

(2n− 6)(c− 1) if n is odd, |M | = n−1
2

and 2p < n− 1

(2n− 8)(c− 1) if n is even, |M | = n−2
2

and 2p < n− 2

Proof. Here we consider only the case n is even, |M | = n
2
and 2p < n, as

the two other cases are similar. Observe that, as the red matching M has n
2

edges and by hypothesis P uses p edges of M , there are precisely n−2p
2

edges
of M in Gc − P . Let us denote these edges by ei = wizi, wi, zi ∈ Gc − P ,
i = 1, . . . , n−2p

2
.

Suppose first that there is no proper C cycle such that V (C) = V (P ).
Let blue be some colour different from red. By Lemma 2.4 there are 2p − 2
blue missing edges in the subgraph induced by V (P ). Furthermore there are
no blue edges between the vertices x1, yp and the endpoints of every edge
ei. Otherwise if such an edge exists for some i, say x1wi, then the path
ziwix1y1 . . . xpyp contradicts the maximality property of P . Thus, there are
2(n−2p) blue missing edges. In adittion, for each edge yjxj+1, j = 1, . . . , p−1,
at least two of the blue edges yjwi, yjzi, xj+1wi and xj+1zi are missing in
Gc, otherwise if at least three among them exist, we can easily find a path
longer than P , a contradiction. So, in this case there are (n − 2p)(p − 1)
blue missing edges. Summing up we obtain (n − 2 + pn − 2p2) blue missing
edges in Gc. As there are c − 1 colours different from red, we finally have a
total of (n − 2 + pn − 2p2)(c − 1) missing edges in Gc. For n and c fixed,
the minimum value of this function is obtained for p = n−2

2
. Thus f(n, c) =

[n− 2 + n−2
2
n− 2(n−2

2
)2](c− 1) = (2n− 4)(c− 1) as required.

Suppose next that there is a proper cycle C such that V (C) = V (P ).
Then every edge (if any) between a vertex of C and the endpoints of the edges
ei = wizi should be red. Otherwise if such a non red edge exists, say xjwi

for some i and j, xi ∈ C, then appropriately using the segment xjwizi along
with C, we may find a path longer than P , a contradiction. Therefore there
are at least (2pn− 4p2)(c− 1) missing edges in Gc. Again, by minimizing the
function we obtain f(n, c) = (2n− 4)(c− 1) for p = n−2

2
. ✷

3 2-edge-coloured multigraphs

In this section we study the existence of proper Hamiltonian paths in 2-edge-
coloured multigraphs. We present two main results. The first one involves the
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number of edges. The second one involves both the number of edges and the
rainbow degree. All results are tight.

Theorem 3.1 Let Gc be a 2-edge-coloured multigraph on n ≥ 8 vertices
coloured with {r, b}. If m ≥

(

n

2

)

+
(

n−2
2

)

+ 1, then Gc has a proper Hamil-
tonian path.

For the extremal example, n ≥ 8, consider a rainbow complete 2-edge-
coloured multigraph on n − 2 vertices, n odd. Add two new vertices x1 and
x2. Then add a red edge x1x2 and all red edges between {x1, x2} and the
complete graph. Although the resulting graph has

(

n

2

)

+
(

n−2
2

)

edges, it has
no proper Hamiltonian path, since there is no blue matching of size (n−1)/2.

Proof. By induction on n. For n = 8, 9 by a rather tedious but easy analysis
the result can be shown. Suppose now that n ≥ 10. As Gc has at least
(

n

2

)

+
(

n−2
2

)

edges then |E(Gc)| ≤ 2n − 4. By a theorem in [1], if every
vertex x ∈ Gc has dr(x) ≥

⌈

n+1
2

⌉

and db(x) ≥
⌈

n+1
2

⌉

, then Gc has a proper
Hamiltonian path. Thus, we can assume that there exists a vertex x ∈ Gc

such that dr(x) ≤ ⌈n+1
2
⌉ − 1, otherwise there is nothing to prove.

Suppose first that there exist two distinct neighbours y, z of x such that
c(xy) = b and c(xz) = r. We then construct a new multigraph G′c by replacing
the vertices x, y, z to a new vertex s such that N r(s) = N r

Gc−{x,z}(y) and

N b(s) = N b
Gc−{x,y}(z). We remark that N r

Gc−{x,z}(y) and N b
Gc−{x,y}(z) cannot

both be empty, otherwise |E(Gc)| ≥ 3n−5−⌈n+1
2
⌉ > 2n−4, a contradiction.

By doing, in the worst case we remove at most n− 1 blue and ⌈n+1
2
⌉ − 1 red

edges from x, n−3 blue edges from y, n−3 red edges from z and one red and
one blue between y and z. Therefore G′c has at least

(

n

2

)

+
(

n−2
2

)

+ 1 − (n −

1)− (⌈n+1
2
⌉− 1)− 2(n− 3)− 2 ≥

(

n−2
2

)

+
(

n−4
2

)

+1 edges. Thus by induction,
G′c has a proper Hamiltonian path P . From this path P we can easily obtain
a proper Hamiltonian path in Gc.

Suppose now that there does not exist two distinct neighbours y, z of x
such that c(xy) = b and c(xz) = r. Suppose first that both y and z exist but
they are not distinct, i.e., y = z. In this case, it is easy to observe that Gc−{x}
has (n− 1)(n− 2) edges, i.e., it is a rainbow complete multigraph. Therefore,
it contais a proper Hamiltonian path starting at y. This path can be easily
extended to a proper Hamiltonian path of Gc by adding one of the edges xy in
the appropriate colour. Suppose next that all edges incident to x are on the
same colour, say b. Observe that for every vertex w 6= x, there exists at least
one red edge wu, u ∈ Gc−{x, w}, otherwise |E(Gc)| ≥ 2n−3 > 2n−4, which
is a contradiction. In the following we distinguish between to cases depending
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on the neighbourhood of x. Assume first that N b(x) ≤ n − 2. Consider a
neighbour y of x and remove all its blue incident edges. Then remove x from
Gc and call this multigraph G′c. In G′c, y is monochromatic in red and G′c has
at least

(

n−1
2

)

+
(

n−3
2

)

+ 1 edges. Thus by the inductive hypothesis, G′c has a
proper Hamiltonian path. This path starts at y since it was monochromatic.
So we have a proper Hamiltonian path in Gc. Assume next that N b(x) = n−1.
If for some neighbour y of x, N b(y) ≤ n − 3, we complete the argument as
before. Otherwise for every vertex y, N b(y) = n − 2. It follows that the
underlying blue subgraph G′b of G′c = Gc−{x} is complete. Furthermore, G′c

has at least n2 − 4n+ 5 edges. Now remove all the blue edges from G′c. This
new (red) graph has n − 1 vertices and at least

(

n−2
2

)

+ 1 edges. Therefore
by a theorem in [6], it has a Hamiltonian path P . Now since G′b is complete,
we can appropriately use some blue edges of G′b along with the edges of P to
define a proper Hamiltonian path P ′ in G′c that always starts with an edge on
colour red. Finally, we can join x to the first vertex of P ′ in order to obtain
a proper Hamiltonian path in Gc. ✷

Theorem 3.2 Let Gc be a 2-edge-coloured multigraph on n ≥ 14 vertices
coloured with {r, b}. If rd(Gc) = 2 and m ≥

(

n

2

)

+
(

n−3
2

)

+ 4, then Gc has a
proper Hamiltonian path.

For the extremal example, n ≥ 14 odd, consider a complete blue graph, say
A, on n−3 vertices. Add three new vertices v1, v2, v3 and join them to a same
vertex v in A with blue edges. Finally, superpose the obtained graph with
a complete red graph on n vertices. Although the resulting 2-edge-coloured
multigraph has

(

n

2

)

+
(

n−3
2

)

+3 edges, it has no proper Hamiltonian path since
one of the vertices v1, v2, v3 cannot belong to such a path.

Proof. Let us suppose that Gc does not have a proper Hamiltonian path. We
will show that Gc has more than 3n − 10 edges, i.e., Gc has less than

(

n

2

)

+
(

n−3
2

)

+ 4 edges, contradicting the hypothesis of the theorem. We distinguish
between two cases depending on the parity of n.

Case A: n is even. By Lemma 2.3 Gc has two matchings M r, M b such
that |M r| = n

2
and |M b| ≥ n−2

2
. Take two longest proper paths, say P =

x1y1x2y2 . . . xpyp and P ′ = x′
1y

′
1x

′
2y

′
2 . . . x

′
p′y

′
p′, compatibles with M r and M b,

respectively.

Notice now that if 2p = n or 2p′ = n then we are finished. In addition, if
2p′ < n− 2, then by Lemma 2.5 there are at least 2n− 4 blue missing edges
and 2n − 8 red ones. This gives a total of 4n − 12 > 3n − 10 missing edges,
which is a contradiction. Consequently, in what follows we may suppose that
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2p = 2p′ = n− 2.

Suppose first that there exists a proper cycle C in Gc such that V (C) =
V (P ). Let e = wz be the red edge of M r − E(C). If there exists a blue edge
e′ between w or z and some vertex of C, we can easily obtain a proper Hamil-
tonian path considering e, e′ and the rest of C in the appropriate direction.
Otherwise as the multigraph is connected, all edges e′ between the endpoints
of e and C are red. Now as rd(Gc) = 2, there must exist a blue edge e′′

between w and z and therefore we can obtain a proper Hamiltonian path just
as before but starting with e′′ instead of e.

Next suppose that there exists no proper cycle C in Gc such that V (C) =
V (P ). By Lemma 2.5 there are at least 2n− 4 blue missing edges. Consider
now the path P ′ and let v1, w1 be the two vertices of Gc−P ′. It is clear that if
there exists a blue edge joining v1 and w1, then |M b| = n

2
. Thus, by symmetry

on the colours there are at least 2n− 4 red missing edges. This gives a total
of 4n− 8 > 3n − 10 blue and red missing edges, a contradiction. Otherwise,
assume that there is no blue edge between v1 and w1. In this case we will
count the red missing edges assuming that we cannot extend P ′ to a proper
Hamiltonian path. If there exists no cycle C ′ in Gc such that V (C ′) = V (P ′),
then by Lemma 2.4 there are 2p′ − 2 = n− 4 red missing edges. By summing
up we obtain 3n−8 > 3n−10 missing edges, which is a contradiction. Finally,
assume that there exists a proper cycle C ′ in Gc such that V (C ′) = V (P ′). Set
C = c1c2 . . . c2p′c1 where c(cici+1) = r for i = 1, 3, . . . , 2p′−1. If there are three
or more red edges between {v1, w1} and {ci, ci+1}, for some i = 1, 3, . . . , 2p′−1,
then either the edges v1ci and w1ci+1, or v1ci+1 and w1ci are red. Suppose v1ci
and w1ci+1 are red. In this case, the path v1cici−1 . . . c1c2p′ . . . ci+1w1 is a proper
Hamiltonian one. Otherwise, there are at most two red edges between {v1, w1}
and {ci, ci+1}, for all i = 1, 3, . . . , 2p′ − 1, then there are 2p′ − 2 = n − 4 red
missing edges. If we sum up we obtain a total of 3n − 8 > 3n − 10 missing
edges, which is a contradiction.

Case B: n is odd. By Lemma 2.3 Gc has two matchings M r, M b such that
|M r| = |M b| = n−1

2
. As in Case A, we consider two longest proper paths P

and P ′ compatibles with the matchings M r and M b, respectively. Suppose
first that 2p < n− 1 and 2p′ < n− 1. By Lemma 2.5 there are at least 2n− 6
blue and 2n − 6 red missing edges. We obtain a total of 4n − 12 > 3n − 10
missing edges, which is a contradiction.

Suppose next 2p = 2p′ = n−1 (the cases where 2p < n−1 and 2p′ = n−1,
or 2p = n − 1 and 2p′ < n − 1 are similar). In the rest of the proof, we will
consider only the path P since, by symmetry, the same arguments may be
applied for P ′. In this case we will count the blue missing edges assuming
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that we cannot extend P to a proper Hamiltonian path. Now let v be the
unique vertex in Gc − P . It is clear that if there is a proper cycle C in Gc

such that V (C) = V (P ), we can trivially obtain a proper Hamiltonian path
since the multigraph is connected. Then, as there is no proper cycle C in Gc

such that V (C) = V (P ), by Lemma 2.4 there are 2p− 2 = n− 3 blue missing
edges. If there exists a blue edge between x1 and xi, for some i = 2, . . . , p,
then the blue edge vyi−1 cannot exist in Gc, otherwise we would obtain the
proper Hamiltonian path vyi−1 . . . x1xi . . . yp. We can complete the argument
in a similar way if both edges ypyi and vxi+1, i = 1, . . . , p− 1 exist in Gc and
are on colour blue. Note that since there is no proper cycle C in Gc such that
V (C) = V (P ), then the blue edges x1xi and ypyi−1, i = 2, . . . , p cannot exist
simultaneously in Gc. Therefore there are p− 1 = n−3

2
blue missing edges. If

we make the sum and multiply it by two (since the same number of red missing
edges is obtained with P ′), we conclude that there are 3n−9 > 3n−10 missing
edges, which is a contradiction. This completes the argument and the proof
of the theorem. ✷

4 c-edge-coloured multigraphs, c ≥ 3

In this section we study the existence of proper Hamiltonian paths in c-edge-
coloured multigraphs, for c ≥ 3. We present three main results that involve:
(1) the number of edges, (2) the number of edges and the connectivity of the
multigraph, (3) the number of edges and the rainbow degree. All results are
tight.

In the next lemma we present a key result that reduces the case c ≥ 4 to
c = 3.

Lemma 4.1 Let ℓ be a positive integer. Let Gc be a c-edge-coloured connected
multigraph on n vertices and m ≥ c ℓ+1 edges, c ≥ 4. There exists one colour
cj such that if we colour the edges of Gcj with another colour and we delete
parallel edges with the same colour, then the resulting (c − 1)-edge-coloured
multigraph Gc−1 is connected and has m′ ≥ (c−1)ℓ+1 edges. Furthermore, if
Gc−1 has a proper Hamiltonian path then Gc has one too. Also, if rd(Gc) = c,
then rd(Gc−1) = c− 1.

Proof. Let ci denote the colour i, for i = 1, . . . , c, and denote by |ci| the
number of edges of Gc with colour i. Let cj be the colour with the least
number of edges. Colour the edges on colour cj with another colour, say cl,
and delete (if necessary) parallel edges with that colour. Call this multigraph
Gc−1. By this, we delete at most |cj| edges. It is clear that this multigraph
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is connected since we deleted just parallel edges. Also if Gc−1 has a proper
Hamiltonian path, then this path is also proper Hamiltonian in Gc but perhaps
with some edges on colour cj (in the case that they have been recoloured with
cl). Observe also that, if rd(Gc) = c then rd(Gc−1) = c−1 since only the colour
cj was removed. We will show now that m′ ≥ (c − 1)ℓ + 1. Now, if |cj| > ℓ,
then clearly m′ ≥ (c−1)ℓ+1 edges since for all i, |ci| > ℓ. Otherwise |cj| ≤ ℓ.
Now, m =

∑c

i=1 |ci| ≥ c ℓ + 1 and therefore
∑c

i=1,i 6=j |ci| ≥ c ℓ − |cj | + 1 =
(c−1)ℓ+ℓ−|cj|+1. This last expression is greater than or equal to (c−1)ℓ+1
since ℓ − |cj | ≥ 0. Finally, we have that Gc−1 has m′ ≥ (c− 1)ℓ + 1 edges as
desired. ✷

In view of Theorems 4.4,4.6 and 4.8 we need the following definition.

Definition 4.2 LetGc be a 3-edge-coloured multigraph coloured with {r, b, g}.
Suppose that there exist two distinct vertices x, y ∈ Gc such that y is a neigh-
bour of x and either |N(x)| = 1 or N r(x) = Ng(x) = ∅. First remove the
vertex x. Then, remove all the edges (if any) in colours either b, r or b, g,
incident to y. Finally rename the vertex y to s. We call this process the
contraction of x, y to s.

Definition 4.3 LetGc be a 3-edge-coloured multigraph coloured with {r, b, g}.
Suppose that there exist three different vertices x, y, z ∈ Gc such that c(xy) =
b and c(xz) = r. Now the contraction of x, y, z is defined as follows: We replace
the vertices x, y, z by a new vertex s such that N b(s) = N b

Gc−{x,y}(z), N
r(s) =

N r
Gc−{x,z}(y) and Ng(s) = Ng

Gc−{x,z}(y) ∩Ng

Gc−{x,y}(z).

Notice that if G′c is the graph obtained from Gc by any of the contractions
above, then any proper Hamiltonian path in G′c can be easily transformed
into a proper Hamiltonian one in Gc.

Theorem 4.4 Let Gc be a c-edge-coloured multigraph on n vertices, n ≥ 2
and c ≥ 3. If m ≥ c

(

n−1
2

)

+ 1, then Gc has a proper Hamiltonian path.

For the extremal case consider a rainbow complete multigraph on n − 1
vertices with c colours and add a new isolated vertex x. Although the resulting
multigraph has c

(

n−1
2

)

edges, it contains no proper Hamiltonian path since it
is not connected.

Proof. By Lemma 4.1 we can assume that c = 3 and let {r, b, g} be the set of
colours. Assume n ≥ 6 as cases n ≤ 5 can be checked by exhaustive methods.
The proof is by induction on n. We consider two cases depending on whether
Gc contains a monochromatic vertex or not.
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Case A: There exists a monochromatic vertex x ∈ Gc. Assume without loss
of generality that all the edges incident to x are on colour r. Suppose first that
d(x) ≤ n−2. Consider the multigraph G′c obtained from Gc by contracting x
and one of its neighbours, say y, to a vertex s as in Definition 4.2 considering
r instead of b. By this, we delete at most 3n− 6 edges. This multigraph G′c

has n−1 vertices and at least 3
(

n−2
2

)

+1 edges. Then by inductive hypothesis
it has a proper Hamiltonian path. Since s is monochromatic, we easily extend
the path with x to obtain a proper Hamiltonian path in Gc. Suppose next
that d(x) = n − 1. Then the multigraph Gc − {x} has at least 3

(

n−2
2

)

+ 1
edges and therefore by inductive hypothesis it has a proper Hamiltonian path
P = x1x2 . . . xn−1. Now if c(x1x2) 6= r or c(xn−2xn−1) 6= r, we are done.
Otherwise, c(x1x2) = c(xn−2xn−1) = r. If between x1 and x2 there exist the
three possible edges then the path xx1x2 . . . xn−1 is a proper Hamiltonian one
by appropriately choosing the edge x1x2 such that c(x1x2) 6= c(x2x3) and
c(x1x2) 6= c(xx1). Otherwise the degree of x1 in some colour different from r,
say b is at most n − 3. Then as before, we can make the contraction with x
and x1 removing the edges on colours b and r incident to x1.

Case B: There is no monochromatic vertex in Gc. Suppose first that there
exists a vertex x such that |N(x)| = 1. Let y be its unique neighbour. Now by
contraction of x and y as in Definition 4.2 and by deleting edges incident to y
in two appropriate colours we can complete the argument. Assume therefore
that |N(x)| ≥ 2 for all x ∈ Gc. Moreover we may suppose that there exists a
vertex x such that d(x) ≤ 3n− 6. Otherwise, if for all x ∈ Gc, d(x) ≥ 3n− 5,
then di(x) ≥

⌈

n
2

⌉

∀x ∈ Gc, i ∈ {r, g, b}. Thus by a theorem in [1], Gc has a
proper Hamiltonian cycle and so a proper Hamiltonian path. Consider now
Gc−{x}. This multigraph has at least 3

(

n−2
2

)

+1 edges, then by the inductive
hypothesis it has a proper Hamiltonian path P = x1x2 . . . xn−1. We try to add
x to P in order to obtain a proper Hamiltonian path in Gc. If x is adjacent
to either x1 or xn−1 in any appropriate colour we are done. Otherwise there
are four missing edges incidet to x. If there are at least five edges between
x and some pair of vertices {xi, xi+1}, i = 2, . . . , n − 2, then by choosing
the appropriate edges xxi and xxi+1, the path x1 . . . xixxi+1 . . . xn−1 is proper
Hamiltonian one in Gc. Otherwise there are at most four edges between x and
every pair of vertices {xi, xi+1}, for i = 2, . . . , n − 2. Therefore there are at
least n− 3 ≥ 3 missing edges incident to x. It follows that the degree of x is
at most 3(n− 1)− 4− (n− 3) = 2n− 4 ≤ 3n− 10. Take now y, z ∈ N(x) and
suppose that c(xy) = b and c(xz) = r. Contract x, y, z as in Definition 4.3. By
this operation we remove at most 3n−10 edges incident to x and at most 3n−6
edges incident to y and z in Gc−{x}. It follows that the obtained multigraph
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on n− 2 vertices has at least c
(

n−1
2

)

+ 1− (3n− 10)− (3n− 6) ≥ c
(

n−3
2

)

+ 1
edges. Therefore, by the inductive hypothesis it has a proper Hamiltonian
path P . Now it is easy to obtain from P a proper Hamiltonian path in Gc.✷

Notice that in the above theorem there is no condition guaranteeing the
connectivity of the underlying graph. In view of Theorem 4.6 that adds this
condition, we establish the following lemma.

Lemma 4.5 Let Gc be a c-edge-coloured multigraph on n vertices fullfilling
the conditions of Theorem 4.6 and c ≥ 4. Then either Gc has a proper Hamil-
tonian path or Gc contains a connected (c− 1)-edge-coloured multigraph Gc−1

on n vertices with at least (c−1)
(

n−2
2

)

+n edges such that if Gc−1 has a proper
Hamiltonian path then Gc has one too.

Proof. Let ci denote the colour i and Ei the set of edges of Gc on colour ci,
for i = 1, . . . , c. Suppose first that there is a colour cj such that |Ej| ≤

(

n−2
2

)

.
Then, colour the edges on colour cj with another colour, say cl, and delete
(if necessary) parallel edges with the same colour. Call this multigraph Gc−1.
Clearly Gc−1 is connected and it has at least (c−1)

(

n−2
2

)

+n edges. Moreover if
Gc−1 has a proper Hamiltonian path, then it also does Gc. Suppose next that
for every colour cj, |E

j| ≥
(

n−2
2

)

+ 1. If we proceed as above and we obtain

that the multigraph Gc−1 has at least (c − 1)
(

n−2
2

)

+ n edges, we are done.

Otherwise, for each pair of colours cj , cl we have that |Ej ∩ El| ≥
(

n−2
2

)

+ 1,
that is, after colouring the edges on colour cj with colour cl, there are at least
(

n−2
2

)

+ 1 parallel edges on colour cl. Now take any two colours cj , cl and
consider the uncoloured simple graph G having same vertex set as Gc and for
each pair of vertices x, y we add the uncoloured edge xy in G if and only if
xy ∈ Ej and xy ∈ El in Gc. Clearly G has at least

(

n−2
2

)

+ 1 edges. We
distinguish between two cases depending on the connectivity of G.

Suppose first that G is connected. Add a new vertex v to G and join it to
all the vertices of G. Then G+{v} has at least m ≥

(

n−1
2

)

+3 edges. Therefore
by [6], G + {v} is Hamiltonian-connected, that is, each pair of vertices in G
is joined by a Hamiltonian path. In particular we have a Hamiltonian path P
that starts at v. Therefore if we remove v from P and we take its edges on
alternating colours cj , cl we obtain a proper Hamiltonian path in Gc.

Suppose next that G is disconnected. By a simple calculation on the
number of edges of G we can see that G has two components, say A and B,
such that either |A| = 1 and |B| = n− 1, or |A| = 2 and |B| = n− 2.
If |A| = 2 and |B| = n− 2, let v, w be the vertices of A. By the condition on
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the number of edges, both A and B are complete. Now, as Gc is connected
there exists one edge between v (or w) and some vertex u ∈ B on colour ck.
Therefore we obtain a proper Hamiltonian path in Gc starting with the edge
wv on colour cj (or cl), then vu on colour ck and following any Hamiltonian
path in B alternating the colours cj , cl.
If |A| = 1 and |B| = n− 1, then let v be the unique vertex of A. Now by [6],
B has a Hamiltonian cycle unless it is isomorphic to a complete graph on
n − 2 vertices plus one vertex, say w, joint to exactly one vertex, say u, of
the complete graph B − {w}. Now if B has a Hamiltonian cycle C, then as
Gc is connected, there exists one edge between v and some vertex in B in
some colour, say ck. Therefore we obtain a proper Hamiltonian path in Gc

starting at v taking this edge on colour ck, then following C alternating the
colours cj, cl. Alternatively, if B has no Hamiltonian cycle, then B − {w}
has a Hamiltonian path between every pair of vertices. As Gc is connected
there exists one edge between v and some vertex z ∈ B on some colour ck.
If z 6= u, w, then taking the edge vz on colour ck, following a Hamiltonian
path in B − {w} that starts at z and ends at u alternating the colours cj, cl
and taking the appropriate edge uw we obtain a proper Hamiltonian path in
Gc. If z = w, take the edge vw on colour ck, the edge wu on colour either
cj, cl and then follow any Hamiltonian path in B starting at u, alternating the
colours cj, cl, we obtain a proper Hamiltonian path in Gc. If none of the two
above cases hold, then v has only one neighbour in B and z = u. Consider
the following two cases.
Case A: The edge vu exists on colour ck 6= cj , cl. Then, as Gc has at least
m ≥ c

(

n−2
2

)

+ n edges and 2c < n, w has a neighbour, say x, in B−{u, w} on
some colour cs. Then we obtain a proper Hamiltonian path in Gc as follows.
Take the edge vu on colour ck, continue with the edge uw on colour cj or cl
(depending on the colour cs) and the edge wx on colour cs. Last, follow any
Hamiltonian path in B−{u, w} starting at x by appropriately alternating the
colours cj, cl.
Case B: The edge vu exists only on colour cj or cl, say cj, but not both. Now,
by a similar argument as in case A, w has a neighbour, say x, in B − {u, w}
on some colour cs. Let P be an alternating Hamiltonian path in B − {w}
from u to x such that its first edge is on colour cl and its last edge has colour
different of cs (this is always possible because of the number of edges of Gc).
Now we obtain a proper Hamiltonian path between v and w in Gc as follows.
Add the edge vu on colour cj to P and complete the path with the edge xw
on colour cs.

This completes the argument and the proof. ✷
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Theorem 4.6 Let Gc be a connected c-edge-coloured multigraph on n vertices,
n ≥ 9 and 3 ≤ c < n

2
. If m ≥ c

(

n−2
2

)

+ n, then Gc has a proper Hamiltonian
path.

For the extremal example, n ≥ 9, consider a rainbow complete multigraph
on n− 2 vertices with c colours and add two new vertices x and y. Now add
the edge xy and all edges between y and the complete multigraph, all on the
same colour. The resulting multigraph, although it has c

(

n−2
2

)

+ n− 1 edges,
it does not contain a proper Hamiltonian path as x cannot belong to such a
path.

Proof. By Lemma 4.5 we can assume that c = 3. Let {r, b, g} be the set of
colours. The proof is by induction on n. For n = 9, 10 it can be shown by case
analysis that the result holds. Now we have two cases depending on whether
Gc contains a monochromatic vertex or not.

Case A: There exists a monochromatic vertex x ∈ Gc. Notice that among all
neighbours of x there exists at least one, say y, that is not monochromatic,
otherwise we would have a contradiction on the number of edges. Suppose that
c(xy) = b. Now we will contract x, y to a new vertex s as in Definition 4.2.
Here the resulting multigraph on n − 1 vertices has to be connected (as we
will show later) and we need to delete at most 3n− 8 edges for the induction
hypothesis to hold.

Let us now consider db(x). Observe that if db(x) ≤ n − 4, we delete at
most 3n− 8 edges from x and any selected neighbour y of x and we are done.
Further, from [1], if di(z) ≥

⌈

n
2

⌉

, ∀z ∈ Gc − {x}, i ∈ {r, g, b}, then Gc − {x}
has a proper Hamiltonian cycle. This would imply a proper Hamiltonian path
in Gc. Thus, we may assume that there exists some vertex w ∈ Gc−{x} such
that di(w) <

⌈

n
2

⌉

for some i ∈ {r, g, b}.

Subcase A1: db(x) = n − 1. Observe that w ∈ N b(x). In this case, consid-
ering w instead of y, the contraction process deletes n− 1 edges from x, and
at most n+ n

2
− 3 from w, which is much less than 3n− 8 for n > 10.

Subcase A2: db(x) = n − 2. If there is a vertex y adjacent to x such that
dbGc−{x}(y)+drGc−{x}(y) ≤ 2n−6 or dbGc−{x}(y)+dg

Gc−{x} ≤ 2n−6, then we just
take x and y for the contraction process. Otherwise for all y adjacent to x we
have dbGc−{x}(y) + drGc−{x}(y) ≥ 2n− 5 and dbGc−{x}(y) + dg

Gc−{x}(y) ≥ 2n− 5.

That implies di(y) ≥
⌈

n−2
2

⌉

, ∀y ∈ Gc − {x, z}, i ∈ {r, g, b}, where z is the
unique non-neighbour of x. Then by [1], Gc−{x, z} has a proper Hamiltonian
cycle. Finally, we can add x and z to the cycle using the fact that x is adjacent
to every vertex on it (as it is z) by the degree condition of the vertices of the
cycle. By this we obtain a proper Hamiltonian path in Gc.
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Subcase A3: db(x) = n − 3. This case is similar to the previous one but
finding a vertex y adjacent to x such that dbGc−{x}(y) + drGc−{x}(y) ≤ 2n − 5

or dbGc−{x}(y) + dg
Gc−{x}(y) ≤ 2n − 5. Otherwise the multigraph Gc − {x} is

rainbow complete (except maybe for the three edges between the two non-
neighbours of x), we easily find a proper Hamiltonian cycle in Gc − {x} and
then adding x, a proper Hamiltonian path in Gc.

Case B: There is no monochromatic vertex in Gc. If there exists a vertex
x such that |N(x)| = 1 we proceed as in case B of Theorem 4.4. In what
follows we assume that |N(x)| ≥ 2 for all x ∈ Gc. Suppose now that there
exists a vertex x such that d(x) ≤ 3n − 8. Otherwise, if for all x ∈ Gc,

d(x) ≥ 3n− 7, then m ≥ n(3n−7)
2

≥ 3
(

n−1
2

)

+ 1 and by Theorem 4.4 the result

holds. Consider now Gc − {x}. This multigraph has at least 3
(

n−3
2

)

+ n − 1
edges and it is clearly connected. Then by the inductive hypothesis it has a
proper Hamiltonian path P . Now we use the same argument as in Theorem 4.4
to add x to P . If we cannot add it, we obtain that d(x) ≤ 3n − 15. Finally
take y, z ∈ N(x) such that c(xy) = b and c(xz) = r. Contract x, y, z to a new
vertex s as in Definition 4.3. By this we delete at most 6n− 21 edges, that is,
3n− 15 edges incident to x and 3n− 6 edges incident to y and z in Gc −{x}.
Since we can delete at most 6n−19 edges to use the inductive hypothesis, the
result holds.

In order to complete the proof, we will show that, either we can find two
or three appropriate vertices to contract such that the obtained multigraph
G′c is connected or Gc has a proper Hamiltonian path.

Contraction of two vertices: Consider the above contraction of the vertices x, y
to s and suppose by contradiction that G′c is disconnected. It can be easily
shown that G′c has two components with one vertex, say z, and n−2 vertices,
respectively. Observe first that if z = s then x and y are both monochro-
matic, a contradiction with the fact that y was chosen not monochromatic.
Consequently z 6= s.

Suppose first that x is not monochromatic. In this case x has y as its
unique neighbour. So, there are 3(n − 2) missing edges at x and 3(n − 3)
missing edges at z since z is isolated in G′c. This gives us a total of 6n− 15
missing edges in Gc and this is greater than |E(Gc)| = 5n − 9 which is a
contradiction.

Suppose next that x is monochromatic. In Gc there are at least 2(n− 1)
missing edges at x since it is monochromatic and 3(n− 3) missing edges at z
since z is isolated in G′c. Further, there are two more missing edges between
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y and z since we have the choice of which colours to delete at y. This gives
us a total of 5n− 9 = |E(Gc)| missing edges in Gc. Now z must be adjacent
to x and y in colour b otherwise we obtain 5n − 8 missing edges which is a
contradiction. Therefore z is also monochromatic and d(z) = 2. We take then
z and y for the contraction (instead of x, y) but in this case we delete just
two edges at z which guarantees the connectivity of the contracted multigraph.

Contraction of three vertices: Suppose by contradiction that after the contrac-
tion of x, y, z to s, G′c is disconnected. Then G′c has exactly two components
with one vertex, say u, and n− 3 vertices, respectively.

Suppose first that u 6= s. In Gc u must have at least two different neigh-
bours in two different colours among the vertices x, y, z. Otherwise we would
be in the case where either u is monochromatic or u has one unique neighbour.
Let y′ and z′ be two neighbours of u among x, y, z such that c(uy′) 6= c(uz′).
Now we contract the vertices u, y′, z′ (instead of x, y, z). Observe that at u we
delete at most six edges since u has only x, y, z as neighbours. In adittion the
red edge uy, the blue edge uz and at least one green edge among uy, uz are
missing. At y′ and z′ we delete 3n− 6 edges as usual. With this contraction
we delete at most 3n edges and therefore the contracted multigraph has at
least 3

(

n−3
2

)

+n− 9 edges which guarantees not only the inductive hypothesis
but also the connectivity for n ≥ 10.

Suppose next that u = s. Then there are no red edges between y and
Gc − {x, y, z} and no blue edges between z and Gc − {x, y, z}. Now, since we
are not in the previous cases, y has at least two different neighbours y′ and
z′ such that c(yy′) 6= c(yz′). Then we contract the vertices y, y′, z′ (instead of
x, y, z). In the contraction process we delete at most 2(n− 3) edges between
y and Gc − {x, y, z} (since there are no red edges), six between y and the
vertices x, z, and 3n − 6 at y′ and z′. We obtain in total at most 5n − 6
deleted edges. Now, this new contracted multigraph has n − 2 vertices and
at least 3

(

n−3
2

)

− n − 3 edges. Clearly, if the multigraph is connected we
are done. Otherwise, as before, it has two components with one vertex and
n− 3 vertices, respectively. We can suppose that the contracted vertex is the
isolated one, otherwise we are done as above. Observe now that the component
on n − 3 vertices has at least 3

(

n−3
2

)

− n − 3, therefore it is almost rainbow
complete. It is easy to prove by induction that it has a proper Hamiltonian
cycle. Suppose now without losing generality that c(yy′) = b and c(yz′) = r.
Now, in the original multigraph if we cannot add y, y′, z′ to the proper cycle
in order to obtain a proper Hamiltonian path (and also using the fact that
the contracted multigraph is disconnected), we obtain that there are n − 3
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red missing edges and n − 3 green missing ones at y′, n − 3 blue and n − 3
green at z′, and n − 3 red at y. We obtain a total of 5n − 15 missing edges.
If we have any of the edges r, b or g between y′ and z′, either y has no green
edges at all to Gc − {y, y′, z′} leading us to a contradiction on the number
of edges, or a proper Hamiltonian path can be found. So, these three edges
are missing. Similar arguments can be used if we have the edge yy′ or yz′ in
colour g. Therefore, two more missing edges. Now if we have the edges yy′

in r and yz′ in b, we can do the contraction using these colours instead of the
originals. Then, either the contracted multigraph is connected and thus we
obtain a proper Hamiltonian path, or we obtain a contradiction on the number
of edges. We can conclude that at least one between these two edges is missing
obtaining a total of 5n − 9 = |E(Gc)|. That implies that Gc − {y, y′, z′} is
rainbow complete and we have all of the green and blue edges between y and
Gc−{y, y′, z′}, all of the blue between y′ and Gc−{y, y′, z′}, and all of the red
between z′ and Gc − {y, y′, z′}. In this last case, it is easy to obtain a proper
Hamiltonian path in Gc. ✷

In view of Theorem 4.8 we prove the following lemma.

Lemma 4.7 Let Gc be a c-edge-coloured multigraph on n vertices fullfilling
the conditions of Theorem 4.8. Then either Gc has a proper Hamiltonian path
or there exists a vertex x ∈ Gc such that d(x) ≤ 2n− 6.

Proof. Let Ei be the set of edges of colour i, i ∈ {r, g, b}, and suppose
without loss of generality that |Eb| ≥ |Er|, |Eg|. Then, as the subgraph Gb

has minimum degree one and |Eb| ≥
(

n−2
2

)

+3, it can be easily checked that it
is connected. Thus by Lemma 2.1 there is a matching M b such that |M b| = n

2

for n even and |M b| = n−1
2

for n odd. Let P = x1y1x2y2 . . . xpyp be the longest
proper path compatible with M b.

Suppose first that n is odd. By Lemma 2.5, if there is a proper cycle C
such that V (C) = V (P ), then |P | ≥ n− 5. Else, if such a cycle does not exist
then |P | ≥ n − 7. Otherwise in both cases we obtain a contradiction on the
number of edges. Let us consider here the case |P | = n − 1 (the other cases
are easier to handle, refer to [8] for more details). Now observe that if there
is a proper cycle C such that V (C) = V (P ), then the result easily follows
as the unique vertex of Gc − C can be appropriately joint to C in order to
obtain a proper Hamiltonian path. Assume therefore that there is no proper
cycle C such that V (C) = V (P ). Let x be the unique vertex of Gc − P .
Clearly we cannot have either the edge xx1 on colours r or g, or the edge xyp
on colours r or g, otherwise we easily obtain a proper Hamiltonian path in
Gc. Now, if there are at least three edges on colours r, g between x and some
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pair of vertices {yi, xi+1}, i = 2, . . . , p − 1, then by choosing the appropriate
edges xyi and xxi+1, the path x1 . . . yixxi+1 . . . yp is a proper Hamiltonian one
in Gc. Otherwise there are at most two edges on colours r, g between x and
every pair of vertices {yi, xi+1}, for i = 2, . . . , p− 1. Therefore dr,g(x) ≤ n− 3
and clearly d(x) ≤ 2n − 4 as db(x) ≤ n − 1. In addition, if we have two
more missing edges incident to x we would obtain that d(x) ≤ 2n − 6 as
claimed. Now, we can assume the worst case, that is, for each edge yixi+1 in
the path, i = 2, . . . , p − 1, we have both edges xyi,xxi+1 on the same colour
of yixi+1 (that is, r or g). Otherwise, if we suppose without losing generality
that c(xyi) = r and c(yixi+1) = g then we cannot have the blue edge xxi (or
we would obtain the proper Hamiltonian path x1 . . . xixyi . . . yp). Therefore,
there would be one more missing edge at x. Consider now x1. Suppose that we
have any edge x1yi on colour r or g that is different of the colour of yixi+1, for
i = 1, . . . , p− 1. Taking the blue edge xxi we obtain the proper Hamiltonian
path in Gc, xxi . . . x1yixi+1 . . . yp. Otherwise we obtain at least p − 1 = n−3

2

missing edges x1yi on colours r or g. Suppose that we have any edge x1xi

on at least one colour r or g, for i = 2, . . . , p. Therefore taking the edge
xyi−1 on colour r or g (one of both is supposed to exist) we obtain the proper
Hamiltonian path xyi−1 . . . x1xiyi . . . yp. Otherwise the edges x1xi on colours
r and g are missing for all i = 2, . . . , p, that is, 2(p − 1) = n − 3 additional
missing edges at x1. Finally, summing up and considering that we cannot
have the edge x1yp on colours r or g (or P would also be a proper cycle), we
obtain that d(x) ≤ 3(n− 1)− n−3

2
− (n− 3)− 2 ≤ 2n− 6 as claimed.

Suppose next that n is even. If there is a proper cycle C such that V (C) =
V (P ), then by Lemma 2.5 |P | ≥ n − 2. This case is easy since either P is a
proper Hamiltonian path or we can connect the unique edge of M b −E(P ) to
C in order to obtain a proper Hamiltonian path. Assume therefore that there
is no proper cycle C such that V (C) = V (P ). It follows by Lemma 2.5 that
|P | ≥ n− 4 otherwise we obtain a contradiction on the number of edges. Let
us consider just the case |P | = n− 2 (|P | = n− 4 is easier, refer to [8] for full
details). Let e = xy be the edge of M b −E(P ). Now by similar arguments as
in the odd case above, we can prove that, either the edge e can be added to
P in order to obtain a proper Hamiltonian path in Gc, or one of the vertices
x, y, x1, yp has degree at most 2n− 6 as required. ✷

Theorem 4.8 Let Gc be a c-edge-coloured multigraph on n vertices, n ≥ 11
and c ≥ 3. If rd(Gc) = c and m ≥ c

(

n−2
2

)

+ 2c + 1, then Gc has a proper
Hamiltonian path.

For the extremal example, n ≥ 11, consider a rainbow complete multi-

18



graph, say A, on n − 2 vertices. Add two new vertices v1, v2 and join them
to a vertex v of A with all possible colours. The resulting c-edge-coloured
multigraph has c

(

n−2
2

)

+2c edges and clearly has no proper Hamiltonian path.

Proof. By Lemma 4.1 it is enough to prove the theorem for c = 3. Let
{r, b, g} be the set of colours. As m ≥ 3

(

n−2
2

)

+ 7 then |E(Gc)| ≤ 6n − 16.
The proof will be done either by construction of a proper Hamiltonian path
or using Theorem 4.6. We will do this by contracting two or three vertices
depending on if there exists a vertex x in Gc such that |N(x)| = 1 or not.

If there exists a vertex x ∈ Gc such that |N(x)| = 1 we contract x and its
unique neighbour y to a new vertex s as in Definition 4.2. By this we delete
at most 2n−1 edges and the resulting multigraph is still connected. Thus the
conclusion follows from Theorem 4.6.

Suppose next that there is no vertex x ∈ Gc such that |N(x)| = 1. It
follows that for any vertex x there are two distinct neighbours y,z in Gc such
that c(xy) = b and c(xz) = r. Now by Lemma 4.7 consider a vertex x such
that d(x) ≤ 2n−6. Then contract x, y, z to a new vertex s as in Definition 4.3.
Let G′c be the resulting multigraph. In this case, as we delete at most 5n−12
(= 2n− 6+ 3(n− 3)+ 3) edges, it is enough to prove that G′c is connected to
apply Theorem 4.6.

Suppose therefore by contradiction that G′c is disconnected. Then it has
exactly two components with one vertex, say u, and n−3 vertices, respectively,
otherwise we arrive to a contradiction on the number of edges.

Assume first that u 6= s. Then, as in the equivalent case of Theorem 4.6,
instead of x, y, z, we may find three other vertices u, y′, z′ to contract to a
vertex s′ just deleting 3n edges. This new obtained multigraph has at least
3
(

n−3
2

)

− 2 edges. Then, if it is connected we are done, otherwise there is a
component with one vertex, say u′, and another one on n− 3 vertices with at
least 3

(

n−3
2

)

− 2 edges, i.e., almost rainbow complete. Therefore, the biggest
component contains a proper Hamiltonian cycle and then we can easily add
either the isolated vertex u′ (if u′ 6= s′) or the three u, y′, z′ (if u′ = s′) vertices
to the cycle to obtain a proper Hamiltonian path in Gc.

Assume next u = s. If d(x) ≤ n + 1, then the contraction process deletes
4n − 5 edges instead of 5n − 12. Furthermore as G′c is disconnected by hy-
pothesis, its component on n − 3 vertices has at least 3

(

n−3
2

)

− n + 3 edges.
As in Theorem 4.6, this component is almost rainbow complete and thus it
contains a proper Hamiltonian cycle C. This allows us to easily add x, y, z to
C in order to obtain a proper Hamiltonian path in Gc. In the sequel, we may
suppose that d(x) ≥ n+2. Then x has two different neighbours y′ and z′ with
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parallel edges. Consider the next two cases:
Assume first that the parallel edges are on the same two colours, say c(xy′) =
c(xz′) = {b, r} (cases with other two colours are similar). Here we can con-
sider two possible contractions: 1) x, y′, z′ with c(xy′) = b, c(xz′) = r and 2)
x, y′, z′ with c(xy′) = r, c(xz′) = b. Now, suppose that in both contractions
the multigraph is disconnected and the contracted vertex is always the iso-
lated one, otherwise we are finished. We can observe that Gc has n+3 missing
edges incident to x (since d(x) ≤ 2n− 6), n− 3 green edges and 4(n− 3) blue
and red edges incident to y′ and z′ (since in both contractions the multigraph
is disconnected). By this we obtain a total of 6n−12 > 6n−16 missing edges,
which is a contradiction.
Assume next that the parallel edges are not on the same two colours, that is,
c(xy′) = {b, r} and c(xz′) = {b, g} (cases with other combinations are similar).
Now since we are not in the previous case, we do not have either the green
edge xy′ or the red one xz′. Try any of the three possible contractions: 1)
x, y′, z′ with c(xy′) = b, c(xz′) = g, 2) x, y′, z′ with c(xy′) = r, c(xz′) = g and
3) x, y′, z′ with c(xy′) = r, c(xz′) = b. Then, after each of these contractions
the multigraph is still disconnected and the contracted vertex is always the
isolated one. We can observe that there can exist just the red edges between
y′ and Gc−{x, y′, z′} and the green edges between z′ and Gc−{x, y′, z′}. Now
as rd(Gc) = 3 there must exist the green edge y′z′ and the red edge y′z′. Since
we are not in the previous case, the blue edge y′z′ is not present. We find us
in the situation that c(xy′) = {b, r}, c(xz′) = {b, g} and c(y′z′) = {r, g}. Now,
we have nine different contractions to try, three for each triplet x, y′, z′, y′, x, z′

and z′, x, y′. If in all of them we are in this same situation (the contracted
multigraph is disconnected and the isolated vertex is the contracted one) we
can conclude that in Gc there can exist just the blue edges between x and
Gc − {x, y′, z′}, the red edges between y′ and Gc − {x, y′, z′}, and the green
edges between z′ and Gc − {x, y′, z′}. This gives a total of 6(n − 3) missing
edges in Gc. Finally, adding the three missing edges xy′ in green, xz′ in red
and y′z′ in blue, we obtain 6n− 15 missing edges which is a contradiction. ✷
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