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Abstract

We show that every orthogonal polyhedron of genus g ≤ 2 can be unfolded without
overlap while using only a linear number of orthogonal cuts (parallel to the polyhedron
edges). This is the first result on unfolding general orthogonal polyhedra beyond genus-
0. Our unfolding algorithm relies on the existence of at most 2 special leaves in what
we call the “unfolding tree” (which ties back to the genus), so unfolding polyhedra of
genus 3 and beyond requires new techniques.

1 Introduction

An unfolding of a polyhedron is produced by cutting its surface in such a way that it can
be flattened to a single, connected piece without overlap. In an edge unfolding, the cuts
are restricted to the polyhedron’s edges, whereas in a general unfolding, cuts can be made
anywhere on the surface. It is known that edge cuts alone are not sufficient to guarantee an
unfolding for non-convex polyhedra [BDE+03, BDD+98], and yet it is an open question as
to whether all non-convex polyhedra have a general unfolding. In contrast, it is unknown
whether every convex polyhedron has an edge unfolding [DO07, Ch. 22], but all convex
polyhedra have general unfoldings [DO07, Sec. 24.1.1].

The successes to date in unfolding non-convex objects have been with the class of or-
thogonal polyhedra. This class consists of polyhedra whose edges and faces all meet at right
angles. Because not all orthogonal polyhedra have edge unfoldings (even for simple examples
such as a box with a smaller box extruding out on top) [BDD+98], the unfolding algorithms
use additional non-edge cuts. These additional cuts generally follow one of two models. In
the grid unfolding model, the orthogonal polyhedron is sliced by axis perpendicular planes
passing through each vertex, and cuts are allowed along the slicing lines where the planes
intersect the surface. In the grid refinement model, each rectangular grid face under the
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grid unfolding model is further subdivided by an (a × b) orthogonal grid, for some positive
integers a, b ≥ 1, and cuts are also allowed along any of these grid lines.

There have been three phases of research on unfolding orthogonal polyhedra. The
first phase focused on unfolding special subclasses, which included orthotubes [BDD+98],
well-separated orthotrees [DFMO05], orthostacks [BDD+98, DM04], and Manhatten tow-
ers [DFO08]. These algorithms use the grid unfolding model or the grid refinement model
with a constant amount of refinement (i.e., a and b are both constants).

The second phase began with the discovery of the epsilon-unfolding algorithm [DFO07]
which unfolds all genus-0 orthogonal polyhedra. A key component of the unfolding algorithm
is the determination of a spiral path on the surface of the polyhedron that unfolds to a
planar monotone staircase, from which the rest of the surface attaches (without overlap)
above and below. A drawback of that algorithm is that it requires an exponential amount
of grid refinement. Subsequent improvements, however, reduced the amount of refinement
to quadratic [DDF14], and then to linear [CY15], with both algorithms following the basic
outline of [DFO07].

The third phase of research addresses the next obvious challenge, that of unfolding higher
genus polyhedra. To our knowledge, the only attempt at this is that of Liou et al. [LPW14].
They provide an algorithm for unfolding a special subclass of one-layer orthogonal polyhedra
in which all faces are unit squares and the holes are unit cubes.

Thus the question of whether all orthogonal polyhedra of genus greater than zero can be
unfolded is still wide open, and is in a sense the natural endpoint of this line of investigation.
In this paper we take a significant step toward this goal by presenting a new algorithm that
unfolds all orthogonal polyhedra of genus 1 or 2. The algorithm extends ideas from [CY15]
by making several key modifications to circumvent issues that arise from the presence of
holes. As in [CY15], our algorithm only requires linear refinement.

1.1 Notation and Definitions

Let P be an orthogonal polyhedron of genus g ≤ 2, whose edges are parallel to the coordinate
axes and whose surface is a 2-manifold. We take the z-axis to define the vertical direction,
the x-axis to determine left and right, and the y-axis to determine front and back. We
consistently take the viewpoint from y = −∞. The faces of P are distinguished by their
outward normal: forward is −y; rearward is +y; left is −x; right is +x; bottom is −z; and
top is +z.1

Imagine slicing P with y-perpendicular planes through each vertex. Let Y0, Y1, Y2, . . .
be the slicing planes sorted by y coordinate. Each (solid) connected component of P located
between two consecutive planes Yi and Yi+1 is called a slab. For example, the polyhedron
from Figure 1a has four slabs S0, S1, S2 and S3, which are depicted in Figure 1(b-e). Note that
each slab is an extruded orthogonal polygon with zero or more orthogonal holes, extruded
in the y-direction. The cycle of {left, right, top, bottom} faces surrounding either the entire
slab or a hole in a slab is called a band. Each slab has exactly one outer band, and zero
or more inner bands. Referring to the example from Figure 1, the slab S0 has outer band

1The ±y faces are given the awkward names “forward” and “rearward” to avoid confusion with other
uses of “front” and “back” introduced later.
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Figure 1: A polyhedron of genus one.

b00 and inner band b01; S1 has outer band b10 and inner bands b11, b12 and b13; S2 has outer
band b20 and inner band b21; and S3 has outer band b30 and no inner bands. Note that each
band is associated with a unique slab. The intersection of a band with an adjacent plane Yi
(and similarly in Yi+1) is a cycle of edges called a rim (so each band has exactly two rims).

We say that a rim r encloses a face of P if the portion of the Y -plane interior to r is a
face of P . In other words, all points enclosed by r in the Y -plane are also on the surface of
P . If there are points of the Y -plane enclosed by r that are not on the surface of P , then
we say that r does not enclose a face of P . For example, in Figure 1 the rim of b30 in plane
Y4 and the rim of b12 in plane Y2 each enclose a face of P , but the rim of b00 in Y0 does not.

2 Overview of Linear Unfolding

Throughout this section, P is an orthogonal polyhedron of genus zero. We begin with an
overview of the algorithm in [CY15] that unfolds P using linear refinement. In section 3 we
will detail those aspects of the algorithm that we modify to handle orthogonal polyhedra of
genus 1 and 2.

2.1 Unfolding Extrusions

Nearly all algorithmic issues in the linear unfolding algorithm from [CY15] are present in
unfolding polyhedra that are vertical extrusions of simple orthogonal polygons. Therefore,
we describe their unfolding algorithm for this simple shape class first, before extending the
ideas to all orthogonal polyhedra of genus zero.

Before going into details, we briefly describe the algorithm at a high level. It begins by
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slicing P into slabs using y-perpendicular planes. For these vertical extrusions, all the slabs
are boxes. The adjacency graph of these boxes is a tree T . Each leaf node b in T has a
corresponding thin spiral surface path that includes a vertical segment running across the
back face of b (which must be a face of P ) on the side opposite to b’s parent. The surface
path extends from the bottom endpoint of this vertical segment by cycling around b’s band
until it reaches the top endpoint, and from there it continues along two strands that spiral
side-by-side together on P , cycling around the bands on the path in T to the root node box
where the two strands terminate. At the root box, the endpoints of all the pairs of strands
are carefully stitched together into one surface path that can be flattened in the plane as
a monotone staircase. By thickening the surface path to cover the band faces of P , and
attaching the y-perpendicular faces above and below it, the entire surface of P is flattened
without overlap into the plane. Details of the algorithm are provided in the sections that
follow.

2.1.1 Unfolding Tree T

Again we restrict our attention to the situation where P is a vertical extrusion of a simple
orthogonal polygon, and describe the algorithm in detail. The unfolding algorithm begins by
slicing P with Yi planes passing through every vertex, as described in section 1. This induces
a partition of P into rectangular boxes. See Figure 2a for an example. The dual graph of
this partition is a tree T whose nodes correspond to bands, and whose edges connect pairs
of adjacent bands. Figure 2b shows the tree T for the example from Figure 2a. We refer to
T as the unfolding tree, since it will guide the unfolding process. For simplicity, we will use
the terms “node” and “band” interchangeably.
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Y4
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b8

b6

b4b′1

b′′1

b2b3

b′′1
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b2 b9 b6
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b7
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b0 b8

b′1

(a) (b)
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Figure 2: (a) Genus-0 polyhedron partitioned into boxes (b) Unfolding tree T rooted at b0.

Every tree of two or more nodes has at least two nodes of degree one, so we designate
the root of T to be one of these degree-1 nodes. In Figure 2b for example, we may choose
b0 as the root of T , although any of the other degree-1 nodes would serve as well. The rim
of the root band that has no adjacent band is called its front rim; the other rim is its back
rim. For any other band b, the rim adjacent to b’s parent in T is the front rim of b, and the
other rim of b is its back rim. Children attached to the front rim of their parent are front
children; children attached along the back rim of their parent are back children. Note that
“front” and “back” modifiers for rims and children derive from the structure of T , and are
not related to the “forward” and “rearward” ±y directions.
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For reasons that will become clear later, we slightly alter the structure of T to eliminate
all non-leaf nodes without back children. For each such internal band b, we perform a cut
around its middle with a y-perpendicular plane. This partitions b into two bands b′ and b′′,
with b′ at the front and b′′ at the back of b. This change in the partition is mirrored in T by
replacing b with b′, and adding b′′ as a back leaf child of b′. In Figure 2, node b1 is replaced
by b′1 and b′′1. Thus each non-leaf node in T has at least one back child.

2.1.2 Leaf Node Unfolding

The unfolding of a leaf node b is determined by a spiral surface path whose endpoints lie on
a top rim segment shared by b and its parent (necessarily on b’s front rim, by definition).
See Figure 3a where the endpoints are labeled e1 and e2. Observe that the middle of the
path consists of a vertical segment on b’s back face, shown in red on the exploded view of
the back face in Figure 3a and circled in Figure 3b. We describe the spiral path as it extends
out from the top and bottom of this segment to connect up with the endpoints on the front
rim. From the bottom of the segment, the path moves parallel to the y-axis on the bottom
face and then cycles counterclockwise to the top face where it meets up with the top end
of the vertical segment. From there, both ends of the path cycle side-by-side together in
a counterclockwise direction while displacing toward the front rim. We refer to this spiral
path as the connector path, suggestive of its ability to connect two points (e1 and e2) that
are both located on the same rim. When unfolded and laid horizontally in the plane, this
spiral forms a monotone staircase, as depicted in Figure 3b.

x

y

z

x

y

e1 e2

(a) (b) (c)e1

e2

Figure 3: Unfolding a leaf band in counterclockwise direction; arrows indicate the direction
followed by the unfolding algorithm, starting at the back face vertical segment (shown in red
in (a) and circled in (b) of this figure).

Three-dimensional illustrations, such as the one in Figure 3a, become impractical for
more complex examples, so we will use instead the 2D representation depicted in Figure 3c.
This 2D representation captures the counterclockwise direction of the blue and black portions
of the path in Figure 3a, viewed from y = −∞ as they cycle side-by-side together from the
back to the front rim; the arc symbolizes the vertical back face segment connecting them.

A crucial property required by the Chang and Yen’s unfolding algorithm [CY15] and the
algorithms from which that derives [DFO07, DDF14] is that the back rim of each leaf band
in T encloses a face of P . This is necessary because the connector paths use a thin strip
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from the back faces of the leaves. Although it is easy to verify this property for the simple
shape class of extrusions, it is not obvious for arbitrary genus-0 orthogonal polyhedra, but
was proven true in [DFO07].

2.1.3 Internal Node Unfolding

Having established a spiral path for each leaf node, we then extend these paths to the
internal nodes in T , where an internal node is any non-leaf node other than the root. We
process internal nodes of T in order of increasing height of their corresponding subtrees.
This guarantees that, at the time an internal node b is processed, its children in T have
already been processed. We assume inductively that having processed a front (back) child
of b, the two endpoints of each spiral path originating at a leaf in the child’s subtree are
located side-by-side on the front (back) rim of b. The goal in processing b is to extend these
paths so that the pairs of endpoints lie side-by-side on the top of b’s rim segment shared
with b’s parent. In Figure 3 for example, b′′1 would have already been processed at the time
b′1 is processed, and the paths need to be extended across b′1 to the front rim of b′1 shared
with its parent b9. The total number of spiral paths handled at b is precisely the number of
leaves in the subtree of T rooted at b.

Let r be the top rim edge shared by b with its parent in T . Refer to the band labeled b and
the edge labeled r in Figure 4 (which shows the unfolding for the example from Figure 2).
Let ξ1, ξ2, . . . , be the spiral paths corresponding to the back children of b, listed in the order
in which they are encountered in a clockwise walk starting at the top left corner of b’s back
rim). Our construction of T guarantees that at least one such back spiral exists at each
internal node in T .

For each i = 1, 2, . . ., we extend both ends of ξi by tracing along both sides of an
orthogonal path that makes one complete counterclockwise cycle around the top, left, bottom
and right faces of b, while displacing toward the front of b, until it reaches r. The complete
cycle around b is important to ensure that the spiral can later be thickened to cover the entire
surface of b (hence the need for at least one back child at each internal node). For i > 1,
the orthogonal path corresponding to ξi runs alongside the orthogonal path corresponding to
ξi−1, to ensure that the spiral paths do not cross one another. (In Figure 4, the spiral paths
are labeled in several places, to permit easy tracing. Because ξi only moves parallel to the
y axis and spirals counterclockwise around b, it can be laid flat in the plane as a staircase
monotone in the x-direction.

We now turn to processing the spiral paths corresponding to the front children of b. Let
ξ′1, ξ

′
2, . . . , be the front spiral paths encountered in this order in a counterclockwise walk

around the front rim of b, starting at any point on the front rim of b. We extend both ends
of each spiral ξ′i by tracing along both sides of an orthogonal path that displaces slightly
toward the back of b, then proceeds counterclockwise and toward the front of b until it meets
r. Note that, if ξi lies to the left of r, then it will need to cycle around the top, left, bottom
and right faces of b, in order to meet r (see spiral ξ′1 = ξ5 in Figure 4). Again, care must
be taken to ensure that the orthogonal path corresponding to ξ′i does not cross any of the
orthogonal paths corresponding to the other (front and back) spiral paths.
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Figure 4: Unfolding internal nodes and the root band (b0) for the example from Figure 2;
arrows indicate the direction followed by the unfolding algorithm.
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2.1.4 Root Node Unfolding

The last internal node of T whose spiral paths are extended to its parent in this fashion is the
(single) child b of the root band. As described, these spiral paths cycle counterclockwise on b
to reach the top rim segment r on the front rim of b, which by definition is the back rim of the
root band. Let ξ1, ξ2, . . . , ξ` be the extended spiral paths listed in the order encountered in a
clockwise walk around the front rim of b, starting at the top left corner of the root’s back face.
Here ` is the number of leaf nodes in T . (For example, ` = 7 in the example from Figure 4.)
Let L(ξi) be the left endpoint of spiral ξi on r and let R(ξi) be the right endpoint. With this
notation, the endpoints from left to right on r are L(ξ1), R(ξ1), L(ξ2), R(ξ2), . . . , L(ξ`), R(ξ`).

The next step of the algorithm is to link these ` spiral paths into a single path ξ that
can be flattened in the plane as a monotone staircase. The starting point of ξ is L(ξ1),
and the first part of ξ consists of ξ1 followed by ξ`. These two spiral paths are linked via
a connector path on the root band that extends from endpoint R(ξ1) to endpoint R(ξ`).
See the 2D representation of the connector path linking the right endpoint of ξ1 to the
right endpoint of ξ7 in Figure 4. This connector path is analogous to the connector paths
followed at the leaf nodes, but here the vertical segment is on the front face of the root
band. Because the root node has degree one and its only child is adjacent on its back rim,
the root’s front rim encloses a face of P , and so it is possible for the path to connect in this
manner. This connector path is depicted in Figure 5. From R(ξ`), the connector path cycles
counterclockwise to reach R(ξ1). From there, both parts of the path (i.e., the extensions of
R(ξ`) and R(ξ1)) cycle counterclockwise together towards the front face. The part of the
path extending from R(ξ`) meets the front face vertical segment at its top endpoint, while
the other part of the path extending from R(ξ1) continues cycling to the bottom face and
meets the vertical segment at its bottom endpoint. (Observe that this path is a mirror image
of the one depicted in Figure 3.) Like a leaf node connector path, this path can be laid flat

x

y

z

R(ξ1)
R(ξ`)

Figure 5: The connector path for the spiral paths ξ1 and ξ`; arrows indicate the direction
followed by the unfolding algorithm, up to the vertical segment on the front face.

in the plane as a monotone staircase. Because the counterclockwise cycling direction of the
connector path is consistent with that of ξ1 and ξ`, ξ1 can be laid flat on one side of the path
and ξ` can be laid flat on the other side, thus forming a single monotone staircase. In this
way we link ξ1 and ξ` to form the first part of ξ.

Continuing to link the spiral paths to form ξ, L(ξ`) is linked to endpoint L(ξ2) using a
connector path that runs alongside the previous connector path. Similarly, this connector
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path flattens to a monotone staircase and connects the two flattened staircases ξ` and ξ2. The
remaining endpoints are paired up similarly and linked with connector paths. Specifically,
R(ξi) is linked to R(ξ`−i+1) and L(ξi) is linked to L(ξ`−i+2)), for i = 2, 3, . . . until one
unpaired endpoint remains: L(ξ`/2+1) (if ` is even) or R(ξ(`+1)/2) (if ` is odd). This endpoint
is where ξ terminates. See R(ξ4) in Figure 4.

2.1.5 Completing the Unfolding

To complete the unfolding of P , the spiral ξ is thickened in the +y and −y direction so that
it completely covers each band. This results in a thicker strip, which can be unfolded as a
staircase in the plane. Then the forward and rearward faces of P are partitioned by imagining
the band’s top rim edges illuminating downward light rays in these faces. The illuminated
pieces are then “hung” above and below the thickened staircase, along the corresponding
illuminating rim segments that lie along the horizontal edges of the staircase.

2.2 Unfolding Genus-0 Orthogonal Polyhedra

The unfolding algorithm described in subsection 2.1 for extrusions generalizes to all genus-0
orthogonal polyhedra as described in [CY15], so we briefly present the main ideas here and
refer the reader to [CY15] for details.

Instead of partitioning P into boxes, the unfolding algorithm partitions P into slabs as
defined in Section 1. It then creates an unfolding tree T in which each node corresponds to
either an outer band (surrounding a slab) or an inner band (surrounding a hole). Each edge
in T corresponds to a z-beam, which is a thin vertical rectangular strip from a frontward or
rearward face of P connecting a parent’s rim to a child’s rim. Note that a z-beam may have
zero geometric height, when two rims share a common segment. The spiral paths connect
vertically along the z-beams when transitioning from a child band to its parent. For a parent
band b, its front (back) children are those whose z-beams connect to b’s front (back) rim. It
was established in [DFO07] that the back rim of each leaf node in T encloses a face of P .

2.2.1 Assigning Unfolding Directions

Unlike the case of protrusions, where all bands are unfolded in the same direction (i.e., either
all counterclockwise or all clockwise), general genus-0 orthogonal polyhedra may require
different unfolding directions for different bands. For example, if a z-beam is incident to a
top rim edge of the parent and a bottom rim edge of the child, then the unfolding direction
(viewed from y = −∞) changes when transitioning from the child to the parent. Figure 6a
shows such an example.

We assign unfolding directions for each band in a preorder traversal of the unfolding tree
T . Set the unfolding direction for the root band to counterclockwise. At each band node b
visited in a preorder traversal of T , if the edge in T connecting b to its parent corresponds
to a z-beam incident to both top and bottom rim points, then set the unfolding direction
for b to be opposite to the one for the parent (i.e., if the unfolding direction for the parent
is counterclockwise, then the unfolding direction for b will be clockwise, and vice versa.)
Otherwise, the endpoints of the z-beam connecting b to its parent are both top rim points
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clockwise
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parent b2

(a) (b)

child b1

Figure 6: (a) The unfolding direction changes when transitioning from child b1 to parent b2
(b) Lemma 3.1: a polyhedron of genus g = 3 with no slicing direction that yields a face-node.

or both bottom rim points, and in that case b inherits the unfolding direction of its parent.
(Recall that a z-beam can have zero geometric height where two rims overlap.)

2.2.2 The Unfolding Procedure

The unfolding of a leaf band b follows the description in subsubsection 2.1.2 (Figure 4),
except that the unfolding proceeds in the direction d assigned to b (as described in subsub-
section 2.2.1), and the spiral path may cycle around multiple band faces instead of just four.
When the two endpoints reach the z-beam on b’s front rim, they track vertically along the
z-beam, stopping side-by-side on the rim of b’s parent.

At each internal node b in T , the unfolding proceeds as described in subsubsection 2.1.3.
Observe that there is a natural cyclic ordering of b’s front (back) children that is determined
by their z-beam connections around b’s front (back) rim, which guides the order in which
we process b’s children. Once the pairs of endpoints reach the z-beam connection to b’s
parent on b’s front rim, they move vertically along the z-beam, stopping on the rim of b’s
parent. At the root node, these strips are glued together as described in subsubsection 2.1.4
(with the notion of “left” and “right” altered to match the cyclic ordering of the children,
so that L(ξ) and R(ξ) are always encountered in this order in a clockwise walk along the
rim). In addition, the spiral paths followed on inner bands are the same as those described
previously for outer bands. For example, assume that the inner band b12 that forms a dent
in the example from Figure 1 is a leaf band in T . Note that the interior of P surrounds b12
on all sides, except for the front which is the entrance to the dent. Then the connector path
is the same as in Figure 3a but is now viewed as cycling on the surface of P inside the dent.

In the unfolded staircase, the portion of ξ on a z-beam corresponds to a vertical riser.
Thickening ξ is proceeds as in the case of extrusions. The partitioning of the forward and
rearward faces also follows the case of extrusions, but in addition to shooting illuminating
rays down from top rim edges, bottom rim edges also shoot rays downward to illuminate
portions of faces not illuminated by the top edges. The face pieces resulting from this
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partitioning method are hung above and below the staircase, as in the case of extrusions, as
described in [DFO07].

3 Unfolding Genus-2 Orthogonal Polyhedra

The unfolding algorithm described in section 2 depends on two key properties of P that are
not necessarily true if P has genus 1 or 2. First, it requires the existence of a band with a
rim enclosing a face of P that can serve as the root node of T . And second, it requires the
back rim of each leaf node in T to enclose a face of P . These two requirements are needed so
that the connector paths can use vertical strips on the enclosed faces in the unfolding. As a
simple example of a genus-1 polyhedron for which neither property holds, consider the case
when P is a box with a y-parallel hole through its middle. Slicing P with y-perpendicular
planes results in a single slab having one outer and one inner band. In this case, no rim
encloses a face of P . If we rotate P so that the hole is parallel to the x axis instead, slicing
produces four bands, and the band surrounding the frontward (or rearward) box could serve
as the root node. But every unfolding tree for the four bands contains a leaf whose back rim
doesn’t enclose a face of P .

In this section, we first show that there always exists an orientation for P such that at
least one band has a rim enclosing a face of P that can be used for the root of T . Then
we describe an algorithm that computes an unfolding tree for which we can prove that the
number of leaf bands whose back rims do not enclose a face of P is at most g, where g is the
genus of P . Finally, we describe changes to the unfolding algorithm that allow it to handle
up to g leaves that don’t enclose a face of P , for g ≤ 2.

3.1 The Rim Unfolding Tree Tr

In order to establish these new results, we need finer-grained structures than the band-based
G and T , which we call Gr and Tr, both of which are rim-based. We define the rim graph Gr

for P in the following way. For each band b of P , add two nodes rb and r′b to Gr corresponding
to each of b’s rims. Add an edge connecting rb and r′b and call it a band edge, or a b-edge
for short. For each pair of rims that can be connected by a z-beam, add an edge between
them in Gr, and call it a z-beam edge, or a z-edge for short. When referring to Gr, we will
use the terms node and rim interchangably. For any simple cycle C in Gr, we distinguish
between b-nodes of C, which are endpoints of b-edges in C, and z-nodes of C, incident to
two adjacent z-edges in C. For any subgraph J ⊆ Gr, we use V (J) and E(J) to denote the
set of nodes and the set of edges in J , respectively.

Call a rim of Gr that encloses a face of P a face-node. A nonface-node in Gr is a node
whose rim does not enclose a face of P .

Proposition 1 A rim r is a face-node of Gr if and only if every z-beam extending from a
horizontal edge of r and going up or down on the surface of P hits r. A face-node of Gr is
necessarily of degree one.

Lemma 3.1 If polyhedron P has genus g ≤ 2, then there is a direction for slicing P such
that Gr includes a face-node rF .
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Proof Define the extreme faces of P as those faces flush with the smallest bounding box
enclosing P . There must be at least one extreme face in each of the six directions d ∈
{±x,±y,±z}. If any extreme face F , say in direction d, is simply connected, then slicing P
with a d-plane (parallel to F ) just adjacent to F will create a band b one of whose rims rF
encloses F . Thus, slicing P with d-planes will result in Gr including the face-node rF , and
the lemma is established.

Assume henceforth that each of the at least six extreme faces of P is not simply connected.
So each extreme face F includes at least one inner band b. We now classify these bands b
into two types.

Let r be the rim of an inner band b in face F . If cutting along r separates the surface
of P into two pieces, P ′ which includes b, and the remainder P \ P ′, then we say that b is a
cave-band. Let M be the “mouth” of the cave: the portion of the Y -plane enclosed by the
rim r. P ′ is a “cave” in the sense that an exterior path that enters through M can only exit
P ′ back through M again. A band b that is not a cave-band is a hole-band. These have the
property that there is an exterior topological circle that passes through the mouth M once,
and so exits P ′ elsewhere.

Let P ′ be a cave with mouth M . P ′∪M is an orthogonal polyhedron P ′M , inverting what
was exterior to P to become interior to P ′M . Say that cave P ′ has genus 0 if P ′M has genus
0. We now claim that the lemma is satisfied if P has a genus-0 cave. For we may apply the
same procedure to P ′M : Examine its extreme faces (one of which is M). If any extreme face
(other than M) is simply connected, we are finished. Otherwise, each extreme face includes
an inner band b′. It cannot be the case that b′ is a hole band, for then P ′M has genus greater
than 1. Moreover, b′ cannot be a cave band for a cave of genus greater than 1. For in both
cases, we could cut a cycle on the surface of P ′ that would not disconnect P ′. So b′ must
determine a genus-0 cave band, and the argument repeats. Eventually we reach a simply
connected extreme face.

Now we have reduced to the situation that each of P ’s six or more extreme faces contains
either a hole-band, or a genus-(≥ 1) cave band. Let the number of these bands be h and c
respectively. We now account for the the genus g of P , and the number of extreme faces.
Each cave of genus-(≥ 1) contributes at least 1 to g. A hole-band in an extreme face could
exit through that same face, or exit through a different extreme face, or exit through a
non-extreme face. In the first two cases, two hole-bands contribute 1 to g; in the third case,
one hole band contributes 1 to g. So h hole-bands contribute at least h/2 to the genus, and
we have the inequality c+ h/2 ≤ g ≤ 2.

We have defined h and c to be the number of such bands in extreme faces, and we know
that each of the at least six extreme faces must have one or more hole- or genus-(≥ 1)
cave-bands. So we must have c + h ≥ 6. But these two inequalities have no solutions in
non-negative integers.

Figure 6b shows that Lemma 3.1 is tight. Henceforth we assume P is oriented so that the
direction guaranteed by the lemma slices P with Y -planes, and so Gr has a face-node rF .
This node will become the root of the unfolding tree.
Figure 7 shows an example of a genus-2 polyhedron sliced with Y -parallel planes in the
direction identified by Lemma 3.1, which yields two face-nodes b1 and b7. The rim graph Gr

for this polyhedron is depicted (ahead) in Figure 10b, with r1 selected as root.
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Figure 7: Genus-2 polyhedron partitioned into slabs.

Lemma 3.2 Gr is connected and contains no nonface-leaf nodes.

Proof Call a maximal connected surface piece of P located in a plane Yi a z-patch (suggestive
of the fact that it might contain z-beams). First note that the subset of rims belonging to
a z-patch induce a connected component in Gr (call it a z-patch component) that contains
z-edges only. The connectedness of P ’s surface implies that all z-patches are connected
together by bands. In Gr, this corresponds to all z-patch components being connected
together by b-edges. It follows that Gr is connected.

Next we show that there are no nonface-leaves in Gr. Suppose there is a node r in Gr

of degree 1 that does not enclose a face of P . Because all nodes in Gr are connected by a
b-edge to the rim on the other side of the band, there is a b-edge adjacent to r. Now consider
extending z-beams up and down from every horizontal edge of r. Because r does not enclose
a face of P , at least one of the z-beams must hit the rim of another band by Proposition 1.
But then r also has a z-edge adjacent to it, giving it a degree of at least 2, a contradiction.

Note that Gr for the genus-3 example in Figure 6b has no leaf nodes at all, and so satisfies
this lemma vacuously.

Our next goal is to find a rim spanning tree Tr of Gr with at most g nonface-leaves,
which will ultimately similarly limit the number of nonface-leaf nodes of T . The RimUn-
foldingTree method for achieving such a Tr is outlined in Algorithm 1. It reduces Gr to
a tree by repeatedly removing a z-edge from an existing cycle, thus breaking the cycle. In
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addition, it does this in such a way that at most g nonface-leaf nodes are created. If we were
to break a cycle by removing an arbitrary z-edge from it, it may be that both endpoints of
the z-edge have degree two, and thus removing it would result in the creation of two new
leaf nodes, both of which would be nonface-nodes. To avoid this, our RimUnfoldingTree
algorithm strategically selects a z-edge e with at least one endpoint, say u, of degree 3 or
more. Thus the removal of e results in the creation of at most one new leaf. More impor-
tantly, the algorithm ensures that one of u’s three or more adjacent edges is an edge that
is not part of any current (simple) cycle. Call this edge e′, and note that e′ will never be
removed by the algorithm, because the algorithm only removes cycle edges. The existence
of e′ guarantees that u’s degree will not drop below 2 (for if the degree of u were to reach 2,
then because one of the two adjacent edges is e′ and not part of a cycle, the other adjacent
edge cannot be part of a cycle either, and therefore neither edge will be removed). This
property of u will be important in bounding the number of nonface-leaf nodes created by
the algorithm.

Tr = RimUnfoldingTree(Gr)

Initialize Tr ← Gr

while Tr is not a tree do
Let H ⊂ Tr be the subgraph of Tr induced by all simple cycles in Tr
Pick an arbitrary node u ∈ V (H) incident to an edge e′ in E(Tr) \ E(H)
Pick an arbitrary z-edge e ∈ E(H) incident to u
Remove e from Tr

end
return Tr

Algorithm 1: Computing a rim spanning tree of Gr.

Lemma 3.3 The RimUnfoldingTree algorithm produces a spanning tree of Gr.

Proof By Lemma 3.1, Gr (and therefore Tr) includes a node of degree one that is not part
of a cycle in Gr and therefore is not in H. This implies that there is at least one edge in
E(Tr)\E(H) incident to a node u of H (because Tr is connected). This proves the existence
of the node u picked in each iteration of the RimUnfoldingTree algorithm. Because u is
part of a least one cycle in H, its degree is at least two in H. The edge in E(Tr) \ E(H)
incident to u contributes another unit to the degree of u; therefore u has degree at least
three in Tr. By the definition of Gr, no two b-edges in Gr are adjacent, since any two b-edges
are connected by a path of one or more z-edges in Gr. (Recall a z-edge might have zero
geometric height, when two rims share a common segment.) This implies that, out of the
two or more edges in E(H) incident to u, at least one is a z-edge. This proves the existence
of the edge e picked in each iteration of the RimUnfoldingTree algorithm. Removing e
from Tr breaks at least one cycle in H, so the size of H decreases in each loop iteration.
It follows that the RimUnfoldingTree algorithm terminates and produces a tree Tr that
spans all nodes of Gr.

Theorem 3.4 The number of nonface-leaves in the rim tree Tr produced by the RimUn-
foldingTree algorithm is no greater than the genus g of P .
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Proof Consider a z-edge e = (u, v) removed from Tr in one iteration of the RimUnfold-
ingTree algorithm. The node u is incident to at least two edges in E(H) and at least one
edge in E(Tr) \ E(H); therefore its degree is at least three in Tr. The removal of e from Tr
leaves u of degree at least two, so u does not become a leaf in Tr. This argument holds even
if u is picked repeatedly in future iterations of the RimUnfoldingTree algorithm, so u
will not become a leaf in Tr.

If v has degree three or more in Tr prior to removing e from Tr, then v does not become
a leaf after removing e. So suppose that v has degree two in Tr before removing e. Recall
that every node in Gr is connected by a b-edge to the other rim of its band. Because the
RimUnfoldingTree algorithm never removes a b-edge, this property holds in Tr as well.
It follows that the other edge incident to v (in addition to the z-edge e) must be a b-edge.
Hence any leaf node in Tr created by the RimUnfoldingTree algorithm is an endpoint of
a b-edge in Tr.

By Lemma 3.2, Gr does not include any nonface-leaves, so any nonface-leaves in Tr must
have been created by the RimUnfoldingTree algorithm. Let r1, r2, . . . , rk be the set of
leaves in Tr created by the RimUnfoldingTree algorithm. If k ≤ g, then the theorem is
true.
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Figure 8: Theorem 3.4 (a) example polyhedron of genus 2; cuts around the middle of bands
b1 and b2 are marked with dashed lines (b) Rim tree Tr with root r3 and 2 nonface-leaves,
r1 and r2.

Assume now that k > g. For each i, let bi be the band with rim ri. Because Tr includes
all the b-edges from Gr, it must be that Tr includes the b-edge (ri, r

′
i) corresponding to bi, so

the parent r′i of ri in Tr is the other rim of bi. For each i = 1, 2, . . . , k, we perform a cut on
P ’s surface along a closed curve around the middle of bi, between its rims ri and r′i. Refer
to Figure 8a, which shows the cuts around the middle of b1 and b2 as dashed lines. Note that
r1 and r2 are nonface-nodes corresponding to b1 and b2 respectively, as inferred from the rim
unfolding tree Tr shown in Figure 8b (edges of Tr are marked solid, with b-edges thicker than
z-edges). We now show that these cuts do not disconnect the surface of P , contradicting our
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assumption that k > g.
To see this, consider any two points ci and c′i on bi that are separated by the cut around

bi, with ci on the same side of the cut as ri, and c′i on the same side of the cut as r′i. Let
ei = (ri, ui) be the z-edge whose removal from Tr created the leaf ri (so ui here plays the role
of u in the RimUnfoldingTree algorithm, and by our observation above, ui is not a leaf
in Tr). We construct a path pi on the surface of P connecting ci to c′i as follows: the path pi
starts at ci, moves towards ri and along the z-beam corresponding to ei to the rim ui, then
follows the path in Tr from ui to the rim r′i, and finally across bi to c′i. See Figure 8, which
traces the paths p1 and p2 on the polyhedron surface. Note that ri is the only leaf visited
by pi (because ui is not a leaf), so pi does not cut across any of the leaves rj, for j 6= i.
This implies that pi connects ci and c′i in the presence of all the other cuts pj, with j 6= i.
Since this is true for each i, we conclude that these cuts leave the surface of P connected,
contradicting our assumption that k > g.

3.2 The Unfolding Algorithm

Let Tr be the rim tree computed by the RimUnfoldingTree algorithm described in sub-
section 3.1. We pick the root of Tr to be a face-node identified by Lemma 3.1, and call its
corresponding band the root band. This guarantees that the front face of the root band is
a face of P and thus it can be used in constructing the connector paths linking the spiral
paths associated with the root’s children.

For ease in describing the modified spiral paths we use for genus-1 and genus-2 polyhedra,
we first convert Tr into a standard unfolding tree T having bands for nodes rather than rims.
We do this by simply contracting the b-edges. Specifically, we replace each b-edge (ri, r

′
i)

and its two incident nodes ri and r′i by a single node bi whose incident edges are the z-edges
incident to ri or r′i. Let T be the tree resulting from Tr after contracting all the b-edges,
with its root node corresponding to the root band.

Observe that the edges in T are in a one-to-one correspondence with the z-edges in Tr.
For example, consider a z-edge (ri, rj) in Tr such that node ri is the parent of rj. Then in
T , there is an edge (bi, bj) where bi is the parent of bj. Furthermore, rj is the front rim of
bj because of the z-beam connection to its parent determined by the z-edge (ri, rj). Any
other nodes adjacent to bj in T are its front or back children, depending on whether the
corresponding z-edges in Tr connect to its front rim (rj) or its back rim. In this way, the rim
connections that are explicitly represented in Tr are preserved in T through the assignment
of front and back rims/children.

There is not, however, an immediate one-to-one correspondence between leaf nodes in
Tr and leaf nodes in T . If r′i is a leaf in Tr and its parent ri has no other children, then
clearly bi in T has degree 1, and we note that its back rim is r′i. See, for example, the leaf r5
in Figure 10c (ahead) and the corresponding leaf b5 in Figure 10d. But suppose ri has one
or more other children in Tr besides the leaf r′i. Then these other children are connected via
z-edges to ri, and node bi in T has degree greater than 1 and is not a leaf. Specifically, bi
in T has one or more front children connected via z-beams to its front rim ri, and it has no
back children (because its back rim r′i is a leaf in Tr). This is the case for the leaf node r2
from Figure 10c, whose parent node r′2 has another child r4; the corresponding node b2 in T
is not a leaf in T . Similarly, the parent r7 of leaf node r′7 from Figure 10c has another child
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r′5, and the corresponding node b7 is not a leaf in T . But we handle this in the same way as
in a standard unfolding tree (as described in subsubsection 2.1.1) by splitting band bi into
two bands b′i and b′′i . In T , bi is replaced by b′i and has b′′i as a back leaf child. See Figure 10d,
which shows node b2 split into b′2 and b′′2, and node b7 split into b′7 and b′′7. The front rim of b′i
is rim ri and the back rim of b′′i is rim r′i. In this way, each leaf r′i in Tr has a corresponding
leaf node in T whose back rim is r′i, and vice versa. If r′i is a nonface-leaf in Tr, then we will
also say the corresponding leaf in T is a nonface-leaf, meaning that its band’s back rim does
not enclose a face of P . These observations, along with Theorem 3.4, establish the following
corollary.

Corollary 3.5 The number of nonface-leaves in the unfolding tree T is at most g, where
g ≥ 0 is the genus of P .

Using T , we assign unfolding directions to each band as described in subsubsection 2.2.1.
If T has no nonface-leaves, then we complete the unfolding of P using the linear unfolding
algorithm from [CY15] (as summarized in section 2). We now show how to modify the
unfolding algorithm to handle the cases when T has one or two nonface-leaves. Because a
nonface-leaf b has a back rim that does not enclose a face of P , there might be no vertical
back face segment available for b’s connector path. For these leaves, we use a spiral path
that has one endpoint on b’s back rim and the other endpoint on b’s front rim. The path
cycles around the band faces in the unfolding direction of b from the back point to the front
point. (In Figure 3, this would be just the portion of the path that extends from the top of
the back rim to endpoint e1.) Corollary 3.5 implies that this can occur for at most two leaves
in T (since we assume P to have genus g ≤ 2). For all face-leaves, we proceed as before in
extending both ends of the spiral path from the band’s back rim to its front rim.

The processing of internal nodes is handled as before by extending the spiral paths
towards the root. The only difference is that for the (at most 2) spiral paths originating at
nonface-leaves, there is only one end of the path to extend. After processing the internal
nodes, the ends of the spiral paths are at the root band. Specifically, each spiral path
originating at a face-leaf has two endpoints located on the back rim of the root band, and
each spiral path originating at a nonface-leaf has one endpoint located on the back rim of
the root band. The challenge here is to connect all these spiral paths together at the root
band into a single final strip that starts on the back rim of one nonface-leaf and (if there
is a second nonface-leaf) ends on the back rim of the other. (This is one place where the
assumption that g ≤ 2, and so there are at most two nonface-leaves (by Corollary 3.5), is
crucial.) Because the front rim of the root node does enclose a face of P , it is possible to
use strips from its enclosed face for the connectors.

3.2.1 Root Node Unfolding: One Nonface-Leaf Case

First we describe how to link the leaves’ extended spiral paths together at the root node,
and unfold the root band in the process, for the case when T has exactly one nonface-leaf.
Let ξ1, ξ2, ..., ξ` be the spiral paths corresponding to the ` face-leaves in T (excluding the one
nonface-leaf). After processing all the internal nodes, the two ends of each of these spiral
paths are located side-by-side on the back rim r of the root band, as previously illustrated
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in Figure 4. Let t be the spiral path corresponding to the nonface-leaf. One end of t is on r,
and the other end is on the back rim of its leaf. If ` > 1, we assume the spiral paths of the
face-leaves are labeled in clockwise order around the root’s back rim, with t located in the
middle between ξd`/2e and ξd`/2e+1. We then begin by linking all these spiral paths into one
strip ξ as described in subsubsection 2.1.4 for the case when there are no nonface-leaves. I.e.,
starting with the pair R(ξ1) and R(ξ`), the ends of the spiral paths are paired up and linked
together via connector paths. (Recall that, for each ξi, the endpoints L(ξi) and R(ξi) are
encountered in this order in a clockwise walk along the back rim of the root band, starting,
say, at t or at a rim corner.) The only difference is that, with t in the middle between ξ1
and ξ`, the last pair of spiral path endpoints linked together will be R(ξd`/2e) and t when `
is odd, and t and L(ξd`/2e+1) when ` is even. The remainder of the unfolding is the same.
Thus the resulting spiral ξ starts at L(ξ1) and ends on the back rim of the nonface-leaf.

3.2.2 Root Node Unfolding: Two Nonface-Leaves Case

We now discuss the more complex case when T has two nonface-leaves. In this case, the
final spiral path will have its two ends on the back rims of the two nonface-leaves. Again
let ξ1, ξ2, ..., ξ` be the spiral paths corresponding to the face-leaves, and let t1 and t2 be the
spiral paths corresponding to the two nonface-leaves. We assume that t1 and t2 are labeled
such that the number of spiral paths separating them counterclockwise from t2 to t1 on the
root’s back rim is at most b`/2c. (If it is more than b`/2c, then we just switch the labels of
t1 and t2.) If ` > 1, we further assume that the spiral paths of the face-leaves are labeled
so that t1 is in the middle between ξd`/2e and ξd`/2e+1. Observe that these labeling rules
position t2 on the portion of the rim counterclockwise between ξ1 and t1. See Figure 9 for an
example with ` = 4, which shows the root band, the spiral path endpoints t1 and t2 marked
on the back rim of the root band, and the spiral paths ξ1, . . . ξ4 depicted as thick dotted
arcs above the root band. Note that the counterclockwise ordering from ξ1 along the rim is:
ξ1, . . . , t2, . . . , t1.

x
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ξ1 ξ2 t1 ξ3 ξ4t2
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(ξ

1
)

R
(ξ

1
)
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(ξ

4
)

R
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4
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Figure 9: Root band, with ξ consisting of the thick (black) and thin (red) paths. The
thick (black) path connects ξ1, . . . , ξ4 and t1. The thin (red) path is the extension of ξ that
connects L(ξ1) to t2. For the two ends of each ξi, the dotted paths indicate the spiral path
connecting them, which goes down to the associated leaf node and back.

We begin by linking the spiral paths ξ1, . . . , ξ` and t1 into a single strip ξ as described
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in subsubsection 3.2.1 for the case of one nonface-leaf. (See the thick black/blue path marked
on the root band in Figure 9, which shows the portion of ξ starting at R(ξ1) and connecting
ξ1, . . . ξ4 and t1.) Note that ξ has one end at L(ξ1) and the other end on the back rim of the
nonface-leaf corresponding to t1. Linking in t2, however, requires some special handling. We
will do this by extending ξ from its endpoint L(ξ1) all the way to t2 by following alongside
the portion of ξ that tracks from R(ξ1) to t1, until t2 is reached. (Refer to the thin red path
in Figure 9.) At all times, this extension is tracing a new path on one side of the path it is
following. Specifically, starting from L(ξ1), the extension first follows alongside the connector
path linking R(ξ1) to R(ξ`). It then follows alongside the spiral path from R(ξ`) to L(ξ`),
going all the way down to the leaf node corresponding to ξ` and then back up. It next follows
alongside the connector path linking L(ξ`) to L(ξ2), and then alongside the spiral path from
L(ξ2) to R(ξ2), and so on. This continues until the extension reaches the connector path, say
K, that links to the end of the strip piece located immediately counterclockwise from t2 on
the rim. This connector is drawn blue in Figure 9. Because at most b`/2c spiral paths are
located counterclockwise from t2 to t1, the strip piece located immediately counterclockwise
of t2 is either t1 or one of {ξd`/2e+1, ξd`/2e+2, . . . , ξ`}. If it is one strip piece of the latter, say
ξi, then the connector K links to R(ξi). Let e be the end of the spiral path (t1 or ξi) to
which the connector K links.

When the extension reaches the connector path K, it follows alongside it, but instead of
following it all the way to e, the extension continues past e until it reaches t2, at which time
it connects with t2 and we are finished. This path is drawn with a thin red line in Figure 9: it
starts at L(ξ1), follows alongside the thick black path that extends from R(ξ1) to e = R(ξ3),
and from there it reaches t2. The result is the final unfolding spiral ξ with one end on the
back face of the nonface-leaf corresponding to t1, and the other end on the back face of the
nonface-leaf corresponding to t2.

Figure 10 shows the complete spiral path for the genus-2 polyhedron from Figure 7, with
the slabs slightly separated for clarity. In this example ` = 1, ξ1 corresponds to node b′′7 with
back face-rim r′7, and the t1 and t2 paths correspond to b′′2 and b5, with back nonface-rims r2
and r5, respectively. (For clarity, the paths t1 and t2 are labeled on the bottom face of b3,
as they make the transition to the bottom face of b1.)

3.3 Level of Refinement

Using the Chang-Yen algorithm [CY15], any genus-0 orthogonal polyhedron P can be un-
folded using linear refinement. Specifically, they refine each rectangular face of P via grid-
unfolding using a (2`× 4`)-grid, where ` is the number of leaves in T , and cuts are allowed
along any of these grid lines. In the worst case, the algorithm presented here requires at most
twice the level of refinement, i.e., (4`× 8`) refinement. This level of refinement is necessary
when there are two nonface-leaves in T . In this case, the first part of the spiral path (from
L(ξ1) to the end of t1 located on the back rim of the first nonface-leaf is the same as in
the Chang-Yen algorithm, but with care given to the order in which the spiral paths are
connected and with only one endpoint of t1 at the root. (This is the black and blue portions
of the path illustrated in Figure 9.) Thus no additional refinement is necessary for this part
of the path. The doubling of the refinement is due to the retracing of this path which is
needed to extend it from L(ξ1) to t2, the spiral path of the second nonface-leaf. (This is the
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Figure 10: Unfolding the genus-2 polyhedron from Figure 7, with slabs slightly separated
for clarity (a) spiral path corresponding to the unfolding tree T from (d) of this figure;
arrows indicate the direction followed by the unfolding algorithm; (b) rim graph Gr; (c) rim
unfolding tree Tr (one of several possible) extracted from Gr by the RimUnfoldingTree
algorithm; (d) unfolding tree T obtained by compressing b-edges of Tr and splitting internal
nodes with no back children: b1 is the root, b′′2 and b5 are nonface-leaves, b′′7 is a face-leaf.
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red portion of the path in Figure 9.) Because the retracing follows alongside the existing
path, it requires twice the refinement. Thus, the overall level of refinement is (4`×8`), which
is linear.

We conclude with this theorem:

Theorem 3.6 Any orthogonal polyhedron of genus g ≤ 2 may be unfolded to a planar,
simple orthogonal polygon, cutting along a linear grid-refinement.

The unfolded planar polygon has O(n3) edges, for a polyhedron of n vertices: ` = O(n) and
there are O(`2) grid edges per face, with O(n) faces.

4 Conclusion

It is not evident how to push the techniques common to [DFO07], [DDF14], and [CY15] to
unfold polyhedra of genus g ≥ 3, the next frontier in this line of research. Both Lemma 3.1
(existence of a face-node to serve as root of T ) and Theorem 3.4 (the RimUnfoldingTree
algorithm leads to at most g ≤ 2 nonface-leaves) are crucial in the unfolding algorithm
described in section 3. The final stitching together of the spiral paths relies on there being
at most two nonface-leaves of the unfolding tree T .

On the other hand, it is not difficult to unfold the genus-3 polyhedron shown in Figure 6b
in an ad-hoc manner. The challenge is to find a generic algorithm for genus-3 and beyond.
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