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Abstract

A covering arrayt-CA(n,k,g), of sizen, strengtht, degreek, and orderg,
is ak× n array ong symbols such that everyt× n sub-array contains every
t×1 column ong symbols at least once. Covering arrays have been studied
for their applications to software testing, hardware testing, drug screening,
and in areas where interactions of multiple parameters are to be tested. In
this paper, we present an algebraic construction that improves many of the
best known upper bounds onn for covering arrays 4-CA(n,k,g) with g = 3.
Thecoverage measure µt(A) of a testing arrayA is defined by the ratio be-
tween the number of distinctt-tuples contained in the column vectors ofA
and the total number oft-tuples. A covering array is a testing array with full
coverage. Thecovering arrays with budget constraints problem is the prob-
lem of constructing a testing array of size at mostn having largest possible
coverage measure, given values ofk,g andn. This paper presents several
strength four testing arrays with high coverage. The construction here is a
generalisation of the construction methods used by Chateauneuf, Colbourn
and Kreher, and Meagher and Stevens.

1 Introduction

This article focuses on constructing new strength-four covering arrays withg = 3
and establishing improved bounds on the covering array numbers 4-CAN(k,3).
This article also presents solution to the covering arrays with budget constraints
problem by constructing many strength four testing arrays with high coverage. A
covering arrayt-CA(n,k,g), of sizen, strengtht, degreek, and orderg, is ak× n
array ong symbols such that everyt×n sub-array contains everyt×1 column on
g symbols at least once. It is desirable in most applications to minimise the size
n of covering arrays. The covering array numbert-CAN(k,g) is the smallestn for
which at-CA(n,k,g) exists. An obvious lower bound is

gt ≤ t-CAN(k,g).
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In this paper, we describe a construction method which is an extension of the meth-
ods developed by Chateauneuf, Colbourn and Kreher [1] and Meagher and Stevens
[13]. This method improves some of the best known upper bounds for strength
four covering arrays withg = 3. In the range of degrees considered in this paper,
the best known results previously come from [5]; in that paper, covering arrays are
also found by using a group action on the symbols (the affine orFrobenius group),
but no group action on the rows is employed. While forg = 3 the group that we
employ on the symbols coincides with the affine group, we accelerate and improve
the search by also exploiting a group action on the rows as in [1, 13], and develop a
search method than can be applied effectively wheneverg≥ 3 andg−1 is a prime
power.

There is a large literature [1, 7] on covering arrays, and theproblem of deter-
mining small covering arrays has been studied under many guises over the past
thirty years. In [7], Hartman and Raskin discussed several generalizations moti-
vated by their applications in the realm of software testing. When testing a soft-
ware system withk parameters, each of which must be tested withg values, the
total number of possible test cases isgk. For instance, if there are 20 parameters
and three values for each parameter then the number of input combinations or test
cases of this system is 320 = 3486784401. A fundamental problem with software
testing is that testing under all combinations of inputs is not feasible, even with a
simple product [9, 10]. Software developers cannot test everything, but they can
use combinatorial test design to identify the minimum number of tests needed to
get the coverage they want. The goal of most combinatorial testing research is to
create test suites that find a large percentage of errors of a system while having a
small number of tests required. Covering arrays prove useful in locating a large
percentage of errors in software systems [3, 16]. The test cases are the columns of
a covering arrayt-CA(n,k,g). This is one of the five natural generalizations in [7].
Covering arrays with budget constraints: A practical limitation in the realm of test-
ing is budget. In most software development environments, time, computing, and
human resources needed to perform the testing of a componentis strictly limited.
To model this situation, we consider the problem of creatingbest possible test suite
(covering the maximum number oft-tuples) within a fixed number of test cases.
The coverage measureµt(A) of a testing arrayA is defined by the ratio between
the number of distinct t-tuples contained in the column vectors of A and the total
number oft-tuples given by

(k
t

)

gt . Our objective is to construct a testing arrayA
of size at mostn having largest possible coverage measure, given fixed values of
t,k,g andn. This problem is calledcovering arrays with budget constraints.

We summarize the results from group theory that we use. LetFq be a Galois
field GF(q) whereq = pm and p is prime. We adjoin toFq the symbol∞: it may
be helpful to think of the resulting set

X = Fq∪{∞}

as the projective line consisting ofq+1 points. Recall that the projective general
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linear group of dimension 2 may be seen as the “fractional linear group”:

PGL(2,q) = {α : X 7→ X | xα =
ax+b
cx+d

, wherea,b,c,d ∈ Fq andad−bc 6= 0}

in which we define1
0 = ∞, 1

∞ = 0, 1−∞ = ∞−1= ∞, and∞
∞ = 1. It is known that

|PGL(2,q)| = (q2−1)(q2−q)
(q−1) = (q+1)q(q−1) and its action onFq∪{∞} is sharply

3-transitive. For the undefined terms and more details see [15, Chapter 7].
Pair-wise or 2-way interaction testing and 3-way interaction testing are known

to be effective for different types of software testing [3, 11, 12]. However, soft-
ware failures may be caused by interactions of more than three parameters. A
recent NIST study indicates that failures can be triggered by interactions up to 6
parameters [10]. Here we consider the problem of 4-way interaction testing of the
parameters. The construction given in this paper improves many of the current best
known upper bounds on 4-CAN(k,g) with g = 3 and 21≤ k ≤ 74. This paper also
presents several strength four testing arrays with high coverage measures.

2 PGL Construction

Let X = GF(g−1)∪{∞} be the set ofg symbols on which we are to construct a
4-CA(n,k,g). We chooseg so thatg−1 is a prime or prime power.

2.1 Case 1: Two starter vectors

Our construction involves selecting a groupG and finding vectorsu,v ∈ X k, called
starter vectors. We use the vectors to form ak×2k matrix M.

M =















u1 uk . . . u2 v1 vk . . . v2

u2 u1 . . . u3 v2 v1 . . . v3
...

...
...

...
...

...
uk−1 uk−2 . . . uk vk−1 vk−2 . . . vk

uk uk−1 . . . u1 vk vk−1 . . . v1















.

Let G = PGL(2,g−1). For eacha ∈ PGL(2,g−1), let Ma be the matrix formed
by the action ofa on the elements ofM. The matrix obtained by developingM by
G is thek×2k|G| matrix MG = [Ma : a ∈ G]. Let C be thek×g matrix that has a
constant column with each entry equal tox, for eachx ∈ X . Vectorsu,v ∈ X k are
said to bestarter vectors for a 4-CA(n,k,g) if any 4×2k subarray of the matrix
M has at least one representative from each non-constant orbit of PGL(2,g− 1)
acting on 4-tuples fromX . Under this group action, there are preciselyg+ 11
orbits of 4-tuples. Theseg+11 orbits are determined by the pattern of entries in
their 4-tuples:

1. {[a,a,a,a]T : a ∈ X}
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2. {[a,a,a,b]T : a,b ∈ X ,a 6= b}

3. {[a,a,b,a]T : a,b ∈ X ,a 6= b}

4. {[a,b,a,a]T : a,b ∈ X ,a 6= b}

5. {[b,a,a,a]T : a,b ∈ X ,a 6= b}

6. {[a,a,b,b]T : a,b ∈ X ,a 6= b}

7. {[a,b,a,b]T : a,b ∈ X ,a 6= b}

8. {[a,b,b,a]T : a,b ∈ X ,a 6= b}

9. {[a,a,b,c]T : a,b,c ∈ X ,a 6= b 6= c}

10. {[b,a,a,c]T : a,b,c ∈ X ,a 6= b 6= c}

11. {[a,b,a,c]T : a,b,c ∈ X ,a 6= b 6= c}

12. {[b,a,c,a]T : a,b,c ∈ X ,a 6= b 6= c}

13. {[a,b,c,a]T : a,b,c ∈ X ,a 6= b 6= c}

14. {[b,c,a,a]T : a,b,c ∈ X ,a 6= b 6= c}

15. g−3 orbits of patterns with four distinct entries. The reason is this. There
areg(g−1)(g−2)(g−3) 4-tuples with four distinct entries and each orbit
containsg(g−1)(g−2) 4-tuples as|PGL(2,g−1)|= g(g−1)(g−2).

If starter vectorsu,v exist in X k (with respect to the groupG) then there exists a
4-CA(2kg(g−1)(g−2)+g,k,g). We give an example to explain the method.

Example 1. Let g = 3, k = 30, X = GF(2)∪{∞} andG = PGL(2,2). The action
of G on 4-tuples fromX has 14 orbits:

Orb 1: [0000,∞∞∞∞,1111]

Orb 2: [0001,000∞,∞∞∞0,∞∞∞1,1110,111∞]

Orb 3: [1∞∞∞,1000,0111,∞000,0∞∞∞,∞111]

Orb 4: [0100,∞0∞∞,0∞00,∞1∞∞,1011,1∞11]

Orb 5: [11∞1,∞∞1∞,0010,1101,00∞0,∞∞0∞]

Orb 6: [11∞∞,∞∞11,0011,1100,00∞∞,∞∞00]

Orb 7: [∞0∞0,0101,∞1∞1,0∞0∞,1010,1∞1∞]

Orb 8: [∞11∞,1∞∞1,1001,0110,∞00∞,0∞∞0]
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Orb 9: [11∞0,∞∞10,001∞,110∞,00∞1,∞∞01]

Orb 10: [∞0∞1,010∞,∞1∞0,0∞01,101∞,1∞10]

Orb 11: [1∞01,0∞10,∞10∞,01∞0,∞01∞,10∞1]

Orb 12: [1∞0∞,0∞1∞,∞101,01∞1,∞010,10∞0]

Orb 13: [1∞00,0∞11,∞100,01∞∞,∞011,10∞∞]

Orb 14: [1∞∞0,100∞,011∞,∞001,0∞∞1,∞110]

The following are starter vectors to construct[MG,C], a 4-CA(363,30,3):

u = (011∞11∞∞∞001∞∞∞1∞10∞∞0∞1100∞01)

v = (11∞∞01101000∞101∞1∞0∞000010∞∞∞).

We used computer search to findu andv. One can check that on each set of 4 rows
of M there is a representative from each orbit 2−14. Thus, 4-CAN(30,3) ≤ 363.

2.2 Choice of starter vectors u and v

The problem is to find two vectorsu,v ∈ X k such that on each set of 4 rows ofM
there is a representative from each orbit 2−15. To determine which vectors work
as starters, we define the setsd[x,y,z] for positive integersx,y andz as follows:

d[x,y,z] = {(ui,ui+x,ui+x+y,ui+x+y+z) : 0≤ i≤ k−1}
⋃

{(vi,vi+x,vi+x+y,vi+x+y+z) : 0≤ i≤ k−1}

where the subscripts are taken modulok. For computational convenience, we par-
tition the collection of

(k
4

)

choices of four distinct rows fromk rows into disjoint
equivalence classes.

Formally, letS be the set of all
(k

4

)

4-combinations of the set{1,2, ...,k}. Define
a binary relationR on S by putting

{s1,s2,s3,s4} R {s′1,s
′
2,s
′
3,s
′
4} iff

{s1+d,s2+d,s3+d,s4+d}= {s′1,s
′
2,s
′
3,s
′
4} for somed ∈N

where all of the addition is modulok. BecauseR is an equivalence relation on
S, S can be partitioned into disjoint equivalence classes. The equivalence class
determined by{s1,s2,s3,s4} ∈ S is given by

[{s1,s2,s3,s4}] = {{s1+d,s2+d,s3+d,s4+d}|0≤ d ≤ k−1}.

Without loss of generality, we may assume that 0= s1 < s2 < s3 < s4 for each
equivalence class representative[{s1,s2,s3,s4}]. As an illustration, whenX =
{0,1,2, ...,7}. S is partitioned into 10 disjoint equivalence classes:

[{0,1,2,3}] [{0,1,2,4}] [{0,1,2,5}] [{0,1,2,6}] [{0,1,3,4}]
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[{0,1,3,5}] [{0,1,3,6}] [{0,1,4,5}] [{0,1,4,6}] [{0,2,4,6}]

A distance vector(x,y,z,w) is associated with every equivalence class[{s1,s2,s3,s4}]
wherex = s2− s1, y = s3− s2, z = s4− s3, w = s1− s4 modk. The fourth distance
is redundant becausex + y+ z+w = k. We rewrite the equivalence class of 4-
combinations[{s1,s2,s3,s4}] as

[x,y,z] = {i, i+ x, i+ x+ y, i+ x+ y+ z}|i = 0,1,2, ...,k−1}

For k = 8, [1,1,1] = [{0,1,2,3}], [1,1,2] = [{0,1,2,4}], [1,1,3] = [{0,1,2,5}],
[1,1,4] = [{0,1,2,6}], [1,2,1] = [{0,1,3,4}], [1,2,2] = [{0,1,3,5}], [1,2,3] =
[{0,1,3,6}], [1,3,1] = [{0,1,4,5}], [1,3,2] = [{0,1,4,6}], [2,2,2] = [{0,2,4,6}].

Lemma 1. Let S be the set of all 4-combinations of {1,2,3, ...,k}. Then S can be
partitioned into disjoint equivalence classes

[x,y,z] = {i, i+ x, i+ x+ y, i+ x+ y+ z}|i = 0,1,2, ...,k−1}

where x = 1,2, ...,⌊ k
4⌋, y = x,x+1, ...,k−1 and z = x,x+1, ...,k−1 such that

(i) 2x+ y+ z < k

(ii) when x = z, x≤ y≤ ⌊ k−2x
2 ⌋

There are no further classes distinct from these.

Before proving the result, we give an example. WhenS is the set of all 4-
combinations of{0,1,2,3,4,5,6,7}, S can be partitioned into 10 disjoint classes:
[1,1,1], [1,1,2], [1,1,3], [1,1,4], [1,2,1], [1,2,2], [1,3,1], [1,3,2] and[2,2,2].

Proof. Let (x,y,z,w) be the distance vector corresponding to equivalence class
[{s1,s2,s3,s4}]. Classes[{s1,s2,s3,s4}], [x,y,z], [y,z,w], [z,w,x] and [w,x,y] are
the same. Without loss of generality, we choose[x,y,z] as class representative if
x ≤ y, x ≤ z. Thus 1≤ x ≤ k

4, y = x,x+1, ...,k−1 andz = x,x+1, ...,k−1. We
consider three cases: (i)x=w, (ii) x= z, (iii) x= y. If w= x, then the classes[x,y,z]
and[x,x,y] obtained from distance vector(x,y,z,x) are the same equivalence class.
The classes of the form[x,x,y] are generated under case (iii) as well. In order to
avoid repetition,w has to be strictly greater thanx. That is,w = k− x− y− z > x
which implies 2x+ y+ z < k. If z = x, then the classes[x,y,z] and[x,w,x] are the
same wherey+w = k−2x. Thus it is sufficient to consider the classes of the form
[x,y,x] for y≤ ⌊ k−2x

2 ⌋ only. Hence the lemma follows.

All the equivalence classes are enumerated by the followingalgorithm.

EQUIVALENCE-CLASSES(k)
Input: k
Output: All [x,y,z] classes.
for x← 1 to k

4 do
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for y← x to k−1 do

if y > k−2x
2 then

for z← x+1 to k−2x− y−1 do
add [x,y,z]

end for
else

if y == k−2x
2 and x == k−2x

2 then
add [ k

4,
k
4,

k
4]

else

for z← x to k−2x− y−1 do
add [x,y,z]

end for
end if

end if
end for

end for

Theorem 1. Let X = GF(g− 1)∪{∞} and G = PGL(2,g− 1). If there exists a
pair of vectors u,v ∈ X k such that each d[x,y,z] has a representative from each
of the orbits 2−15, then there exists a 4-CA(2kg(g−1)(g−2)+g,k,g) covering
array.

Proof. Let u,v ∈ X k be vectors such that eachd[x,y,z] has a representation from
each of the orbits 2−15. Usingu,v, we create the matrix[MG,C]. Let{s1,s2,s3,s4}
be a member inS. By Lemma 1, there exists three positive integersx0, y0 andz0

such that{s1,s2,s3,s4} ∈ [x0,y0,z0]. It is given thatd[x0,y0,z0] has a representative
from each of the orbits 2-15. In other words, if we look at the rows s1, s2, s3, s4

of M, we see representative from each of theg+11 orbits. Consequently, because
PGL(2,g−1) is 3-transitive onX , [MG,C] is a 4-CA(2kg(g−1)(g−2)+ g,k,g).

At this stage, we make a few remarks about the size of equivalence classes
defined by above choices ofx,y andz.

1. k 6≡ 0 mod 2 :
If k is an odd integer, each class contains exactlyk distinct choices from
the collection of

(k
4

)

choices and hence there arel = (k−1)(k−2)(k−3)
24 distinct

classes of sizek.

2. k ≡ 0 mod 2 :
If k is an even integer,k2 can be written as sum of two positive integersa and

7



b wherea≤ b in ⌊ k
4⌋ different ways.

Case 1 : If k 6≡ 0 mod 4, a class of the form[a,b,a] contains onlyk
2 distinct

choices. There are total⌊ k
4⌋ equivalence classes of the form[a,b,a] with size

k
2 and the remaining classes are of sizek.
Case 2 : If k ≡ 0 mod 4, a class of the form[a,b,a] contains onlyk

2 distinct
choices and a class of the form[a,a,a] wherea = k

4 contains onlyk
4 distinct

choices. Here we get totalk
4−1 equivalence classes of sizek

2 , exactly one
class of sizek

4 and the remaining classes are of sizek.

For k = 8, there are 10 equivalence classes. The classes[1,3,1] and [2,2,2] are
of size 4 and 4 respectively and the remaining 8 classes are ofsize 8 each. Thus
8×8+4+2=

(8
4

)

.

2.3 Case 2: Two vectors u,v and a matrix C1

If we do not find vectorsu andv such that eachd[x,y,z] contains a representative
from each of the orbits 2− 15, we look for vectors that produce an array with
maximum possible coverage. In order to complete the covering conditions, we add
a small matrixC1. We give an example below to illustrate the technique.

Example 2. Let k = 21 andg = 3. Here we do not find vectorsu andv such that
eachd[x,y,z] contains a representative from each of the orbits 2− 15. Fork =
21, there are 285[x,y,z] classes. All classes[x,y,z] are obtained by the algorithm
EQUIVALENCE-CLASSES. One can check that for the vectors

u = 00001010∞1∞∞10∞∞001∞1

v = 0000100∞00∞10001∞111∞

there is a representative from each orbit 2−15 on 276 of thed[x,y,z] classes. Table
1 shows nine classes which do not have representative from all the orbits:

Table 1: List of classes not having representative from all the orbits

Class Missing orbits
d[1,2,2] 10
d[1,5,6] 2
d[1,6,12] 5
d[1,13,5] 9
d[2,3,8] 6
d[2,7,3] 10
d[2,12,3] 13
d[3,6,8] 6
d[3,7,7] 10

In order to complete the covering conditions, we add a small matrix C1.
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C1 =















































































∞ 0 1 1 0 ∞ ∞ ∞ 1
∞ 1 1 ∞ 0 0 0 1 0
0 1 ∞ 1 1 0 1 ∞ 0
0 ∞ 0 0 1 0 0 0 0
1 0 0 0 0 ∞ 1 ∞ 0
∞ 0 0 ∞ 0 ∞ ∞ ∞ 1
∞ ∞ ∞ 1 0 0 0 1 0
0 1 ∞ 1 ∞ 0 1 1 0
0 0 1 0 1 0 0 0 0
1 0 0 0 1 ∞ 1 ∞ 0
∞ ∞ ∞ ∞ 0 0 1 ∞ 0
∞ 1 ∞ 1 0 1 ∞ ∞ ∞
0 1 1 0 ∞ 1 ∞ 1 0
0 ∞ 1 0 ∞ ∞ 0 0 0
0 0 0 ∞ 1 ∞ 1 0 0
∞ 0 0 1 ∞ 0 0 0 ∞
∞ 1 0 0 0 1 1 1 0
1 1 1 1 0 0 1 0 0
0 ∞ ∞ 0 1 0 1 ∞ 1
0 ∞ ∞ ∞ ∞ ∞ 1 0 0
∞ 0 0 1 ∞ 0 ∞ ∞ 1















































































.

We use computer search to find matrixC1. This matrix has the property that every
choice of four rows in[1,2,2], [2,7,3] and[3,7,7] contains at least one represen-
tative from orbit 10; every choice of four rows in[2,3,8] and [3,6,8] contains at
least one representative from orbit 6; each choice of four rows in [1,5,6], [1,6,12],
[1,13,5] and[2,12,3] contains at least one representative from orbit 2, 5, 9 and 13
respectively. We also need to use the following matrix

C =











0 1 ∞
0 1 ∞
...

...
...

0 1 ∞











to ensure the coverage of all identical 4-tuples. Therefore, [MG, CG
1 , C] is a 4-

CA(315,21,3).

2.4 Case 3: One vector u and a matrix C1

Fork = 37 to 58, we use one starter vector and aC1 matrix of orderk×ℓ with ℓ< k.
Tables 2, 3, 4 and 5 give a list of starter vectors and matrixC1 that improves the best
known bounds. When the new bound is marked with an asterisk, post-optimization
has been applied (see Section 3.2).
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3 Improving the solutions

We examine two methods to obtain small improvements on the computational re-
sults obtained.

3.1 Extending a solution

Until this point, starter vectors have been developed by applying a cyclic rotation
of the starter vectors in addition to the action of PGL on the symbols. As in [13],
one can also consider fixing one row, and developing the remainingk−1 cyclically.
This can be viewed as first finding a solution of the type already described onk−1
rows, but requiring an additional property. For the 4-subsets of {0, . . . ,k− 2},
equivalence classes are defined as before, with arithmetic modulok−1:

[{s1,s2,s3,s4}] = {{s1+d,s2+d,s3+d,s4+d}|0≤ d ≤ k−2}.

For 3-subsets{t1, t2, t3} of {0, . . . ,k−2} we define further equivalence classes as

[{t1, t2, t3,k−1}] = {{t1+d, t2+d, t3+d,k−1}|0≤ d ≤ k−2}.

If we can place an entry in positionk−1 to extend the length of each starter vector
so that every one of the (old and new) equivalence classes represents each of the
orbits 2−15, we obtain a 4-CA of degreek.

The potential advantage of this approach is that a solution for degreek−1 can
sometimes be extended to one of degreek without increasing the size of the cov-
ering array produced. Indeed we found that the solutions fork−1∈ {32,34,35}
do ensure that the new equivalence classes also represent each of the orbits 2−15.
Hence we obtain the following improvements. Old indicates the bound obtained
by applying our methods tok; Improved gives the bound by applying the method
to k−1 and ensuring that the new equivalence classes represent all orbits:

k Old Improved k Old Improved k Old Improved
33 399 387 35 423 411 36 435 423

3.2 Randomized Post-optimization

Nayeri, Colbourn, and Konjevod [14] describe a post-optimization strategy which,
when applied to a covering array, exploits flexibility of symbols in an attempt to
reduce its size. We applied their method to the arrays provided here, and to arrays
obtained by removing one or more rows. Because the method is described in detail
elsewhere, we simply report improvements for eight values of k. Basic gives the
bound from starter vectors, Improved gives the bound on 4-CAN(k,3) after post-
optimization:

k Basic Improved k Basic Improved k Basic Improved
19 309 300 20 309 303 21 309 305
22 309 307 27 351 345 28 363 360
34 411 410 37 435 433
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4 Covering arrays with budget constraints problem

In this section we present several strength four testing arrays with high coverage
measure forg ≥ 3. The coverage measureµ4(A) of a strength four testing array
A is defined by the ratio between the number of distinct 4-tuples contained in the
column vectors ofA and the total number of 4-tuples given by

(k
4

)

g4. Note that
the coverage measure of a covering array is always one. For computational con-
venience, we rewrite the coverage measure in terms of equivalence classes[x,y,z]
andd[x,y,z] as follows:

µ4(A) =
∑

x,y,z
|[x,y,z]|×number of distinct 4-tuples covered byd[x,y,z]

(k
4

)

g4
.

We search by computer to find vectorsv with very high coverage measures. Tables
6 and 7 show vectors with high coverage, the number of test cases(n) generated
by our technique, and the best known size with full coverage.Comparison of
our construction with best known covering array sizes showsthat our construction
produces significantly smaller testing arrays with very high coverage measures.

5 Conclusions

In this paper, we present a construction method of strength four covering arrays
with three symbols that combines an algebraic technique with computer search.
This method improves the current best known upper bounds on 4-CAN(k,g) for
21≤ k≤ 74 andg = 3. We have also proposed a construction of strength four cov-
ering arrays with budget constraints. In order to test software with 25 parameters
each having three values, our construction can generate a test suite with 153 test
cases that ensure with probability 0.93 that software failure cannot be caused due to
interactions of two, three or four parameters whereas the best known covering array
in [4] requires 363 test cases for full coverage. The resultsshow that the proposed
method could reduce the number of test cases significantly while compromising
only slightly on the coverage.
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Table 2:Improved strength four covering arrays for g = 3.
k Starter vectors and matrixC1 New Old

bound bound

21

u = (00001010∞1∞∞10∞∞001∞1)
v = (0000100∞00∞10001∞111∞)

C1 =





























∞ ∞ 0 0 1 ∞ ∞ 0 0 1 ∞ ∞ 0 0 0 ∞ ∞ 1 0 0 ∞
0 1 1 ∞ 0 0 ∞ 1 0 0 ∞ 1 1 ∞ 0 0 1 1∞ ∞ 0
1 1 ∞ 0 0 0 ∞ ∞ 1 0 ∞ ∞ 1 1 0 0 0 1∞ ∞ 0
1 ∞ 1 0 0 ∞ 1 1 0 0∞ 1 0 0 ∞ 1 0 1 0∞ 1
0 0 1 1 0 0 0∞ 1 1 0 0∞ ∞ 1 ∞ 0 0 1 ∞ ∞
∞ 0 0 0 ∞ ∞ 0 0 0∞ 0 1 1 ∞ ∞ 0 1 0 0∞ 0
∞ 0 1 0 1∞ 0 1 0 1 1∞ ∞ 0 1 0 1 1 1 1∞
∞ 1 ∞ 0 ∞ ∞ 1 1 0∞ ∞ ∞ 1 0 0 0 1 0∞ 0 ∞
1 0 0 0 0 1 0 0 0 0 0∞ 0 0 0 ∞ 0 0 1 0 1





























T

305* 315

22

u = (0000011∞0∞0110∞1∞∞∞01∞)
v = (00010010∞1∞∞0∞01∞10∞∞1)

C1 =





















0 ∞ ∞ 0 0 0 ∞ ∞ ∞ 0 0 0 ∞ ∞ 0 0 0 ∞ ∞ ∞ 0 0
∞ ∞ 0 0 0 ∞ ∞ ∞ 0 0 ∞ ∞ ∞ 0 0 0∞ ∞ ∞ 0 0 ∞
1 ∞ 1 ∞ 0 ∞ 0 1 ∞ 1 ∞ 1 ∞ 1 ∞ 0 0 0 1∞ 1 0
0 1 1 1 0 0 1 1∞ 0 ∞ 1 1 0 0 1 1 0 0∞ 1 ∞
∞ 0 0 ∞ ∞ 1 0 1 ∞ 0 0 ∞ ∞ ∞ 0 0 1 ∞ 0 0 1 ∞
∞ 0 ∞ 1 1 1 0 1∞ 1 ∞ 0 0 1 1 1 0 0 1 1∞ 0
0 0 0 ∞ ∞ 1 0 0 ∞ ∞ ∞ 0 ∞ 0 1 0 1 0 0 0 1∞





















T

307* 315

27

u = (1101011∞∞∞0∞00∞∞1∞011∞0100∞)
v = (11∞0∞1011∞∞∞0∞0∞01∞00001∞∞∞)

C1 =









0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1
0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ ∞ 0 ∞
0 ∞ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0∞ 0 0









T

345* 378
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Table 3:Improved strength four covering arrays for g = 3 (continued).
k Starter vectors and matrixC1 New Old

bound bound

28

u = (1∞∞00∞∞1∞01101111∞0∞0101∞∞∞1)
v = (∞1011∞110∞000∞1∞∞10∞∞0∞00∞01)

C1 =





∞ 0 ∞ 0 0 ∞ 0 0 ∞ 0 ∞ ∞ 0 ∞ ∞ 0 ∞ 0 0 ∞ 0 0 ∞ 0 ∞ ∞ 0 ∞
∞ 0 0 1 0 1∞ 0 ∞ 1 0 ∞ ∞ 0 1 0 0∞ 0 ∞ 1 0 1 ∞ 0 1 1 0
1 0 ∞ 0 ∞ ∞ 0 ∞ ∞ 1 ∞ 1 0 0 0 1∞ 1 0 ∞ 1 ∞ 1 0 ∞ 0 1 1
0 ∞ 0 ∞ 0 0 0 0∞ 0 1 0 1 0∞ 0 1 0 ∞ 0 0 1 0 0 0 0 0 0





T
360* 383

30

u = (011∞11∞∞∞001∞∞∞1∞10∞∞0∞1100∞01)

v = (11∞∞01101000∞101∞1∞0∞000010∞∞∞)
363 393

32

u = (∞1100010∞111∞1∞010∞∞0100∞∞0∞∞010)

v = (∞000∞1∞∞0∞000110∞∞100∞0∞11∞11111)
387 409

33 Obtained fromCA(387,32,3) 387 417

34

u = (00∞101∞∞∞1001∞010∞∞0∞0∞01∞∞0∞11111)

v = (1100∞1∞01∞10110∞∞0∞∞011∞101001∞000)
410* 423

35 Obtained fromCA(411,34,3) 411 429

35

u = 01∞0∞∞1000∞01∞∞0∞1∞111∞∞∞01∞01000∞1

v = 0∞00111∞0∞110∞11∞110∞010010000∞1∞∞0
423 429
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Table 4:Improved strength four covering arrays for g = 3 (continued).
k Starter vectors and matrixC1 New Old

bound bound

36 Obtained fromCA(423,35,3) 423 441

37 u = (001∞10∞1∞01000∞1100∞101111∞001∞∞∞∞00∞)
C1: 37×35 matrix

433* 441

39 u = (001∞∞11∞11∞0001∞11∞101∞∞∞1∞0∞0010∞00∞∞0)
C1: 39×34 matrix

441 453

41
u = (∞001∞010∞∞0∞0101111∞∞011∞∞10000∞0∞∞10∞0∞1)
C1: 41×34 matrix 453 465

42 u = (∞0111∞1∞∞100∞101∞01000∞011∞1010011∞00∞1∞∞∞)
C1: 42×35 matrix

465 471

46 u = (∞00000∞1100010∞101∞∞1∞01∞00110∞∞∞∞11∞1101∞101∞)
C1: 46×33 matrix

477 483

47 u = (∞0011∞1101∞1∞000∞1∞01∞00∞111010∞00∞∞∞10∞∞1∞∞1∞∞)
C1: 47×33 matrix

483 489

48 u = (01∞∞∞11∞01∞1010111∞∞001∞∞∞0∞110010∞0∞∞000100∞00∞)
C1: 48×33 matrix

489 495

51
u = (∞0∞∞101011∞000∞∞11∞1∞1001∞∞∞∞∞11
∞0∞1∞01111001001∞00)
C1: 51×32 matrix

501 507
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Table 5:Improved strength four covering arrays for g = 3 (continued).
k Starter vectors and matrixC1 New Old

bound bound

55
u = (1∞∞1∞1∞0∞111∞∞1∞0010∞00∞0011011∞1∞0
00∞11∞∞0101∞001110∞∞)
C1: 55×30 matrix

513 519

57
u = (∞10∞∞∞0011∞01∞10∞11001∞1∞∞0011∞∞110
110111010∞∞1∞0∞0000∞01)
C1: 57×29 matrix

519 531

58
u = (∞0∞∞00101∞0010∞0∞1∞1000∞0∞11001∞00010∞111
∞∞∞11011011∞∞0∞0∞)
C1: 58×29 matrix

525 531

63
u = (1101∞10∞100∞∞∞00101∞∞0∞0∞∞1∞010∞11∞∞∞01
10∞10110001∞0∞11∞∞0∞0∞11)
C1: 63×26

537 549

67
u = (010101∞1100∞100∞11∞∞∞∞0110∞01111∞∞1011∞0∞
1101∞0∞∞0∞101∞∞1∞∞10000∞00)
C1: 67×25

555 561

70
u = (1∞001∞11∞1∞∞∞0∞11∞0∞0∞1∞00011∞0∞∞∞∞111
∞0101001∞010011∞∞010000∞10∞∞1100)
C1: 70×24

567 573

72
u = (∞∞000∞1010∞∞∞∞∞010111000∞11011∞011101∞0∞∞1∞00
∞1∞1∞∞010∞101100∞01∞∞∞1∞∞0∞)
C1: 72×24

573 579

74
u = (1∞0010∞∞01∞∞∞111∞∞1∞∞0100∞∞∞∞10∞1011011∞
001100001∞∞0∞0∞0∞∞101100∞1∞01∞111∞)
C1: 74×24

585 591
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Table 6: A comparison of the number of test cases (n) produced by our con-
struction with high coverage measure and best known n for full coverage. For
g = 5, the elements of GF(4) are represented as 0,1, 2, and 3; here 2 stands for
x and 3 stands for x+1.

(g,k) Vectorv with good coverage Our Results Best known
n (µ) n [4]

(3,16) 00001001∞∞011∞1∞ 99 (0.828) 237
(3,17) 0000010∞∞101∞01∞1 105 (0.851) 282
(3,18) 00010∞0∞1001∞111∞∞ 111 (0.864 ) 293
(3,19) 000010010∞01∞0∞111∞ 117 (0.883) 305
(3,20) 0000110101∞0∞10∞∞11∞ 123 (0.892) 314
(3,21) 00001010∞1∞∞10∞∞001∞1 129 (0.906) 315
(3,22) 0000011∞0∞0110∞1∞∞∞01∞ 135 (0.913) 315
(3,23) 0000001∞∞0101∞10∞10∞∞∞1 141 (0.923) 315
(3,24) 00000001∞∞0101∞10∞101∞∞1 147 (0.924) 315
(3,25) 0000000011∞0∞011∞01∞0∞11∞ 153 (0.930) 363
(3,28) 1∞∞00∞∞1∞01101111∞0∞0101∞∞∞1 171 (0.957) 383
(3,29) 010∞00∞1∞0∞∞∞101∞00∞000111∞10 177 (0.961) 392
(3,30) 011∞11∞∞∞001∞∞∞1∞10∞∞0∞1100∞01 163 (0.969) 393
(3,35) 01∞0∞∞1000∞01∞∞0∞1∞111∞∞∞01∞01000∞1 213 (0.979) 429
(3,36) 11∞0110∞∞00∞111101011∞001∞∞∞∞∞100∞0∞ 219 (0.981) 441
(3,38) 1∞1∞111∞∞010∞10∞∞00010∞∞0∞∞∞1101∞∞100∞ 231 (0.985) 447
(3,39) 001∞∞11∞11∞0001∞11∞101∞∞∞1∞0∞0010∞00∞∞0 237 (0.986) 453
(3,40) 100∞∞00001∞∞1∞10∞000∞∞∞0∞10∞∞1∞1∞0111∞01 243 (0.988) 465

(4,18) 00010021∞∞∞21020∞2 436 (0.851) 760
(4,19) 0000121011∞01∞0∞221 460 (0.866) 760
(4,20) 0000112101202∞0221∞2 484 (0.878) 760
(4,21) 0000011021010∞2∞0221∞ 508 (0.887) 1012
(4,22) 0000001102∞02021∞∞01∞1 532 (0.894) 1012
(4,23) 00000001210210∞∞20112∞1 556 (0.898) 1012
(4,24) 00000000121∞011∞02∞0∞112 580 (0.899) 1012
(4,25) 000000000121220∞011∞2012∞ 604 (0.901) 1012
(4,26) 00100∞2221110102∞0022∞020∞2 628 (0.921) 1012
(4,27) 0100∞2221110102∞0022∞020∞2 652 (0.928) 1012
(4,28) 01110∞0102∞021110022001∞1001 676 (0.933) 1012
(4,29) 0∞∞122101∞000220200221220∞02 702 (0.937) 1012
(4,30) 10∞20∞020∞2∞2∞01∞2222∞022002∞1 726 (0.943) 1012
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Table 7: A comparison of the number of test cases (n) produced by our con-
struction with high coverage measure and best known n for full coverage (con-
tinued).

(g,k) Vectorv with good coverage Our Results Best known
n (µ) n [4]

(5,21) 110131300∞30010∞∞3203 1265 (0.834) 1865
(5,22) 3∞32011200∞∞00∞0∞10010 1325 (0.842) 1865
(5,23) 0002∞03100∞203021332320 1385 (0.854) 1865
(5,24) 003∞21022212300032302310 1445 (0.860) 1865
(5,25) ∞200∞0∞∞31020∞300303∞∞33 1505 (0.869) 2485
(5,26) 202002211000∞0121031∞∞2300 1565 (0.873) 2485
(5,27) ∞∞03002030∞000∞11∞0031301∞3 1625 (0.880) 2485
(5,28) 013333130320∞1∞1003200310300 1685 (0.883) 2485
(5,29) 00012212∞010∞3110031020031010 1745 (0.891) 2485
(5,30) 33001∞0∞000330∞∞010012∞1313001 1805 (0.894) 2485
(5,31) 033∞21333010313∞303320030012020 1865 (0.895) 2485
(5,32) 310031000∞330130321∞∞03031111310 1925 (0.897) 2485
(5,33) ∞0010∞∞3∞0∞2∞01∞00∞12222∞∞03∞020∞ 1985 (0.904) 2485
(5,34) ∞∞3∞00101001∞0∞001∞002∞01110231112 2045 (0.906) 2485
(5,35) 1203003303∞0∞013233310∞032020003220 2105 (0.906) 2485
(5,36) 12022∞3203230023223220001010200∞2230 2165 (0.912) 2485

(6,25) 000403014003033404320∞1∞∞ 3006 (0.811) 6325
(6,26) ∞0∞40021404010013010011444 3126 (0.819) 6456
(6,27) 433∞∞01∞∞20∞03020∞∞0∞00401∞ 3246 (0.826) 6606
(6,28) 4023031100232200∞21∞∞2020020 3366 (0.829) 6714
(6,29) 00∞40023103301343401230334400 3486 (0.834) 6852
(6,30) 1∞∞∞42∞4040004∞104∞03034∞∞0300 3606 (0.836) 6966
(6,31) 44122002∞2000020202031∞42044001 3726 (0.838) 7092
(6,32) 44441341∞424000∞∞040004410103400 3846 (0.846) 7200
(6,33) 0330344∞0232133100313000030∞4303∞ 3966 (0.855) 7320
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