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aInstituto de Matemáticas, Universidad Nacional Autónoma de México,
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Abstract

Let D be a connected oriented graph. A set S ⊆ V (D) is convex in D if, for
every pair of vertices x, y ∈ S, the vertex set of every xy-geodesic, (xy shortest
directed path) and every yx-geodesic in D is contained in S. The convexity number,
con(D), of a non-trivial oriented graph, D, is the maximum cardinality of a proper
convex set of D. The strong convexity spectrum of the graph G, SSC(G), is the set
{con(D) : D is a strong orientation of G}. In this paper we prove that the problem
of determining the convexity number of an oriented graph is NP-complete, even for
bipartite oriented graphs of arbitrary large girth, extending previous known results
for graphs. We also determine SSC(Pn2Pm), for every pair of integers n,m ≥ 2.
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1 Introduction

Graphs considered in the paper are finite, without loops or multiple edges. In a
graph G = (V,E), V and E (V (G) and E(G)) denote the vertex set and the edge set
of G, respectively. For undefined concepts and notation we refer the reader to [2].
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For two vertices u and v in a graph G, a uv-geodesic is a shortest path between
u and v. A set S of vertices of G is convex if the vertices of every uv-geodesic is
contained in S for every u, v ∈ S. According to Duchet, convexity in graphs has been
studied since the early seventies, when abstract convexity was studied in different
contexts ([8] is an outdated, but very nice, survey on the subject). Convexity in
graphs has taken many different directions, and different related parameters have
been defined and widely studied, e.g., the hull number [9], the geodetic number [11],
and the convexity number [3] of a graph. Recent papers on this subjects include
[1, 6, 7], where the decision problem associated with these three parameters are
shown to be NP-complete, even when restricted to bipartite graphs, and in the case
of the geodetic number, even when restricted to bipartite chordal graphs.

Chartrand, Fink and Zhang generalized the concept of convexity to oriented
graphs, and defined the convexity number for an oriented graph; oriented analogues
of the hull number and geodetic number are defined in [4]. We focus on the convexity
number of oriented graphs; although this generalization was introduced in 2002,
and the proof given by Gimbel in [10] on the NP-completeness of determining the
convexity number of an arbitrary graph is one of the shortest and neatest NP-
completeness proofs ever done, the problem of determining the convexity number
of an oriented graph was not known to be NP-complete until now. We prove that
determining the convexity number of an oriented graph is NP-complete even when
restricted to bipartite graphs of girth g, with g ≥ 6.

An oriented graph is an orientation of some graph. In an oriented graph D =
(V,E), V and E (V (D) and E(D)) denote the vertex set and the edge set of D,
respectively. An oriented subgraph D′ = (V ′, E ′) of an oriented graph D = (V,E) is
an oriented graph with V ′ ⊆ V and E ′ ⊆ E. An oriented graph is connected if its
underlying graph is connected. A directed path is a sequence (v1, v2, ..., vk) of vertices
of an oriented graph D such that v1, v2, ..., vk are distinct and (vi, vi+1) ∈ E(D) for
i ∈ {1, 2, ..., k − 1}. An oriented graph is strongly connected (or strong) if for every
pair of distinct vertices u and v, there exists a directed path from u to v. The girth
of an oriented graph is the length of a shortest directed cycle.

A uv-geodesic in a digraph D is a shortest uv-directed path and its length is
dD(u, v). A nonempty subset, S, of the vertex set of a digraph, D, is called a convex
set of D if, for every u, v ∈ S, every vertex lying on a uv- or vu-geodesic belongs to
S. For a nonempty subset, A, of V (D), the convex hull, [A], is the minimal convex
set containing A. Thus [S] = S if and only if S is convex in D. The convexity
number, con(D), of a digraph D is the maximum cardinality of a proper convex set
of D. A maximum convex set S, of a digraph D, is a convex set with cardinality
con(D). Since every singleton vertex set is convex in a connected oriented graph D,
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1 ≤ con(D) ≤ n − 1. The degree, d(v), of a vertex v in an oriented graph is the
sum of its in-degree and out-degree; this is, d(v) = d−(v) + d+(v). A vertex, v, is an
end-vertex if d(v) = 1. A source is a vertex having positive out-degree and in-degree
0, while a sink is a vertex having positive in-degree and out-degree 0. For a vertex
v of D, the in-neighborhood of v, N−(v), is the set {x : (v, x) ∈ E(D)} and the
out-neighborhood of v, N+(v), is the set {x : (x, v) ∈ E(D)}. A vertex v of D is a
transitive vertex if d+(v) > 0, d−(v) > 0 and, for every u ∈ N+(v) and w ∈ N−(v),
(w, u) ∈ E(D).

For graphs G and H, their cartesian product, G2H, is the graph with vertex set
V (G)× V (H), and such that two vertices (g1, h1) and (g2, h2) are adjacent in G2H
if either g1 = g2 and h1h2 is an edge in H, or h1 = h2 and g1g2 is an edge in G. For a
vertex g of G, the subgraph of G2H induced by the set {(g, h) : h ∈ H} is called an
H-fiber and is denoted by gH. Similarly, for h ∈ H, the G-fiber, Gh, is the subgraph
induced by {(g, h) : g ∈ G}. We will have occasion to use the fiber notation Gh and
gH to refer instead to the set of vertices in these subgraphs; the meaning will be clear
from the context. It is clear that all G-fibers are isomorphic to G and all H-fibers
are isomorphic to H.

As mentioned, the concept of convexity number of an oriented graph was first
introduced by Chartrand, Fink and Zhang in [5], where they proved the following
pair of theorems.

Theorem 1. Let D be a connected oriented graph of order n ≥ 2. Then con(D) =
n− 1 if and only if D contains a source, a sink or a transitive vertex.

Theorem 2. There is no connected graph of order at least 4 with convexity number
2.

Taking an interesting direction for the subject of convexity in oriented graphs,
in [12], Tong, Yen and Farrugia introduced the concepts of convexity spectrum and
strong convexity spectrum of a graph. For a nontrivial connected graph G, we define
the convexity spectrum, SC(G), of a graph G, as the set of convexity numbers of all
orientations of G, and the strong convexity spectrum, SSC(G), of a graph G as the
set of convexity numbers of all strongly connected orientations of G. If G has no
strongly connected orientation, then SSC(G) is empty. The lower orientable convexity
number, con−(G), of G is defined to be minSC(G) and the upper orientable convexity
number, con+(G), is defined to be maxSC(G). Hence, for every nontrivial connected
graph G of order n, 1 ≤ con−(G) ≤ con+(G) ≤ n− 1.

Tong, Yen and Farrugia calculated the convexity and strong convexity spectra of
complete graphs and also constructed, for every a ∈ Z+, a graph G with convexity
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spectrum {a, n − 1}. It is not very surprising that the strong convexity spectra of
Kn for n ≥ 7 is a “large” set, {1, 3, 5, 6, . . . , n − 2}, missing only 2, 4 and n − 1.
Nonetheless, we find very surprising that, in one hand, Tong and Yen proved in [13]
that SSC(Kr,s) = {1} for every pair of integers 2 ≤ r, s, and, in the other hand, we
prove that the strong convexity spectrum of an n×m grid, for any pair of integers
n,m ≥ 5, only lacks the set of integers {2, 3, 5, n − 1, n − 2, n − 3, n − 4, n − 5}.
So, an interesting question arises from the previous observation: What property in
a graph determines a large strong convexity spectrum? We can discard regularity
and high degrees; grids are not regular graphs, and have both small maximum and
minimum degree. Although we did not find what is so special about grids in terms
of convexity, we managed to calculate the strong convexity spectra of all grids.

The rest of this paper is ordered as follows.
Section 2 is devoted to prove the NP-completeness of the problem of determining

the convexity number of a given oriented graph; the problem remains NP-complete
even when restricted to bipartite oriented graphs of arbitrarily large girth. In Section
3, we prove some basic results on the convexity number of general oriented graphs,
and also introduce a concept of main importance to this work: The whirlpool ori-
entation of a grid. Using this concept, we prove that 1 ∈ SSC(G) for any grid G.
We finish the section with a result excluding some values from the strong convexity
spectra of certain grids. Section 4 is devoted to calculate the strong convexity spectra
of n× 2 and n× 3 grids for every integer n ≥ 2. In Section 5, the strong convexity
spectra of n×m grids for every pair of integers n,m ≥ 4 is calculated.

2 NP-completeness

We define the problem Oriented Convexity Number as follows. Given an
ordered pair (D, k), consisting of an oriented graph D and a positive integer k,
determine whether D has a convex set of size at least k.

This first section is devoted to prove the NP-completeness of Oriented Con-
vexity Number.

Theorem 3. Oriented Convexity Number restricted to bipartite oriented graphs
of girth 6 is NP-complete.

Proof. Let D be an oriented graph. Given a subset C ⊆ V (D), it can be verified
in polynomial time whether C is a convex set. Hence, Oriented Convexity
Number is in NP .

In order to prove NP-hardness (and hence NP-completness), we reduce an in-
stance (G, k) of the well-known NP-complete problem Clique to an instance (D, k′)
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Figure 1: The digraph D of Theorem 3 when G is P3 = (u, v, w).

of Oriented Convexity Number such that ω(G) ≥ k if and only if con(D) ≥ k′,
the encoding length of (D, k′) is polinomially bounded in terms of the encoding length
of (G, k), and D is bipartite.

Let (G, k) be an instance of Clique. Let us assume that k ≥ 3 and G is
connected; we construct D as follows. For every vertex u of G we create a directed
hexagon, Hu, with two antipodal distinguished vertices xu and yu. For every edge
uv ∈ E(G) we add the arcs (xu, yv) and (xv, yu) to D. We create four additional
vertices z1, z2, z3, z4 with arcs (zi, zi+1) for 1 ≤ i ≤ 3 and arcs (xu, z1), (z4, yu) for
every u ∈ V (G).

Clearly, |V (D)| = 6|V (G)| + 4 and |A(D)| = 8|V (G)| + 2|E(G)| + 3. It is direct
to observe that the digraph D is bipartite and strongly connected. In Figure 1 the
classes of the bipartition are given by the vertices of the same color (black and white).
We also claim the following statements to hold.

Claim 1. Let u be a vertex in G and let C be a convex set of D with |C| ≥ 2. If
C ∩ V (Hu) 6= ∅, then V (Hu) ⊆ C.

Claim 2. Let C be a convex set of D with |C| ≥ 2. If zi ∈ C for 1 ≤ i ≤ 4, then
C = V (D).

Claim 3. Let u, v ∈ V (G) be such that dG(u, v) ≥ 2. If C is a convex set of D such
that C ∩ V (Hu) 6= ∅ 6= C ∩ V (Hv), then C = V (D).
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Claim 4. If S is a clique of G, then C =
⋃

v∈S V (Hv) is a convex set of D.

It follows from Claims 1-4 that C is a proper convex set of D with |C| ≥ 2, if
and only if there exists a clique S in G such that C =

⋃
v∈S V (Hv). Considering a

maximum clique of G, and a maximum proper convex set of D, we obtain ω(G) =
6con(D). Hence, if k′ = 6k, then G contains a clique of size at least k if and only
if D contains a convex set of size at least k′. Since the encoding length of (D, k′) is
linearly bounded in terms of the encoding length of (G, k), Oriented Convexity
Number is NP-complete.

of Claim 1. We will consider two cases. First, assume that |C ∩ V (Hu)| ≥ 2. Let
w1 and w2 be vertices in C ∩ V (Hu). Clearly, w1Huw2 is a w1w2-geodesic in D and
w2Huw1 is a w2w1-geodesic in D. Hence, V (Hu) ⊆ C.

For the second case suppose that w1 ∈ V (Hu) and w2 ∈ C \ V (Hu). Therefore,
every w1w2-directed path in D uses the vertex xu, and every w2w1-directed path in
D uses the vertex yu. Thus, |C ∩ V (Hu)| ≥ 2 and we are back to the first case.

of Claim 2. Suppose first that zj ∈ C with i 6= j. Assume without loss of generality
that i < j. Every zjzi-directed path in D uses the vertices z1 and z4, thus z1, z4 ∈ C.
For every u ∈ V (G), (z4, yu)∪(yuHuxu)∪(xu, z1) is a z4z1-geodesic in D. We conclude
from Claim 1 that V (Hu) ⊆ C for every u ∈ V (G), and it follows that C = V (G).

If zi ∈ C for 1 ≤ i ≤ 4 and w ∈ C for some w ∈ V (D) \ {z1, z2, z3, z4}, then every
wzi-directed path in D uses the vertex z1 and every ziw-directed path in D uses the
vertex z4. Thus, z1, z4 ∈ C and we are done.

of Claim 3. It follows from Claim 1 that V (Hu)∪V (Hv) ⊆ C. Since dG(u, v) ≥ 2, it
is easy to observe that (xu, z1, z2, z3, z4, yv) is an xuyv-geodesic in D. Hence, z1 ∈ C
and Claim 2 guarantees C = V (D).

Proof of Claim 4. It is direct to verify that V (Hu) is a convex set of D for every
u ∈ V (G). Let |S| ≥ 2 and u, v ∈ S. If w1 ∈ V (Hu) and w2 ∈ V (Hv), then every
w1w2-directed path in D uses the vertices xu and yv; moreover, it must contain an
xuyv-directed path. Our claim follows from noting that (xu, yv) ∈ A(D).

It is easy to observe that the directed 6-cycles in the previous construction can
be replaced by directed 2n-cycles, and the directed path (z1, . . . , z4) can be replaced
by a directed path of length n, in order to get the result for an oriented bipartite
graph of arbitrary large girth.
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3 Grids

We begin this section with two straightforward lemmas regarding convex sets in
strong oriented graphs. The first lemma is a direct observation, so the proof will be
omitted.

Lemma 4. Let D be a strongly connected oriented graph. If C ⊆ V (D) is a convex set
such that |C| ≥ 2, then C induces a strong subdigraph of D. Therefore, min(SSC(G)\
{1}) ≥ g(G), where g(G) stands for the girth of G.

Lemma 5. Let D be an oriented graph. If C ⊆ V (D) is a maximal convex set, then
D − C is a connected subdigraph of D.

Proof. Otherwise, let D1, . . . , Dn be the connected components of D − C. Since C
is a convex set of D, C ∪

⋃n−1
i=1 V (Di) is a convex set of D properly containing C, a

contradiction.

The following observation is simple, but also very useful while searching for ad-
equate orientations to realize specific convex numbers. The proof is straightforward
and thus will be omitted.

Observation 1. Let G be a triangle-free graph and let D be an orientation of G with
a convex set C. Let x ∈ V \ C be adjacent to a vertex y ∈ C.

• If (x, y) ∈ A(D), then N(x) ∩ C ⊆ N+(x).

• If (y, x) ∈ A(D), then N(x) ∩ C ⊆ N−(x).

Let n be an integer. We denote by Pn the path on n vertices, and we will assume
without loss of generality that Pn = (1, . . . , n). The (n × m)-grid is the cartesian
product Pn2Pm. Hence, if G = Pn2Pm, then V (G) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ i ≤
m}. Although it is not standard, and it can be impractical in a different context, for
the sake of simplicity we will denote the ordered pair (i, j) as ij. Also, we will use
the canonical embedding of the grid G = Pn2Pm in the plane to define orientations
of G, and directed paths in an orientation D of G. To achieve this goal, we will
use directions to “move” on the grid, denoted as a sequence of movements using the
symbols u, d, l, r, which stand for up, down, left and right. As an example, consider
a directed cycle denoted in the usual way, i.e., (ij, ij+1, (i + 1)j+1, (i + 1)j, ij); with
our notation we have the sequence (u, r, d, l), starting at vertex ij. In the following
paragraph, there is another example of the orientations that can be defined in this
way.
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Figure 2: A whirlpool orientation of the subgraph induced by the vertices in the gray region.

Let n,m ≥ 2 be integers and G be the canonical plane embedding of the grid
Pn2Pm. Let H∗ be a connected subgraph of the interior dual of G and let H be the
subgraph of G induced by the faces in V (H∗) (hence, the interior dual of H is H∗).
We define a whirlpool to be an oriented graph obtained from H by the following
orientation of its edges.

Orient



ijij+1 as:

 (ij, ij+1) if i
2≡ j

(ij+1, ij) otherwise.

ij(i + 1)j as:

 ((i + 1)j, ij) if i
2≡ j

(ij, (i + 1)j) otherwise.

An example of a whirlpool is depicted in Figure 2, where the graph H∗ has the gray
faces of the grid as its vertex set. In the rest of the figures, the gray squares will
always correspond to directed cycles. As the following proposition shows, whirlpools
have a very important property related to convexity.

Proposition 6. If D is a whirlpool, then con(D) = 1.

Proof. Let D be a whirlpool. Hence, there exist a pair of integers n,m ≥ 2 and a
subgraph H of the grid Pn2Pm such that D is obtained from H by the aforementioned
orientation of its edges. We affirm that every 4-cycle in H is an oriented 4-cycle
in D. If C is a 4-cycle in H, then C = (ij, ij+1, (i + 1)j+1, (i + 1)j, ij) for some

1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1. It is not difficult to observe that if i
2≡ j, then C is
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an oriented cycle in D. Else, C−1 (the cycle C in reverse order) is an oriented cycle
in D. Hence, D is strongly connected.

Since every edge of H belongs to a 4-cycle, it follows that every arc of D belongs
to a directed 4-cycle. Recalling that D is triangle free, it is clear that u→ v implies
d(v, u) = 3. Hence, if u → v, then the vertex set of every 4-cycle containing the
arc (u, v) is contained in the convex hull of {u, v}. But D is strongly connected, so
using the fact that the interior dual of H is connected, it can be shown inductively
that for every pair u, v of vertices of D, the convex hull of {u, v} is V (D). Therefore,
con(D) = 1.

Corollary 7. For every grid G, 1 ∈ SSG(G).

Observe that if an oriented grid D contains a whirlpool W as a subdigraph, then
every convex set containing at least two adjacent vertices of W must contain V (W ).

Also, if W is a whirlpool, then the digraph
←−
W obtained by the reversal of every arc

of W has the same properties as W ; we will call such a digraph an anti-whirlpool.
For a given integer k and an oriented graph D, it is easier to prove k ∈ SSC(D)

than proving k /∈ SSC(D). The following result excludes some values from the strong
convexity spectra of grids. Although simple, the complete proof of the lemma is to
long to be included here. The proof of the first item of the lemma is complete, as
well as the cases i = 3 and i = 4 of the second item. The proofs for the cases i = 5
and i = 6 can be obtained with similar arguments.

Lemma 8. Let n,m ≥ 2 be integers. If G = Pn2Pm, then:

• 2, 3, 5, |V | − 1 /∈ SSC(G).

• For every i ∈ {3, 4, 5, 6}, if n,m ≥ i, then |V | − (i− 1) /∈ SSC(G).

Proof. By Theorem 2 we have 2 /∈ SSC(G). Observing that every connected subdi-
graph of G with 3 or 5 vertices has at least one vertex of degree 1, and thus does
not admit a strong orientation, it follows from Lemma 4 that 3, 5 /∈ SSC(G). Any
strong orientation of G has neither sinks nor sources. Also, g(G) = 4 and hence the
orientations of G cannot have transitive vertices. It follows that |V | − 1 /∈ SSC(G).

Let n,m be integers such that n,m ≥ 3 and suppose that a strong orientation
D of G has a convex set C of cardinality |V | − 2. Let S = {x, y} be the set
V \ C and assume without loss of generality that (x, y) ∈ A(D). Since D is strong,
d−(x) ≥ 1 and d+(y) ≥ 1. It follows from Observation 1 that N−(x) ∩ C = N−(x)
and N+(y) ∩ C = N+(y). Let us denote by xu, xd, xl, xr the vertices above, below,
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to the left and to the right of x, respectively, in G. Since n,m ≥ 3, we can assume
without loss of generality that either (xu, x, y, yr) or (xl, x, y, yu) is a directed path
in D, and hence a geodesic. But this contradicts that C is a convex set. Hence, a
convex set of cardinality |V | − 2 cannot exist.

Let n,m be integers such that n,m ≥ 4 and suppose that a strong orientation D
of G has a convex set C of cardinality |V | − 3. Let S = {x, y, z} be the set V \ C.
Let us assume without loss of generality that (x, y) ∈ A(D) and xr = y. We have
two cases.

First consider yr = z. Again, we have two cases. Our first subcase is (z, y) ∈
A(D). As in the previous argument, either (xl, x, y, yu) or (zr, z, y, yu) is a geodesic in
D, contradicting that C is a convex set. Our second subcase is (y, z) ∈ A(D). We will
assume without loss of generality that (yu, y) ∈ A(D). Hence, either (xl, x, y, z, zu)
or (yu, y, z, zr) is a geodesic in D, contradicting that C is a convex set.

As a second case, consider yd = z, with two subcases. Our first subcase is (z, y) ∈
A(D). Either (xd, x, y, yr) or (zl, z, y, yu) is a geodesic in D, a contradiction. The
second subcase is (y, z) ∈ A(D). Hence, at least one of the following directed paths is
present in D, and it is a geodesic: (xd, x, y, yu), (xd, x, y, yr), (yu, y, z, zl), (yr, y, z, zl).
But every case results in a contradiction. Hence, a convex set of cardnality |V | − 3
cannot exist.

4 Convex spectra of small grids

The following pair of results deal with the convexity spectra of n× 2 grids.

Lemma 9. Let n ≥ 2 be an integer and let G be the grid Pn2P2. If j is an integer
such that j 6= 1 and

⌊
n
2

⌋
≤ j ≤ n− 1, then 2j ∈ SSC(G).

Proof. Let D1 be the orientation of G1 = Pj2P2 as a whirlpool. We will consider
two cases.

First, suppose that j ≥ n
2
. Let D2 be the orientation of G2 = G − G1 as a

whirlpool, if j is odd, or as anti-whirlpool if j is even. In either case, the orientation
of the edges j1j2 and (j + 1)1(j + 1)2 result in parallel arcs, i.e., we have either the
arcs (j1, j2) and ((j + 1)1, (j + 1)2) or the arcs (j2, j1) and ((j + 1)2, (j + 1)1). We will
assume that j is odd, the remaining case can be dealt similarly. If D is the digraph
obtained by orienting the two remaining edges as (j1, (j + 1)1) and ((j + 1)2, j2),
then it is clear that ∂+(V (D1)) = {(j1, (j + 1)1)} and ∂−(V (D1)) = {((j + 1)2, j2)}.
But dD(j1, j2) = 1, and hence, V (D1) is a convex set of cardinality 2j. If C is
a convex set of Pn2P2 such that |C| > 2j, then C ∩ V (D1) 6= ∅ 6= C ∩ V (D2).
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From the previous observations about ∂+(V (D1)) and ∂−(V (D1)), we conclude that
j1, j2, (j + 1)1, (j + 1)2 ∈ C. Since D1 and D2 are whirlpools, we obtain C =
V (Pn2P2). Therefore, V (D1) is a maximum convex set of D.

If j =
⌊
n
2

⌋
, then we will assume that n is odd, otherwise we are back in the

previous case. Let D2 be the orientation of G2 = G−G[V (D)\V (G1)∪{(j+1)1, (j+
1)2}] as a whirlpool, if j is odd, or as anti-whirlpool if j is even. Again, we will assume
that j is odd. Orient the remaining edges in the following way: ((j+1)1, (j+1)2), ((j+
1)2, j2), ((j + 1)2, (j + 2)2), (j1, (j + 1)1) and ((j + 2)1, (j + 1)1). An argument similar
to the one used in the previous case shows that V (G1) and V (G2) are convex sets of
D, and clearly |V (G1)| = |V (G2)|. If C is a convex set of Pn2P2 such that |C| > 2j,
then C∩{(j+1)1, (j+1)2} 6= ∅. Since N+((j+1)1) = {(j+1)2} and N−((j+1)2) =
{(j+1)1}, then {(j+1)1, (j+1)2} ⊆ C. But ((j+1)2, j2, (j−1)2, (j−1)1, j1, (j+1)1)
and ((j+1)2, (j+2)2, (j+3)2, (j+3)1, (j+2)1, (j+1)1) are (j+1)2(j+1)1-geodesics
in D. Since G1 and G2 are whirlpools in D, we obtain C = V (D). Hence, V (G1) is
a maximum convex set of D.

Theorem 10. If n ≥ 2 is an integer and G is the grid Pn2P2, then

SSC(G) = {1} ∪ {2j :
⌊
n
2

⌋
≤ j ≤ n− 1} \ {2}.

Proof. Let D be a strong orientation of G and C a maximum convex set of D. It
follows from Lemma 5 and the fact that D[C] is strong that, for some 2 ≤ j ≤ n− 1,
either V (C) = V (Pj2P2), or V (C) = V (D) \ V (Pj2P2). Hence, there are not odd
integers greater than 1 in SSC(G).

Assume without loss of generality that C = V (Pj2P2) for some 2 ≤ j ≤ n − 1.
Also assume without loss of generality that (j1, j2) ∈ A(D). We will consider two
cases.

Consider for the first case ((j + 1)2, (j + 1)1) ∈ A(D). Since D is strong, either
((j+1)1, j1), (j2, (j+1)2) ∈ A(D) or (j1, (j+1)1), ((j+1)2, j2) ∈ A(D). In the former
case (j2, (j + 1)2, (j + 1)1, j1) is a j2j1-geodesic in D, a contradiction. In the latter
case, it is direct to verify that V (D) \ C is also a convex set; since C is maximum,
we get j ≥ n

2
.

For the second case consider ((j+1)1, (j+1)2) ∈ A(D). Again, since D is strong,
either ((j+1)1, j1), (j2, (j+1)2) ∈ A(D) or (j1, (j+1)1), ((j+1)2, j2) ∈ A(D). In the
former case it is easy to check that V (D) \ C is a convex set of D, hence, j ≥ n

2
. In

the latter case, if ((j+2)2, (j+1)2), ((j+1)1, (j+2)1) ∈ A(D), then V (Pj+12P2) is a
convex set of D, a contradiction. Hence ((j+1)2, (j+2)2), ((j+2)1, (j+1)1) ∈ A(D)
and we have two further cases.

11



Figure 3: The orientations used in the proof of Lemma 11 with n = 7 and j ∈ {4, 6}.

If ((j + 2)2, (j + 2)1) ∈ A(D), then V (D) \ C is a convex set of D, thus j ≥ n
2
.

If ((j + 2)1, (j + 2)2) ∈ A(D), then V (D) \ (C ∪ {(j + 1)1, (j + 1)2}) is a convex
set of D, and hence j ≥

⌊
n
2

⌋
.

Although a bit more complex, similar arguments can be used for the n× 3 grids.

Lemma 11. Let n ≥ 2 be an integer and let G be the grid Pn2P3. If j is an integer
such that 2 ≤ j ≤ n− 1, then 3j ∈ SSC(G).

Proof. We consider two cases. If j = n − 1, then let D1 be the orientation of G1 =
Pn−12P3 as a whirlpool. Suppose that n is even, the remaining case is analogous. Ori-
ent the remaining edges as ((n−1)3, n3), ((n−1)1, n1), (n2, (n−1)2), (n1, n2), (n3, n2).
It is straightforward to verify that this orientation D of G is strong and V (D1) is a
maximum convex set of D.

For 2 ≤ j ≤ n − 2, let D1 be the orientation of G1 = Pj−22P3 as a whirlpool
(note that D1 is empty for j = 2). Let D2 be the orientation of G2 = G− (Pj2P3)
as a whirlpool. Orient (j3, (j − 1)3, (j − 1)2, (j − 1)1, j1, j2, j3) as a directed cycle.
Also, orient ∂(G1) as ((j − 2)3, (j − 1)3), ((j − 1)2, (j − 2)2), ((j − 2)1, (j − 1)1) if
j is even, and reverse each of these arcs if j is odd. Finally, orient the remaining
arcs as (j2, (j − 1)2), (j3, (j + 1)3), (j2, (j + 1)2), ((j + 1)1, j1). Let D be the resulting
orientation of G, and let D3 be the induced subdigraph D[V (Pj2P3)] of D.

We will assume that j is even, the remaining case can be dealt similarly. Observe
that ∂+(D3) = ∂−(D2) = {(j3, (j + 1)3), (j2, (j + 1)2)}, and ∂−(D3) = ∂+(D2) =
{((j + 1)1, j1)}. Since d((j + 1)2, (j + 1)1) = 3, d((j + 1)3, (j + 1)1) = 4, d(j3, j1) = 4,
and d(j2, j1) = 3, it is clear that V (D3) is a convex set of D with |V (D3)| = 3j.

Let C be a convex set of D such that |C| > 3j. Since every convex set in a strong
digraph induces a strong subdigraph, we observe that |C ∩ V (D2)| ≥ 2. But D2 is
a whirlpool, and hence V (D2) ⊆ C. Note that d((j + 1)1, (j + 1)3) = 4 and also
that ((j + 1)1, j1, j2, j3, (j + 1)3) is a directed path in D. Thus, j1, j2, j3 ∈ C. Recall
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Figure 4: The orientations used in the proof of Lemma 12 with n = 7 and j ∈ {2, 3, 4, 5}.

that d(j3, j1) = 4 and consider the directed path (j3, (j − 1)3, (j − 1)2, (j − 1)1, j1)
to conclude (j − 1)1, (j − 1)2, (j − 1)3 ∈ C. Since j is even, ((j − 1)3, (j − 1)2, (j −
2)2, (j− 2)3, (j− 1)3) is a directed cycle in D. This implies |C ∩ V (D1)| ≥ 2, but D1

is a whirlpool, and hence V (D1) ⊆ C and C = V (D). Therefore con(D) = 3j.

Lemma 12. Let n ≥ 2 be an integer and let G be the grid Pn2P3. If j is an integer
such that 2 ≤ j ≤ n− 2, then 3j + 2 ∈ SSC(G).

Proof. Let D1 be the orientation of G1 = (Pj+12P3) − (j + 1)3 as a whirlpool. We
will consider two cases.

For the first case consider
⌊
n
2

⌋
≤ j ≤ n − 3, and let D2 be the orientation of

G2 = G− (Pj+12P3) as a whirlpool, if j is even, or as an anti-whirlpool, if j is odd.
If j is even, orient the remaining edges as ((j + 1)3, j3), ((j + 1)3, (j + 1)2), ((j +

2)3, (j + 1)3), ((j + 2)2, (j + 1)2), ((j + 1)1, (j + 2)1) to obtain the orientation D of
G. It is direct to verify that D is strong. Observing that d((j + 1)1, (j + 1)2) = 1
and d((j + 1)1, j3) = 3 it is easy to verify that V (D1) is a convex set of D. If C is
a convex set of D such that |C| > 3j + 2, then |C ∩ (V (D) \ V (D1))| 6= ∅. But
∂+(D1) = {((j + 1)1, (j + 2)1)}, and hence |C ∩ V (D2)| ≥ 2. Recalling that D2 is a
whirlpool and observing that ((j + 2)3, (j + 1)3, j3) is a (j + 2)3j3-geodesic in D, we
conclude that C = V (D). Hence con(D) = 3j + 2.

If j is odd, orient the remaining edges as (j3, (j + 1)3), ((j + 1)2, (j + 1)3), ((j +
1)3, (j + 2)3), ((j + 1)2, (j + 2)2), ((j + 2)1, (j + 1)1) to obtain the orientation D of
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G. This orientation is, locally, the dual orientation of the case when j is even, so
analogous arguments show that V (D1) is a convex set and con(D) = 3j + 2.

As a second case, assume that 2 ≤ j <
⌊
n
2

⌋
or j = n− 2. When j is odd, orient

(j3, (j + 1)3, (j + 2)3, (j + 2)2, (j + 2)1, (j + 1)1) as a directed path, and orient the
arcs ((j + 1)2, (j + 1)3), ((j + 1)2, (j + 2)2). If j 6= n − 2, let D2 be the orientation
of G2 = G \ (Pj+22P3) as an anti-whirlpool and orient the remaining edges of G as
((j + 2)1, (j + 3)1), ((j + 2)2, (j + 3)2), ((j + 3)3, (j + 2)3) to obtain D. Clearly D
is strong. Also, it is direct to verify that V (D1) is a convex set of D with 3j + 2
vertices.

Let C be a convex set of D such that |C| > 3j + 2. If |C ∩ V (D2)| ≥ 2, then
V (D2) ⊆ C. But ((j + 3)3, (j + 2)3, (j + 2)2, (j + 2)1, (j + 3)1) is a (j + 3)3(j + 3)1-
geodesic in D, and thus, (j+2)i ∈ C for 1 ≤ i ≤ 3. Also, ((j+2)1, (j+1)1, j1, j2, (j+
1)2, (j + 1)3, (j + 2)3) is a (j + 2)1(j + 2)3-geodesic in D. This implies C = V (D),
because |C ∩ V (D1)| ≥ 2.

Otherwise, and because j ≥ 2, V (D1) ⊆ C and v ∈ C for some v ∈ {(j+1)3, (j+
2)1, (j + 2)2, (j + 2)3}. In any case, (j3, (j + 1)3, (j + 2)3, (j + 2)2, (j + 2)1, (j + 1)1)
is the union of a j3v-geodesic and a v(j + 1)1-geodesic in D (and the case j = n− 2
is finished) . Since ((j + 2)2, (j + 3)2, (j + 3)3, (j + 2)3) is a (j + 2)2(j + 2)3-geodesic
in D, we have |C ∩ V (D2)| ≥ 2 and C = V (D).

When j is even, as in the previous case, we can orient the remaining edges of G to
obtain, locally, an orientation that is dual to the orientation when j is odd. Hence,
analogous arguments can be followed to prove that V (D1) is a maximum convex set
of D.

Therefore, con(D) = 3j + 2.

Lemma 13. Let n ≥ 2 be an integer and let G be the grid Pn2P3. If j is an integer
such that 3 ≤ j ≤ n− 2, then 3j + 1 ∈ SSC(G).

Proof. We will assume that j is odd, the remaining case can be dealt similarly. Orient
G′1 = Pj−12P3 as a whirlpool to obtain D′1. We will consider two cases.

For the first case, suppose that j = n − 2. Let D1 be the digraph obtained
from G1 = (Pj+12P3) − {j3, (j + 1)3} by orienting G′1 as D′1, ((j − 1)1, j1, (j +
1)1, (j + 1)2, j2, (j − 1)2) as a directed path, and the remaining edge of G[G1] as
(j2, j1). Also, orient ((j + 1)1, (j + 2)1, (j + 2)2, (j + 2)3, (j + 1)3, j3, (j − 1)3), and
((j + 1)3, (j + 1)2, (j + 2)2) as directed paths. Orient the remaining edge as (j3, j2)
to obtain the digraph D. It is immediate to verify that D is a strong digraph.

Note that ∂+(D1) = {((j+1)1, (j+2)1), ((j+1)2, (j+2)2)} and ∂−(D1) = {(j3, (j−
1)3), (j3, j2), ((j+1)3, (j+1)2)}. Observing that d((j+1)2, j2) = d((j+1)1, (j+1)2) =
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Figure 5: The orientation used in the proof of Lemma 13 for n = 7 and j ∈ {3, 4, 5}.

1, d((j + 1)1, j2) = 2, d((j + 1)1, (j− 1)3) = 4, and d((j + 1)2, (j− 1)3) = 3, it is easy
to conclude that V (D1) is a convex set of D with 3j + 2 vertices.

Let C be a convex set of D such that |C| > 3j + 1. Since j = n − 2, then
|C ∩ V (D′1)| ≥ 2 and hence V (D′1) ⊆ C. Also, there is at least one vertex v ∈
C ∩ (V (D) \ V (D1)). Regardless of the choice of v, the directed path starting at
(j − 1)1 and defined by the sequence (r, r, r, u, u, l, l, l) results from the union of
a (j − 1)1v-geodesic and a v(j − 1)3-geodesic. Hence, V (D) ⊆ C and therefore
con(D) = 3j + 1

As a second case, assume that j ≤ n−3. Let D1 and D2 be the digraphs obtained
by orienting both G1 = (Pj+12P3)− {j3, (j + 1)3} and G2 = G− (V (G1) ∪ {j3, (j +
1)3, (j + 2)1}) as whirlpools. Orient ((j + 1)3, (j + 1)2, (j + 2)2, (j + 2)1, (j + 1)1) and
((j+2)3, (j+1)3, j3, (j−1)3) as directed paths. If j = n−3, orient ((j+3)1, (j+2)1),
and orient the same edge as (j+2)1, (j+3)1 otherwise. Finally, orient the remaining
edges as (j3, j2) to obtain the digraph D. It is direct to verify that D is strong.

Observe that ∂+(D1) = {((j + 1)2, (j + 2)2)} and ∂−(D1) = {(j3, j2), (j3, (j −
1)3), ((j + 1)3, (j + 1)2), ((j + 2)1, (j + 1)1)}. Noting that d((j + 1)2, (j + 1)1) = 1,
d((j + 1)2, j2) = 3 and d((j + 1)2, (j − 1)3) = 5, it is not hard to verify that V (D1)
is a convex set of D.

Let C be a convex set of D such that |C| > 3j+1. If j = n−3, then |V (D1)∩C| ≥
2, and V (D1) ⊆ C. If j < n − 3 and |C ∩ V (D2)| ≥ 2, then V (D2) ⊆ C. But
((j+2)2, (j+2)1, (j+3)1) is a (j+2)2(j+3)1-geodesic in D, which implies (j+2)1 ∈ C.
The directed path with initial vertex (j+2)1 and defined by the sequence (l, l, u, r, r)
is a (j + 2)1(j + 2)2-geodesic in D. From here we observe that |V (D1) ∩ C| ≥ 2 and
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Figure 6: The orientation used in the proof of Lemma 14 for n = 8.

thus V (D1) ⊆ C. If j < n − 3 and |C ∩ V (D2)| ≤ 1, then |V (D1) ∩ C| ≥ 2, and
V (D1) ⊆ C. Hence, in every case V (D1) ⊆ C. Since there is at least one vertex from
V (D) \ V (D1) in C, necessarily (j + 2)2 ∈ C. The directed path starting at (j + 2)2
and defined by the sequence (r, u, l, l, l, l) is a (j + 2)2(j − 1)3-geodesic, and hence
V (D2) ⊆ C. But if V (D2) ∪ V (D1) ⊆ C, it is easy to verify that C = V (D). Hence,
con(D) = 3j + 1.

So far, we have every integer of the convexity spectrum of Pn2P3, except for 4.
Our next theorem deals with the remaining case.

Lemma 14. If n ≥ 3 is an integer and G is the grid Pn2P3, then 4 ∈ SSC(G)

Proof. Consider the standard plane embedding of G and color the interior faces gray
and white with a checkerboard-like pattern, coloring the square on the bottom left
corner with gray. We will define an orientation of the arcs of G using this coloring,
an example can be seen on Figure 6.

There are two rows of squares. Enumerate the gray squares in each row from left
to right. Orient the bottom left corner square as a whirlpool and, from here, orient
all the gray squares in its row alternating whirlpool and anti-whirlpool orientations.
Orient all the gray squares in the upper row following the same principle, but start
orienting as an anti-whirlpool the first gray square. At this point, every arc dividing
two interior faces of G has received an orientation. Every remaining unoriented edge
e of G divides a white square from the exterior face of G. Thus, the edge e lies in
exactly one square of G, and has one parallel arc a in the square. It e is not an
edge of a corner square, orient it in the same direction as a. There are four edges
belonging to the white corner squares that remain unoriented. Orient the remaining
edges as 2-paths in such way that there are not white oriented squares. Let D be the
digraph obtained by this orientation. Clearly, D is strong and the vertices of each
gray square conform a convex set.
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Let C be a convex set of D such that |C| > 4. There must be two gray squares S1

and S2 such that v ∈ V (S1) ∩ V (S2) and V (S1) ∪ V (S2) ⊆ C. Since v is an interior
vertex, it belongs to two white squares. Let u be a vertex in the opposite corner in
one of these white squares S3. Assume without loss of generality that v is the lower
left corner of S1, the upper right corner of S2, and the lower right corner of S3; the
remaining cases can be dealt similarly.

If u is the middle vertex of a S1S2-path or a S2S1-path of length two, then u ∈ C,
and hence V (S3) ⊆ C.

Otherwise, let x and y be the upper right and lower left corners of S3, respec-
tively. Hence, d(x, y) = d(y, x) = 4 and either the sequence (l, l, d, r) starting from
x determines an xy-directed path of length 4, or the sequence (l, u, r, r) determines
a yx-directed path of length 4. In either case, V (S3) ⊆ C.

It can be verified inductively that C = V (D), and hence, con(D) = 4.

Theorem 15. If n ≥ 3 is an integer and G is the grid Pn2P3, then

SSC(G) = [1, 3n− 3] \ {2, 3, 5, 7}.

Proof. By virtue of Theorem 2 and Lemmas 8, 11, 12, 13 and 14, it remains to prove
that 7 /∈ SSC(G). Let D be a strong orientation of G and C a convex set of D.
Lemmas 4 and 5 imply that C induces a strong subdigraph of D and that V (D) \C
induces a connected subdigraph of D, respectively. But every connected subgraph of
G with 7 vertices has either a vertex of degree 1, and thus does not admit a strong
orientation; or does not have a connected complement. Hence, 7 /∈ SSC(G).

5 Convex spectra of general grids

The following lemma is the cornerstone of the vast majority of the arguments we
will use in this section.

Lemma 16. The oriented graph H in Figure 7 has convexity number 4.

Proof. It is easy to check that the vertices on the boundary of each of the gray filled
squares conform a convex set. We affirm that any convex set in H has at most 4
vertices. Let C be a maximum convex set in H and suppose that |C| > 4. Observe
that the intersection of C with the vertices of each gray filled square is either empty,
or it has one vertex, or it has four vertices. Hence, since |C| > 4, the vertices of
at least two squares are contained in C. If the vertices of two gray filled squares
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Figure 7: The digraph H: an orientation of P42P4 with convexity number 4.

different from the central one are contained in C, then there are at least two vertices
of the central square in C; thus, the vertices of the central square are contained in
C. So, by symmetry, we need only to consider two cases.

The first case is when the square on the lower left corner and the central square are
contained in C. Assume that the vertex in the lower left corner of H is (1, 1). It is easy
to check that ((2, 3), (2, 4), (1, 4), (1, 3), (1, 2)) and ((2, 1), (3, 1), (4, 1), (4, 2), (3, 2))
are (2, 3)(1, 2)- and (2, 1)(3, 2)-geodesics, respectively. From here, (4, 2), (3, 3) ∈ C,
and ((4, 2), (4, 3), (3, 3)) is a (4, 2)(3, 3)-geodesic in H. Therefore, there are at least
two vertices of each gray filled square in C and we can conclude that C = V (H), a
contradiction.

In the second case, we have the upper left corner and the central square contained
in C. Now, ((1, 3), (1, 2), (2, 2)) is a (1, 3)(2, 2)-geodesic in H. Hence, there are at
least two vertices of the lower left corner square in C. So, the lower left corner square
is contained in C and we have the condition of the first case.

Since contradictions are obtained in both cases, we conclude that |C| ≤ 4. Hence,
con(H) = 4.

As the reader would expect, the main part of the argument in the next lemma’s
proof is the construction of the orientation. The following lemmas will use similar
orientations, so the descriptions will be very detailed in the first ones, and will loose
detail as the lemmas progress.

Lemma 17. Let n,m ≥ 4 be integers. If G = Pn2Pm is a grid, then 4 ∈ SSG(G).
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Proof. Consider the standard plane embedding of G and color the interior faces gray
and white with a checkerboard-like pattern, assigning gray to the square on the
bottom left corner (like in Figure 7). We will define an orientation of the arcs of G
using this coloring.

Enumerate the rows of squares from bottom to top. Enumerate the gray squares
in each row from left to right. Orient the bottom left corner square as a whirlpool
and, from here, orient all the gray squares in the first column and first row alternating
whirlpool and anti-whirlpool orientations. Now, the first square or every odd row is
oriented, so we can orient all the gray squares in the odd rows alternating whirlpool
and anti-whirlpool orientations. A similar idea can be used to orient all the gray
squares in even rows, but start orienting as an anti-whirlpool the first gray square on
the second row. At this point, every arc dividing two interior faces of G has received
an orientation. We will consider two cases.

First, suppose that n and m are even integers, hence every corner square of G is
gray, and every remaining unoriented edge e of G divides a white square from the
exterior face of G. Thus, the edge e lies in exactly one square of G, and has one
parallel arc a in the square. Orient e in the same direction as a. All the edges of G
are now oriented; let D be the resulting oriented graph. Figure 7 is an example of
this orientation. It is easy to verify that D is strongly connected, and the vertices
of every gray square conform a convex set of D. If C is a convex set of D such that
|C| > 4, then C intersects the vertices on at least two different gray squares S1 and
S2 in odd columns and rows. Since C induces a strong subdigraph of D, we may
assume without loss of generality that S1 and S2 are gray squares in the same row
and adjacent odd columns. If S1 and S2 are in row i and columns j and j + 2, then
the vertices of S1 and S2, together with the vertices of the squares S3 and S4 in row
i+2 and columns j and j+2, induce a subdigraph of D isomorphic to the digraph H
of Figure 7. Therefore

⋃4
i=1 V (Si) ⊆ C. We can repeat this argument using squares

S2 and S4 and the squares in column j+4 and rows i and i+2. Iterating this process
we obtain C = V (D). Hence, con(D) = 4.

For the second case, assume that n or m is an odd integer. By virtue of Lemma
14, we assume that n,m ≥ 4. Observe that there are exactly two white corner
squares in G. Except for the edges in the white corner squares, orient the remaining
edges of G as in the previous case. For each of the white corner squares we have the
two cases depicted in Figure 8 (the squares we are interested in are the bottom right
corners), and two isomorphic cases obtained by reversing all the arcs of the previous
ones. We will consider two cases.

If n 6= 4 6= m, complete the orientation D of G as in Figure 8. Again, it is direct
to verify that D is strong and the vertices of every gray square conform a convex
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Figure 8: The two non-isomorphic cases for the white corners in the proof of Lemma 17.

set of D. Let C be a convex set of D such that |C| > 4. As in the previous case,
it suffices to show that there are two consecutive gray squares in the same row or
the same column that intersect C. Since |C| > 4, there C intersects at least two
different gray squares. Hence, the desired condition is held, unless the gray squares
are precisely those adjacent to one of the white corners. We will assume without loss
of generality that one white corner square is the one in the bottom right, as in Figure
8. Let S1 and S2 be gray squares to the left and above the white corner, respectively.
Let vi be the vertex in the upper left corner of Si, i ∈ {1, 2}.

Consider first the situation depicted by the digraph on the left in Figure 8. It
is clear that d(v1, v2) = 4, and also that, starting from v1, the sequence (u, u, r, d)
determines a v1v2-directed path of length 4. Hence, C intersects two consecutive
gray squares in the same row.

For the situation depicted by the digraph on the right in Figure 8, it is clear
that d(v1, v2) = 6. It is also clear that, starting from v1, the sequence (l, u, r, u, r, d)
determines a v1v2-directed path of length 6. Since C is convex, it intersects two
consecutive gray squares in the same row.

As a final case, assume without loss of generality that m = 4. Since n is an
odd integer, the two white corners are those on the right side of G. In the situation
depicted by the digraph on the left in Figure 8, use precisely that orientation and the
same argument as in the previous case. In the remaining case, use the orientation
of Figure 8 for the bottom right corner, and orient the upper right corner also as
a directed path of length 2 (assume that it goes up and left). This orientation is
strong, the vertices of each gray square conform a convex set, and the same argument
as the previous case shows that we can find two consecutive gray squares in the same
column that intersect C, and hence C = V (D).
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Our first modification to the previous orientation will be getting gray rectangles
instead of 2× 2 squares.

Lemma 18. Let n,m ≥ 4 be integers and let G = Pn2Pm be a grid. If a, b ≥ 2 is a
pair of integers such that a ≤ n− 1 and b ≤ m− 1, then ab ∈ SSG(G).

Proof. The idea of this proof is to generalize the orientation used in Lemma 17, but
using grids of size ab instead of squares in the odd-numbered rows and columns. An
example of this orientation is depicted in Figure 9.

First, suppose that a < n− 1 and b < m− 1. Enumerate the rows and columns
of squares of G from down to up and from left to right, respectively. Color with gray
and white the squares of G in a checkerboard-like pattern, but considering rectangles
of squares instead of single squares, in the following way. Color the squares in the
first a− 1 columns and b− 1 rows, and the square in the a-th column and b-th row
wih gray. Color the squares in the a-th column and the first b − 1 rows, and the
squares in the b-th column and the first a−1 rows in white. Color the rest of G with
a tiling of this coloring.

Enumerate the rows and columns of gray rectangles in the pattern from left to
right and from down to up. Clearly, the gray rectangles in the even numbered rows
(columns) are squares. We can assume that ab > 4, hence, the gray rectangles in the
odd numbered rows (columns) are proper rectangles.

Orient the gray squares in the even rows as in the proof of Lemma 17 (in partic-
ular, the first gray square of the second row is an anti-whirlpool). Orient the gray
rectangles in the odd rows as whirlpools or anti-whirpools in such way that every gray
square (possibly except the last gray square in every row or every column) in a even
row, together with the four gray squares sharing a vertex with it, induce a digraph
isomorphic to H (Figure 7). Of course, to achieve this end, we also need to orient
four additional arcs dividing either two white squares of G, or a white square and
the exterior face of G. Now, every unoriented edge of G divides two white squares,
or a white square from the exterior face in an even row or column of gray squares.
Orient every edge dividing two white squares in the same direction as the closest arc
in a gray square in the same row or column. There are unoriented edges parallel to
the arcs oriented in the previous step; orient those edges in the same direction as the
arcs they are parallel to. The remaining unoriented edges form paths on the exterior
face of G joining pairs of gray rectangles. Orient those paths as directed paths in
such way that, if any, the corner vertices of G in a white square have in-degree and
out-degree equal to one. Figure 9 shows an example of this orientation.
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Figure 9: The orientation described in the proof of Lemma 18 for n = 9, m = 8, a = 4 and b = 3.

If D is the digraph obtained from G by means of the previously described orien-
tation, then, by mimicking the arguments in the proof of Lemma 17 we reach the
desired conclusion.

If a = n− 1 or b = m− 1, we have to be careful with the white corners, but the
simple modification shown in Figure 10 suffices to use the same argument as in the
previous case.

In the next lemma we use a simpler orientation, which is depicted in Figure 11.
This orientation resembles the one used in Lemma 9.

Lemma 19. Let n,m ≥ 4 be integers and let G = Pn2Pm be a grid. If b is an
integer such that m

2
≤ b ≤ m− 1, then nb ∈ SSG(G).

Proof. First, suppose that b = m− 1. Orient Pn2Pb as a whirlpool. Now, re-orient
the corresponding arcs in the fiber Pm−1

n to obtain a directed path in the same
direction (left or right) as the arc between 1m−1 and 2m−1. Also, orient the fiber Pm

n

as a directed path in the same direction as the arc between 1m−1 and 2m−1. Assume
without loss of generality that Pm

n is oriented right. Finally orient down every edge
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Figure 10: The orientation used in the proof of Lemma 18 for n = 8, m = 6, b = 5 and a ∈ {5, 6}.

Figure 11: The orientations used in the proof of Lemma 19 for b = m − 1 (left) and b < m − 1
(right).
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in ∂(Pm
n ) except for (1m−1, 1m), which is oriented up. If D is the resulting oriented

graph, then it is easy to verify that V (Pn2Pb) is a convex set of D, and con(D) = nb.
If b < m − 1, then orient G1 = Pn2Pb as a whirlpool and G2 = G − G1 as

a whirlpool or as an anti-whirlpool in such way that the fibers P b
n and P b+1

n are
isomorphic. Orient the remaining edges arbitrarily, as long as there is one arc going
up and one arc going down, to obtain D. We will show that V (G1) is a convex set
of D.

Let P be a ibjb-path in D such that every intermediate vertex of P belongs to
V (G2). Then P can be codified as (u, x2, . . . , xk−1, d). Let (y2, . . . , yk−1) be the
sequence such that

yi =


xi if xi ∈ {l, r}
u if xi = d
d if xi = u.

From the way we oriented G1 and G2 we conclude that P ′ = (y2, . . . , yk−1) defines
a ibjb-path in D, strictly shorter than P and such that V (P ′) ⊆ V (G1). Hence, V (G1)
is a convex set of D.

Recalling that m
2
≤ b, and using the fact that every convex set with more than

nb vertices has at least two vertices in V (G1) and at least two vertices in V (G2), we
conclude that con(D) = nb.

The following three lemmas deal with the most complex cases.

Lemma 20. Let n,m ≥ 4 be integers and let G = Pn2Pm be a grid. If a, b, k, l are
integers such that 0 ≤ k ≤ a− 2 ≤ n− 3, 0 ≤ l ≤ b− 2 ≤ m− 3, and a, b ≥ 3, then
ab− (k + l) ∈ SSG(G).

Proof. Consider a coloring of the squares of G similar to the coloring used in the
proof of Lemma 18, with the following differences. In the lower left corner of the
aforementioned orientation of G we have a rectangle, R1, of (a − 1) × (b − 1) gray
squares. Consider the subgraph G1 of G obtained by deleting the first (a−1) columns
and the first (b − 1) rows of vertices of G. Color G1 as in the proof of Lemma 17.
Finally, complete the checkerboard-like pattern with gray rectangles of size 1×(a−1)
squares in the first row, and with gray rectangles of size (b − 1) × 1 squares in the
first column.

We want our largest convex set to be a segment of R1, the gray rectangle in the
lower left corner. Color white the squares in the first k columns from the top row of
R1. Also color white the squares in the first l rows of the rightmost column of R1 to
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Figure 12: The orientation used in the proof of Lemma 20 for n = 8, m = 6, a = 7 b = 5 and
(k, l) ∈ {(5, 3), (3, 2)}.

Figure 13: The orientation described in the proof of Lemma 20 for n = 12, m = 10, a = 4 = b,
k = 2 and l = 1.
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obtain the gray region R. Now, orient G as in Lemma 18, orienting R as a whirlpool.
Orient all the remaining edges to the right and down to obtain D. An example of
this orientation is depicted in Figure 13.

Now, observe that the top right corner of R coincides with the top right corner
of R1. Hence, this orientation has the same properties as the orientation of Lemma
18. We can assume without loss of generality that k + l < min{a, b}. Otherwise,
assuming that b ≤ a, we have that ab− (k + l) = a(b− 1)− (k′ + l′) for some pair of
integerers k′, l′ such that 0 ≤ k′ ≤ k, 0 ≤ l′ ≤ l. Hence, ab− (k + l) ≥ 2a, 2b. From
here, it is easy to observe that the only proper convex sets of D are the vertices in
each of the gray regions of D. Since the largest one is R, which has ab − (k + l)
vertices, we conclude SSC(D) = ab− (k + l).

Again, we have to be careful when a = n − 1 or b = m − 1. The corresponding
modifications to the previous orientation are depicted in Figure 13.

Lemma 21. Let 4 ≤ n,m ≤ 5 be integers and let G = Pn2Pm be a grid. If k is an
integer such that 6 ≤ k ≤ 2 max{n,m} − 1, then nm− k ∈ SSG(G).

Proof. First, consider the case n = 5 and m = 4. If k ∈ {8, 9}, then the result
follows from Lemma 20. The orientations for k ∈ {6, 7} are shown in Figure 14. It
can be easily verified that the set of white vertices is a largest convex set for this
orientation.

Now suppose that n = 4 = m. The case k = 7 follows from Lemma 20. The
orientation for k = 6 is depicted in Figure 14. Again, it is not hard to verify that
the sets of white vertices are largest convex sets for each of the orientations.

Finally, suppose that n = 5 = m. If k = 9, then the result follows from Lemma 20.
The orientations for k ∈ {6, 7, 8} are depicted in Figure 14. As in the previous cases,
the sets of white vertices are largest convex sets for the corresponding orientation.

Lemma 22. Let n,m ≥ 4 be integers and let G = Pn2Pm be a grid. If k is an
integer such that 6 ≤ k ≤ 2 max{n,m} − 1, then nm− k ∈ SSG(G). If m = 4, then
also nm− 5 ∈ SSC(G).

Proof. If n,m ≤ 5, then the result follows from the previous lemma. Hence, we will
suppose without loss of generality that m ≤ n and 6 ≤ n. Let us consider first that
m ≥ 5.

Observe the orientations of the 5×4 and 5×5 grids in Figure 14 for k = 6. Clearly,
the orientation of the latter can be obtained from the orientation of the former by
adding an additional row of squares at the bottom of the grid, and orienting this new
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Figure 14: The orientations used in the proof of Lemma 21.
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row as a whirlpool. Naturally, three arcs of the former orientation should change its
direction, in this case, these are the arcs (12, 13), (31, 21) and (51, 41) of the former
oriented graph. We have a similar situation with the orientation of the 4 × 4 and
5× 5 grids for k = 6 and k = 8, respectively. Again, the latter can be obtained from
the former by adding one row and one column of squares, orienting the new row as
an anti-whirlpool and the new column following certain pattern. The idea of this
proof is to observe that the three orientations of the 5× 5 grids, shown in Figure 14,
can be naturally extended to obtain the desired orientations.

First, observe that, independently of the value of n, we can always add a new
row of squares at the bottom of the grid. Notice that we are extending the largest
convex set of the grid, but the complement of such set remains unchanged. Hence, if
we consider the aforementioned orientations of the 5× 5 grid, we can conclude that
6, 7, 8 ∈ SSC(P52Pm) for every integer m ≥ 5.

To add a new column of squares we have two different behaviors. First, consider
the orientations for k = 6 and k = 7. In this case, to add a new column, we need to
change the direction of one arc, as in the 5×4 and 5×5 grids for the k = 6 argument.
But, to add further columns we will not need to change the direction of any arc, just
add a column of squares oriented as a whirlpool. Following this procedure we will
obtain an orientation of the grid Pn2Pm for every pair of integers n,m ≥ 5, for k = 6
and k = 7, respectively. In the other hand, when k = 8, adding a new column will
not preserve the complement of our largest convex set, the complement will grow
larger. If we add a new column, following the pattern as in the example in Figure 15,
we will obtain an orientation of the grid Pn2Pm for every pair of integers n,m ≥ 5,
for k = 2n− 2.

We can generalize the orientations used for k = 6 and k = 7, respectively, to
obtain orientations of the grid Pn2Pm for k = 2n − 4 and 2n − 3. The idea is to
extend the pattern horizontally, we will explain how it is done for the case k = 2n−4,
the remaining case is analogous. We want to preserve the 2mnm−2 directed path
defined by the sequence (d, d, r, r, . . . , r), and the whirlpool (or anti-whirlpool) of
n−2 squares in the upper right corner of the grid. The square of the upper left corner
of the grid is oriented as a whirlpool and the rest of the grid is oriented as a whirlpool
or anti-whirlpool, except for some alternating squares adjacent to the aforementioned
directed path. The remaining unoriented edges are oriented as (1m−2, 1m−1) and, if it
is still unoriented, (nm−2, nm−3). Following a similar idea, orientations for every grid
Pn2Pm for any pair of integers n ≥ m and any k ∈ {6, 7 . . . , 2n−2} can be obtained.
We depict the orientations for P72P5 for k ∈ {6, 7, 8, 9, 10, 11, 12} in Figure 15. Since
all these orientations follow a similar pattern, it can be easily proved that each one
has convexity number nm− k, as desired.
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Figure 15: The orientations used in the proof of Lemma 22 for n = 7 and m = 5.
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Figure 16: The orientations used in the proof of Lemma 22 for m = 4.

Finally, since we are assuming n ≥ m, we have 2n− 1 ≥ n+m− 1, and the case
k ≥ n + m− 1 is covered by Lemma 20.

Now, consider the case m = 4. If k ≡ 0 (mod 4), then Lemma 19 gives the
desired orientation. Else, we give basic orientations that can be enlarged adding
columns of whirlpools, either to the largest convex set, or to its complement. The
orientation for k = 6 is the orientation used for the 4× 4 grid (Figure 14). Clearly,
additional rows of whirlpools can be added in the bottom of the grid. We give the
orientations for k ∈ {5, 7, 9, 10, 11, 14} in Figure 16. Again, the set of black vertices
is the complement of the largest set of the oriented graph. Since it is easy to observe
that the given orientations have the desired properties, and when we extend them
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the arguments remain the same, this concludes the proof ot the lemma.

We present now the main theorem of this work.

Theorem 23. Let 4 ≤ m ≤ n be a pair of integers and let G = Pn2Pm be a grid.

• If m = 4, then SSC(G) = [1, nm− 4] \ {2, 3, 5}.

• If m = 5, then SSC(G) = [1, nm− 5] \ {2, 3, 5}.

• If m ≥ 6, then SSC(G) = [1, nm− 6] \ {2, 3, 5}.

Proof. The excluded values are a consequence of Lemma 8. Corollary 7 shows 1 ∈
SSC(G). Let r be an integer 4 ≤ r ≤ nm − i, for i ∈ {4, 5, 6}. The three cases are
dealt similarly.

If nm − 2n + 1 ≤ r, then Lemma 22 implies that r ∈ SSC(G). Otherwise
r ≤ nm− 2n ≤ (n− 1)(m− 1), and it follows from Lemmas 17, 18, 19 and 20, that
r ∈ SSC(G).

As a final remark, the reader might have noticed that the proofs are lengthy and
technical, which makes them hard to follow. It would be a good problem to find a
short proof for the main theorem of this article.
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