Improved Strength Four Covering Arrays with
Three Symbols

Soumen Mait§ Yasmeen Akhtdr
Reshma C. Chandrasekhatan Charles J. Colboufh
8ndian I nstitute of Science Education and Research Pune, India
bSchool of Computing, Informatics and Decision Systems Engineering,
Arizona State University, U.SA

Abstract

A covering arrayt-CA(n, k,g), of sizen, strengttt, degreek, and orden,
is ak x narray ong symbols such that evetyx n sub-array contains every
t x 1 column ong symbols at least once. Covering arrays have been studied
for their applications to software testing, hardware tegtidrug screening,
and in areas where interactions of multiple parametersaabe ttested. In
this paper, we present an algebraic construction that ingsranany of the
best known upper bounds orfor covering arrays 4£A(n,k, g) with g = 3.
The coverage measure i (A) of a testing array is defined by the ratio be-
tween the number of distintttuples contained in the column vectors/f
and the total number dftuples. A covering array is a testing array with full
coverage. Theovering arrays with budget constraints problem is the prob-
lem of constructing a testing array of size at mostaving largest possible
coverage measure, given valueskof andn. This paper presents several
strength four testing arrays with high coverage. The contbn here is a
generalisation of the construction methods used by Cha&duColbourn
and Kreher, and Meagher and Stevens.

1 Introduction

arXiv:1509.03547v2 [cs.DM] 30 Dec 2015

This article focuses on constructing new strength-foureciog arrays withg = 3
and establishing improved bounds on the covering array eusndCAN (k,3).
This article also presents solution to the covering arraigs tudget constraints
problem by constructing many strength four testing arraigs high coverage. A
covering arrayt-CA(n,k,g), of sizen, strengtht, degreek, and ordem, is ak x n
array ong symbols such that evetyx n sub-array contains evety 1 column on
g symbols at least once. It is desirable in most applicationsihimise the size
n of covering arrays. The covering array numb&€AN (k,g) is the smallesh for
which at-CA(n,k,g) exists. An obvious lower bound is

g <t-CAN(k,g).

http://arxiv.org/abs/1509.03547v2

In this paper, we describe a construction method which iscension of the meth-
ods developed by Chateauneuf, Colbourn and Kreher [1] arayher and Stevens
[13]. This method improves some of the best known upper bedodstrength
four covering arrays witly = 3. In the range of degrees considered in this paper,
the best known results previously come fram [5]; in that papevering arrays are
also found by using a group action on the symbols (the affite@benius group),
but no group action on the rows is employed. While dot 3 the group that we
employ on the symbols coincides with the affine group, welacate and improve
the search by also exploiting a group action on the rows &E|ibd], and develop a
search method than can be applied effectively whengveB andg— 1 is a prime
power.

There is a large literaturél[L] 7] on covering arrays, andpttoblem of deter-
mining small covering arrays has been studied under margeguver the past
thirty years. In[[7], Hartman and Raskin discussed severatrlizations moti-
vated by their applications in the realm of software testifghen testing a soft-
ware system wittk parameters, each of which must be tested ithalues, the
total number of possible test casegjfs For instance, if there are 20 parameters
and three values for each parameter then the number of iopultioations or test
cases of this system i$B= 3486784401. A fundamental problem with software
testing is that testing under all combinations of inputsdsfeasible, even with a
simple product[[9],_10]. Software developers cannot testyéivieg, but they can
use combinatorial test design to identify the minimum nundfdests needed to
get the coverage they want. The goal of most combinatorsiinig research is to
create test suites that find a large percentage of errorsystans while having a
small number of tests required. Covering arrays prove bgefiocating a large
percentage of errors in software systenis [3, 16]. The testscare the columns of
a covering array-CA(n,k,g). This is one of the five natural generalizations[in [7].
Covering arrayswith budget congtraints. A practical limitation in the realm of test-
ing is budget. In most software development environmeits,tcomputing, and
human resources needed to perform the testing of a compungtnictly limited.
To model this situation, we consider the problem of crealiest possible test suite
(covering the maximum number oftuples) within a fixed number of test cases.
The coverage measuge(A) of a testing arrayA is defined by the ratio between
the number of distinct t-tuples contained in the column eecbf A and the total
number oft-tuples given by('t‘) gt. Our objective is to construct a testing array
of size at mosn having largest possible coverage measure, given fixed vaifie
t,k,g andn. This problem is calledovering arrays with budget constraints.

We summarize the results from group theory that we use i dte a Galois
field GHq) whereq = p™ andp is prime. We adjoin tdy the symboleo: it may
be helpful to think of the resulting set

X =FqU{eo}

as the projective line consisting gf+- 1 points. Recall that the projective general

2

linear group of dimension 2 may be seen as the “fractionablirgroup”:

PGL(2,9) ={a : X— X |xa = %’, wherea, b,c,d € F andad — bc # 0}

in which we definet = 0, £ =0, 1— 0 = 00— 1 =00, andZ = 1. It is known that
|IPGL(2,q)| = (qz*&# = (g+1)g(q—1) and its action orffqU {e} is sharply
3-transitive. For the undefined terms and more details SeeJhapter 7].
Pair-wise or 2-way interaction testing and 3-way inteattiesting are known
to be effective for different types of software testing([3),[12]. However, soft-
ware failures may be caused by interactions of more thare thegameters. A
recent NIST study indicates that failures can be triggengethteractions up to 6
parameters [10]. Here we consider the problem of 4-wayawctern testing of the
parameters. The construction given in this paper improvasyrof the current best
known upper bounds on@AN(k,g) with g = 3 and 21< k < 74. This paper also
presents several strength four testing arrays with higlerame measures.

2 PGL Construction

Let X = GF(g— 1) U{} be the set ofy symbols on which we are to construct a
4-CA(n,k,g). We choose so thatg— 1 is a prime or prime power.

2.1 Casel: Two starter vectors

Our construction involves selecting a groBmnd finding vectorsi, v € XX, called
starter vectors. We use the vectors to forkna2k matrix M.

up Uk ... U V1 Vi R V)
U2 Uy ... U3 Vo2 Vi ... V3
M =
Uk—1 Uk—2 ... Uk Vk—1 Vk-2 ... VW
Uk Ug—1 ... U Vi V-1 ... V1

Let G=PGL(2,g—1). For eacha € PGL(2,g— 1), let M? be the matrix formed
by the action ofa on the elements d¥l. The matrix obtained by developirg by

G is thek x 2k|G| matrix M® = [M2: a € G]. LetC be thek x g matrix that has a
constant column with each entry equalidor eachx € X. Vectorsu,v € XX are
said to bestarter vectors for a 4CA(n,k,g) if any 4 x 2k subarray of the matrix

M has at least one representative from each non-constantoéBGL (2,9 — 1)
acting on 4-tuples fronX. Under this group action, there are precisgly 11
orbits of 4-tuples. Thesg+ 11 orbits are determined by the pattern of entries in
their 4-tuples:

1. {[a,aaa’ :ac X}

{[a,a,a,b]" :a,be X,a+# b}
{[a,a,b,a" :a,bec X,a+# b}
{[a,b,a,a" :a,be X,a+# b}
{[b,a,a,aT : a,b e X,a+# b}
{[a,a,b,b]T :a,be X,a+# b}
{[a,b,a,b]" : a,be X,a+# b}
{[a,b,b,aT :a,be X,a+# b}

© © N o g > w b

{[a,a,b,c]T :a,b,ce X,a#b#c}

(IR
o

.{[b,a,a,c]" :ab,ce X,a£b#c}

=
=

.{[ab,a,c]" :ab,ce X,a#£b#c}

=
N

. {[b,a,c,a" :a,b,cc X,a#b+#c}

=
w

. {[a,b,c,a" :ab,cc X,a#b+#c}

=
IS

. {[b,c,a,a" :a,b,cc X,a#b+#c}

=
a

. g— 3 orbits of patterns with four distinct entries. The reasothis. There
areg(g—1)(g—2)(g— 3) 4-tuples with four distinct entries and each orbit
containsg(g— 1)(g— 2) 4-tuples asPGL(2,g—1)| = g(g—1)(g— 2).

If starter vectorsu, v exist in XX (with respect to the grouf) then there exists a
4-CA(2kg(g—1)(g—2) +g,k,g). We give an example to explain the method.

Examplel. Letg=3,k=30,X = GF(2) U{w} andG = PGL(2,2). The action
of G on 4-tuples fronX has 14 orbits:

Orb 1:[000Q cocococ0, 1117]

Orb 2:[0001,000%, 0000000, c0c0c01,111Q 11 1c0]
Orb 3: [Loococo, 1000 0111 00000, Ocococo, 00111
Orb 4:[010Q c0Qcoc0, 00000, 0010000, 1011 1011]
Orb 5: [1101, 00010, 001Q 1101 00600, 00000co]
Orb 6: [11c000, 000011, 0011, 110Q 00c000, 000000
Orb 7: [000000,0101, 001001, 0co0c0, 101Q Loolco]
Orb 8: [c01100, 100001, 1001,011Q 00000, Ococo(]

4

Orb 9: 11000, 000010, 00100, 11000, 00001, c00001]
Orb 10: [000c01, 0100, 001000, 0001, 1010, 1001 0]
Orb 11:[10001, 00010, 001000, 01000, 000100, 10co1]

[

[

Orb 12:[1c00c0, 0coleo, 00101 01001, 00010 10c00]

Orb 13:[1000, 0011, 00100, 010000, c001 1, 1 0c0c0]
[

Orb 14: [100000, 10000, 01100, 000071, Qeocol, 00110
The following are starter vectors to constr{i®,C], a 4CA(363 30, 3):
U = (011001 100000000 10000001001 0000000011000 01)
V = (11000001101006°101010000000001@000c0).

We used computer search to findndv. One can check that on each set of 4 rows
of M there is a representative from each orbit 24. Thus, 4£AN(30,3) < 363.

2.2 Choiceof starter vectorsuand v

The problem is to find two vectors v € XX such that on each set of 4 rows Mf
there is a representative from each orbit 25. To determine which vectors work
as starters, we define the séfs,y, z] for positive integers,y andz as follows:

d[X,¥,2 = { (Ui, Uiy, Ui 1y Uipxerytz) - 0 <i < k— 1}U
{ (Vi Vigxs iy Vidxpyrz) 0 <i <k—1}
where the subscripts are taken modkild-or computational convenience, we par-
tition the collection of(ﬁ) choices of four distinct rows frork rows into disjoint
equivalence classes.

Formally, letSbe the set of al(¥) 4-combinations of the sét., 2, ...,k}. Define
a binary relatiorR on Shy putting

{s1,%,5. 4} R{S],%, 5,5} iff
{si+d, s +d,s3+d,5,+d} = {S],5,%;,5} for somed € N

where all of the addition is modulk. BecauseR is an equivalence relation on
S Scan be partitioned into disjoint equivalence classes. Thavalence class
determined by{s;, s, 3,54} € Sis given by

{s1, 9,9, 94} = {{s1+d,2+d,s3+d,5+d}|0<d < k—1}.

Without loss of generality, we may assume that 8, < s, < s3 < &4 for each
equivalence class representatife;, s, s3,54}]. As an illustration, whenX =
{0,1,2,...,7}. Sis partitioned into 10 disjoint equivalence classes:

[{0,1,2,3}] [{0,1,2,4}] [{0,1,2,5}] [{0,1,2,6}] [{0,1,3,4}]

5

[{0,1,3,5}] [{0,1,3,6}] [{0,1,4,5}] [{0,1,4,6}] [{0,2,4,6}]

A distance vectofx, Yy, z, w) is associated with every equivalence clgss, sy, Ss, 4}
wherex= -5, Y= — 9, 2= % — S3, W= — S modk. The fourth distance
is redundant becauset+y+z+w = k. We rewrite the equivalence class of 4-
combinationg{s;,sy,S3,}] as

XV,Z ={i,i+Xi+x+y,i+x+y+2z}i=0,12,.. k—1}

Fork =8, [1,1,1] = [{0,1,2,3}], [1,1,2] = [{0,1,2,4}], [1,1,3] = [{0,1,2,5}],
[1,1,4] = [{0,1,2,6}], [1,2,1] = [{0,1,3,4}], [1,2,2] = [{0,1,3,5}], [1,2,3] =
[{0,1,3,6}], [1,3,1] = [{0,1,4,5}], [1,3,2] = [{0,1,4,6}], [2,2,2] = [{0,2,4,6}].

Lemma 1. Let Sbe the set of all 4-combinations of {1,2,3,...,k}. Then Scan be
partitioned into digoint equivalence classes

XV,Z ={i,i+Xi+x+y,i+x+y+2z}i=012,.. k—-1}
wherex=1,2,...,[&],y=xx+1,..,k—1and z=x,x+1,...,k— 1 such that
(i) x+y+z<k
(i) whenx=1z x<y< [&=Z|
There are no further classes distinct from these.

Before proving the result, we give an example. WIgis the set of all 4-
combinations 0f0,1,2,3,4,5,6,7}, Scan be partitioned into 10 disjoint classes:
1,1,1], [1,1,2], [1,1,3], [1,1,4], [1,2,1], [1,2,2], [1,3,1], [1,3,2] and[2,2,2].

Proof. Let (x,y,z,w) be the distance vector corresponding to equivalence class
{51,525, %4)]. Classeq{sy, 5.5 %)), [xY,Z, [y,zwW], [zwx and[wx,y] are
the same. Without loss of generality, we cho@se,Z as class representative if
X<y, x<z Thus 1< x < ‘—'i, y=%X+1,...k—1andz=xx+1,....k—1. We
consider three cases: ki)}=w, (ii) x=z (iii) x=Yy. If w=x, then the class€s,y, 7|
and[x,x,y] obtained from distance vect(x,y, z x) are the same equivalence class.
The classes of the fornx,x,y] are generated under case (iii) as well. In order to
avoid repetitionw has to be strictly greater than That isw=k—x—y—2z> X
which implies X+y+z < k. If z=Xx, then the classes,y,z| and[x,w,x] are the
same wherg+w = k— 2x. Thus it is sufficient to consider the classes of the form
[Xy,x] fory < Lk*TZXJ only. Hence the lemma follows. O

All the equivalence classes are enumerated by the folloadggrithm.
EQUIVALENCE-CLASSEYK)
Input: k
Output: All [X,y,Z] classes.
for x<- 1to X do

for y« xtok—1 do
if y > 52 then

for z«x+1tok—2x—y—1 do

add [x,y,Z]
end for
ese
if y == 2 and x == 2 then
acd [% &
ese

for z+ xtok—2x—y—1 do
add [x,y, 7
end for
end if
end if
end for
end for

Theorem 1. Let X = GF(g— 1)U {0} and G = PGL(2,g—1). If there exists a
pair of vectors u,v € X* such that each d[x,y,Z has a representative from each
of the orbits 2 — 15, then there exists a 4-CA(2kg(g— 1)(g— 2) +g,k,g) covering
array.

Proof. Let u,v € XK be vectors such that eadix,y, 7 has a representation from
each of the orbits 2 15. Usingu, v, we create the matriM®,C|. Let{s;, s, 3,54}
be a member itfs. By Lemma 1, there exists three positive integeysy, andzg
such tha{s;, s, 3,4} € [Xo, Y0, 20]. Itis given thatd|xo, Yo, Z0] has a representative
from each of the orbits 2-15. In other words, if we look at the/ss;, S, S3, 4
of M, we see representative from each of ghe 1l orbits. Consequently, because
PGL(2,g— 1) is 3-transitive orX, [M®,C] is a 4CA(2kg(g—1)(g—2) +g,k,g).

]

At this stage, we make a few remarks about the size of equivalelasses
defined by above choices »fy andz

1. k£0mod2:
If k is an odd integer, each class contains exakttistinct choices from

the collection of(¥) choices and hence there dre w distinct
classes of siz&.

2. k=0mod 2:
If kis an even integeé can be written as sum of two positive integarand

7

bwherea < bin | ¥| different ways.

Casel: If k#£ 0 mod 4, a class of the forfa, b, a] contains only‘g distinct
choices. There are totgﬁj equivalence classes of the fofeb, a] with size
X and the remaining classes are of dize

Case2: If k=0 mod 4, a class of the forfia, b, a] contains only¥ distinct
choices and a class of the forflm a, a) wherea = t—i contains only; distinct
choices. Here we get totél— 1 equivalence classes of sige exactly one
class of sizég and the remaining classes are of dize

For k = 8, there are 10 equivalence classes. The clads8sl] and [2,2,2] are
of size 4 and 4 respectively and the remaining 8 classes asr®B each. Thus
8x8+4+2=3).

2.3 Case2: Twovectorsu,vand amatrix C;

If we do not find vectoras andv such that eacld|x,y,z] contains a representative
from each of the orbits 2 15, we look for vectors that produce an array with
maximum possible coverage. In order to complete the cogyeamditions, we add
a small matrixC,. We give an example below to illustrate the technique.

Example 2. Letk =21 andg = 3. Here we do not find vectorsandv such that
eachd|x,y,z contains a representative from each of the orbits15. Fork =
21, there are 28%,y,7] classes. All classes,y,z are obtained by the algorithm
EQUIVALENCE-CLASSES One can check that for the vectors

U= 00001016-1000010000000 101

vV =00001000001000%011 Ic0

there is a representative from each orbit 25 on 276 of thel[x,y, Z] classes. Table
[shows nine classes which do not have representative fidheabrbits:

Table 1: List of classes not having representative fromhalldrbits

Class | Missing orbits
d1,2,2] 10
d[1,5, 6] 2
d[1,6,12 5
d[1,13,5] 9
d[2,3,8] 6
d[2,7,3] 10
d[2,12 3] 13
d[3,6,8] 6
d[3,7,7] 10

In order to complete the covering conditions, we add a smattirnC,.

8

8 8 rbrroo8rrPr8ocoor 8 0o 8 rro
08 8 pro0oo0o0orr 8 80,8 80008 RrE
R 8 OprhroRr 8008 0corPrrRr8ocoOFR 8 R
8 P hrpporo88rkRrgro8rorosd
l—‘ol—‘oo8OOOSOoooO|—\oooo|—\

@)

AS

|
8 0oo0or 8 80008 8r0O0OS8 8PFrOOSZS8 8
SOSOHOOOP88SOHH88O8|_\8

©C80pr©88FrPrPO0O8 5008 80038

(@)

We use computer search to find mattix This matrix has the property that every
choice of four rows in1,2,2|, [2,7,3] and[3,7,7] contains at least one represen-
tative from orbit 10; every choice of four rows [8,3,8] and[3,6,8] contains at
least one representative from orbit 6; each choice of fowsiia [1,5, 6], [1,6,12],
[1,13 5] and[2,12 3] contains at least one representative from orbit 2, 5, 9 and 13
respectively. We also need to use the following matrix

0 1 o
0 1
C=1. . .
0 1
to ensure the coverage of all identical 4-tuples. Therefdr&, Cf, Clis a4-
CA(31521,3).

2.4 Case3: Onevector uand amatrix C;

Fork =37 to 58, we use one starter vector ar@j anatrix of orderk x ¢ with ¢ < k.
Tabled 2[B, 4 arld 5 give a list of starter vectors and m@jrikat improves the best
known bounds. When the new bound is marked with an asterisit;qptimization
has been applied (see Section 3.2).

3 Improving the solutions

We examine two methods to obtain small improvements on thepotational re-
sults obtained.

3.1 Extending a solution

Until this point, starter vectors have been developed byyampa cyclic rotation
of the starter vectors in addition to the action of PGL on tyralols. As in [13],
one can also consider fixing one row, and developing the r@ngk— 1 cyclically.
This can be viewed as first finding a solution of the type alyadascribed ok — 1
rows, but requiring an additional property. For the 4-stdbs# {0,...,k— 2},
equivalence classes are defined as before, with arithmetitilok — 1:

{s1, 2% 9] ={{ss+d,%2+ds+dsu+d}0o<d<k-2}
For 3-subsetst;, to,t3} of {0,...,k— 2} we define further equivalence classes as
[{t1,t2,t3,k—1}] = {{t1 +d,to+d,t3+d, k—1}|0 < d < k—2}.

If we can place an entry in positidt+ 1 to extend the length of each starter vector
so that every one of the (old and new) equivalence classesses each of the
orbits 2— 15, we obtain a 4-CA of degrde

The potential advantage of this approach is that a solutoddgreek — 1 can
sometimes be extended to one of dedte@thout increasing the size of the cov-
ering array produced. Indeed we found that the solution fefl € {32,34,35}
do ensure that the new equivalence classes also represénifdahe orbits 2- 15.
Hence we obtain the following improvements. Old indicates bound obtained
by applying our methods tk; Improved gives the bound by applying the method
to k— 1 and ensuring that the new equivalence classes repretertitd:

k OIld Improved| k OId Improved| k OId Improved
33 399 387| 35 423 411| 36 435 423

3.2 Randomized Post-optimization

Nayeri, Colbourn, and Konjevod [14] describe a post-optation strategy which,
when applied to a covering array, exploits flexibility of dyats in an attempt to
reduce its size. We applied their method to the arrays peavitere, and to arrays
obtained by removing one or more rows. Because the methabgibed in detail
elsewhere, we simply report improvements for eight valdds dasic gives the
bound from starter vectors, Improved gives the bound @AKHk,3) after post-
optimization:

k Basic Improved] k Basic Improved k Basic Improved
19 309 300| 20 309 303| 21 309 305
22 309 307| 27 351 345| 28 363 360
34 411 410| 37 435 433

10

4 Covering arrayswith budget constraints problem

In this section we present several strength four testingyarwith high coverage
measure fog > 3. The coverage measutg(A) of a strength four testing array
A is defined by the ratio between the number of distinct 4-siptmntained in the
column vectors ofA and the total number of 4-tuples given b‘j&g“. Note that
the coverage measure of a covering array is always one. FRaputational con-
venience, we rewrite the coverage measure in terms of dgot@ classe,y, Z|
andd|x,y, Z] as follows:

S |[X,¥,2)| x number of distinct 4-tuples covered b, y, 7|

XY,z
(5 g*

We search by computer to find vectera/ith very high coverage measures. Tables
andY show vectors with high coverage, the number of tesis¢as generated
by our technique, and the best known size with full covera@amparison of
our construction with best known covering array sizes shinatour construction
produces significantly smaller testing arrays with veryjhhigverage measures.

pa(A) =

5 Conclusions

In this paper, we present a construction method of strermih dovering arrays
with three symbols that combines an algebraic techniqub egmputer search.
This method improves the current best known upper bounds-©AN(k,g) for
21 < k< 74 andg = 3. We have also proposed a construction of strength four cov-
ering arrays with budget constraints. In order to test smfwwith 25 parameters
each having three values, our construction can generata auite with 153 test
cases that ensure with probabilityo@ that software failure cannot be caused due to
interactions of two, three or four parameters whereas thekdmown covering array

in [4] requires 363 test cases for full coverage. The reshitav that the proposed
method could reduce the number of test cases significantlie wbmpromising
only slightly on the coverage.

Acknowledgements

The second author gratefully acknowledges support fronCtinencil of Scientific
and Industrial Research (CSIR), India, during the work ur@IR senior research
fellow scheme. The fourth author’s research was suppontgdit by the National
Science Foundation under Grant No. 1421058.

11

References

References

[1] M.A. Chateauneuf, C.J. Colbourn, D.L. Kreher, Coverfagays of Strength
Three. Designs, Codes and Cryptography, 16 (1999) 235-242.

[2] M.A. Chateauneuf, D.L. Kreher, On the state of strenjifee covering ar-
rays, J. Combin. Design, 10(4) (2002) 217-238.

[3] D.M. Cohen, S.R. Dalal, M.L. Fredman and G.C. Patton, ABES G system:
An Approach to Testing Based on Combinatorial Design. IEE&$action
on Software Engineering, 23 (7) (1997) 437-443.

[4] C.J. Colbourn, Covering Array Tables for t=2,3,4,5,6aitable at
http://www.public.asu.edw/ccolbou/src/tabby/catable.html

[5] C.J. Colbourn, Conditional expectation algorithms ¢owering arrays, Jour-
nal of Combinatorial Mathematics and Combinatorial Cormgyt90 (2014)
97-115.

[6] Covering Arrays generated by IPOG-F, available at
http://math.nist.gov/coveringarrays/ipof/ipof-retsuhtmi|

[7] A.Hartman, L. Raskin, Problems and algorithms for cavgarrays. Discrete
Mathematics, 284 (2004) 149-156.

[8] A. Hartman, Software and hardware testing using comtbiie covering
suites. Graph Theory, Combinatorics and Algorithms: blitariplinary Ap-
plications, Kluwer Academic Publishers, 34 (2006) 237-266

[9] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Sofav@nd Ed., John
Wiley and Sons, Inc., New York (1999).

[10] D.R. Kuhn, D.R. Wallace, A.M. Gallo, Software Fault énactions and Im-
plications for Software Testing. IEEE Transactions on8aft Engineering.
30 (6) (2004) 418-421.

[11] S. Maity, 3-Way software testing with budget consttainEICE Transactions
on Information and Systems, E-95-D, No.9 (2012) 2227-2231.

[12] S. Maity, A. Nayak, Improved Test Generation Algorithrfor Pair-Wise
Testing. Proc. 16th IEEE International Symposium on SafwReliability
Engineering, Chicago, pp. 235-244 (2005).

[13] K. Meagher and B. Stevens, Group Construction of ConeArrays. Journal
of Combinatorial Designs. 13(1) (2005) 70-77.

12

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://math.nist.gov/coveringarrays/ipof/ipof-results.html

[14] P. Nayeri, C.J. Colbourn and G. Konjevod, Randomizest{optimization of
covering arrays, Eur. J. Combin., 34(1) (2013) 91-103.

[15] D.J.S. Robinson, A course in the theory of groups, Sededition, Springer
(1995).

[16] C.Yilmaz, M. Cohen, A. Porter, Covering arrays for affiat fault character-

isation in complex configuration spaces. IEEE Trans. onv&o# Engineer-
ing. 32(1) (2006) 20-34.

13

Table 2:Improved strength four covering arraysfor g = 3.

Starter vectors and matr®

New
bound

olid
bound

21

22

27

u= (0000101@>1000010c0c0001c01)

v = (0000100:00001000%011 100)

0000 10wow0010w0 00wl 0w
011000010001 10001100
1100000010011 000Il0ow0
101 0001100010001 010x01
Ci=]1001100001100001c0001cww
00000000000 110wcw010000
0010100101100 010111 10
0]l 00wl 10wl 0001000
100001000000000000101

T

u = (000001120000011001coc0c00100)

v = (0001001@0100000c001c01 0c0c01)
000000000 000w 00wwewn OO0
0000 000w Dowwo D 00w QO 0
1010000 lwlowlowlow0001lwlO

Ci=1011100110001100112100010c
0000010100 000cw001c000 10
0001110101000111001 100
000001 00000000 101000 10

T

U= (110101%0000000000c0c0 1000110001 000)

V = (1100000101 Iroco000c00000 1000000 kooooo)
0101011010101010101010101 I
01010101010101011010101010J12
00000000000 oo oo oo
0o000000000100000000000m00

C=

305*

307*

345*

315

315

378

14

Table 3:Improved strength four covering arrays for g = 3 (continued).

k | Starter vectors and matr New | Old
bound| bound

U= (1c0000000001000110111 80000010 Ip00000])
V = (0101101100000 100001 000000c0000001)

28 0000000 000w D00 0w 0o Qoo oo 360* 383
Ci— 0001010001000 010000010100110

171 10000000010l 000101 00lewl 00011
0000000000101 000100000100000

U= (013c01 100000000 10000001001 0c000000110C001)

30 363 393
V = (1100000110100601 0101000000001 Boc0c0)
U= (201100010011 1010001000001 000000c0c0010)

32 387 409
V = (0000001000000000011@0001 0000001 10011117

33| Obtained fronCA(387,32,3) 387 417
U = (000010100000010010001 000000000 1000000011117

34 410* | 423
V= (1100010001001011@00000000011001010020000)

35| Obtained fromCA(411 34,3) 411 429
U = 0100000001 00000 1000001001 1 1000000010001 00001

35 423 429

V = 00000113000011001 1011001001000 10000

15

Table 4:Improved strength four covering arrays for g = 3 (continued).

k Starter vectors and matr® New Old
bound| bound

36 | Obtained fromCA(423 35,3) 423 441

37| U= (00100100010?0100®01100>010111boOOlooooooooOOOO) 433+ | 441
C1: 37 x 35 matrix

39| U= (001000011001.100000100110010100m001000000010>00000000) 441 453
C1: 39x 34 matrix
U= (200010001 0000000010111 00001 Ie0c01000B00c0001 0co0c01)

41 | Cy: 41 x 34 matrix 453 465

40 | U= (000111001000?10030101000100@001100101001:boooooloooooo) 465 471
C1: 42 x 35 matrix

a6 | U= (0000000>011.0001@01010000100010000110)0000000110011010010100) 477 483
Ci: 46 x 33 matrix

47| Y= (000011m1191m1m00®01m01m0%11101@0000000001000001000010000) 483 489
Ci: 47 x 33 matrix

a8 | Y= (OlmmM11mplm101011b000001oooooo00011001@00000000010(300000) 489 495
C1: 48 x 33 matrix
U = (200000010101 00000001 100100100 Jeococococ01 1

51 | 0000100111100100400) 501 507

C1: 51 x 32 matrix

16

Table 5:Improved strength four covering arrays for g = 3 (continued).

k

Starter vectors and matr®

New
bound

Old
bound

55

57

58

63

67

70

72

74

U= (1eocoToolo00c011 10000100001300000001101 201000
00001100000101000111@0c0)
C1: 55x 30 matrix

U = (2010000000001 30010010001 100%0 10000001 00110
110111016-00100000000001)
C1: 57 x 29 matrix

U= (200000000101000130000100100000001100200001@0111
0000001101101 000000000
C1: 58 x 29 matrix

U= (1102010001 00w000000010k0000c00c00010001 0001 000001
10001011000200001 100000000001 1)
Cy: 63x 26

U= (01010%2011000100x011c0000000011 (00111 000101 100000
1100000000001 010000 100001000@000)
Cy1: 67x 25

U = (100007001 1000000000001 100000000 1000001 oOcococ0c01 11
0010100301001 200001000@010c0001100)
C1: 70x 24

U = (20000000101 0000000000010111006>1101%001110%00c00010000
001001000001 001011000 LoococoLoocoQco)
Ci:72x24

U = (100001 B000010000001 1 Jeoc010000010B00000001 000101101 2o
00110000#000000000000010110@0100010011100)
Ci: 74x 24

513

519

525

537

555

567

573

585

519

531

531

549

561

573

579

591

17

Table 6: A comparison of the number of test cases (n) produced by our con-
struction with high coverage measure and best known n for full coverage. For
g =5, theelements of GF (4) arerepresented as 0,1, 2, and 3; here 2 stands for
x and 3 standsfor x+ 1.

(9,k) Vectorv with good coverage Our Results| Best known
n(u) n [4]
(3,16) 0000100%00c001 100100 99 (0.828) 237
(3,17) 000001@001010001c01 105 (0.851) 282
(3,18) 0001300001003e011 10000 111 (0.864) 293
(3,19) 00001001801000001 1100 117 (0.883) 305
(3,20) 000011010&0c010c0c01 1c0 123 (0.892) 314
(3,21) 0000101@1coc010c0c0001e01 129 (0.906) 315
(3,22) 000001 2000011 0»100c0c001c0 135 (0.913) 315
(3,23) 00000020000103e01 0001 Ococ0c01 141 (0.923) 315
(3,24) 0000000%0000103001000101c0c01 147 (0.924) 315
(3,25) 000000001400c001 10001000001 1c0 153 (0.930) 363
(3,28) 100000000001000110111 200001 07e000001 171 (0.957) 383
(3,29) 01000000100000000010100000000011 2010 177 (0.961) 392
(3,30) 017e01 100000000 10000001001 000000001 100001 163 (0.969) 393
(3,35) 01000000010000100000001001 1 100000001000100B0 1 213 (0.979) 429
(3,36) 11000110000000011110101 200 r000c0c0001 000000 219 (0.981) 441
(3,38) 10010011 1600001 001000000001 BocoQcoc0c01 100001000 231 (0.985) 447
(3,39) 001000011001 1000003001 100101000000 100000001 CG00000000 | 237 (0.986) 453
(3,40) 1000000000 %k0001001 0000000000000 1 0000100100011 1001 | 243 (0.988) 465
(4,18) 0001002 000002102302 436 (0.851) 760
(4,19) 000012101401000c0221 460 (0.866) 760
(4,20) 0000112101208022 102 484 (0.878) 760
(4,21) 00000110210109200022I0 508 (0.887) 1012
(4,22) 00000011020202%k00001001 532 (0.894) 1012
(4,23) 00000001210210002011201 556 (0.898) 1012
(4,24) 0000000012%011000200000112 580 (0.899) 1012
(4,25) 00000000012122601 10020120 604 (0.901) 1012
(4,26) 001000222111010200220020x2 628 (0.921) 1012
(4,27) 01000222111010200220020%2 652 (0.928) 1012
(4,28) 011160010200211100220041001 676 (0.933) 1012
(4,29) 0c000122102000022020022122602 702 (0.937) 1012
(4,30) 1000200002002002000100222 2002200201 726 (0.943) 1012

18

Table 7: A comparison of the number of test cases (n) produced by our con-
struction with high coverage measure and best known n for full coverage (con-

tinued).
(9,k) Vectorv with good coverage Our Results | Best known
n (k) n 4]
(5,21) 110131306300100203203 1265 (0.834) 1865
(5,22) 3003201120000000000010010 1325 (0.842) 1865
(5,23) 00020031000203021332320 1385 (0.854) 1865
(5,24) 003»21022212300032302310 1445 (0.860) 1865
(5,25) 0020000000031023030030300033 1505 (0.869) 2485
(5,26) 202002211009012103%0002300 1565 (0.873) 2485
(5,27) 000003002036000110003130103 1625 (0.880) 2485
(5,28) 013333130326101003200310300 1685 (0.883) 2485
(5,29) 000122120010»3110031020031010 1745 (0.891) 2485
(5,30) 3300%000000033@00001001201313001 1805 (0.894) 2485
(5,31) 033»21333010318303320030012020 1865 (0.895) 2485
(5,32) 310031006330130328203031111310 | 1925 (0.897) 2485
(5,33) | ©0010300030000020001000000122220000300200 | 1985 (0.904) 2485
(5,34) 00003000010100%00000100002001110231112 | 2045 (0.906) 2485
(5,35) 1203003308000013233316:032020003220 | 2105 (0.906) 2485
(5,36) 1202203203230023223220001010262230 | 2165 (0.912) 2485
(6,25) 0004030140030334043800000 3006 (0.811) 6325
(6,26) 0000040021404010013010011444 3126 (0.819) 6456
(6,27) 4330000100002 0000302B30000000040 k0 3246 (0.826) 6606
(6,28) 40230311002322062100002020020 3366 (0.829) 6714
(6,29) 00040023103301343401230334400 3486 (0.834) 6852
(6,30) 100000042004040004010400030340000300 3606 (0.836) 6966
(6,31) 441220020200002020203%42044001 3726 (0.838) 7092
(6,32) 4444134842400000040004410103400 | 3846 (0.846) 7200
(6,33) 033034400232133100313000083303» 3966 (0.855) 7320

19

	1 Introduction
	2 PGL Construction
	2.1 Case 1: Two starter vectors
	2.2 Choice of starter vectors u and v
	2.3 Case 2: Two vectors u,v and a matrix C1
	2.4 Case 3: One vector u and a matrix C1

	3 Improving the solutions
	3.1 Extending a solution
	3.2 Randomized Post-optimization

	4 Covering arrays with budget constraints problem
	5 Conclusions

