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Colouring of(PsUP,)-free graphs

Arpitha P. BharatHi*, Sheshayya A. Choudum

Abstract

The class of R,-free graphs and its various subclasses have been studaedhinety of
contexts. In this paper, we are concerned with the colouwind’ U P,)-free graphs, a
super class ofR,-free graphs. We derive@(w?) upper bound for the chromatic number
of (P;UP)-free graphs, and sharper bounds fBsU P,, diamond)-free graphs, where
w denotes the clique number. By applying similar proof teghes we obtain chromatic
bounds for(2K2, diamond)-free graphs. The last two classes are perfectifs and> 4
respectively.
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1. Introduction

A graphG is said to beH-free, if G does not contain an induced copytf More
generally, a class of grapk# is said to beHy,Ha, - - - )-free if everyG € ¢ is Hi-free,
fori > 1. The class of Ro-free graphs and its subclasses are subject of research-in va
ious contexts: domination (El-Zahar and Erdos [10]), §Bermond et al. [[2], Chung
et al. [9]), vertex colouring (Wagomn [19], Nagy and Szentimdlsy [16], Gyarfas [12]),
edge colouring (Erdos and Nesetril [11]) and algorithnamplexity (Blazsik et al.[[3]).
Here we are concerned with the colouring B§ U P,)-free graphs, a super class df22
free graphs. A comprehensive result of Kral et al.| [15] stélbat the decision problem
of COLOURING H-free graphs is P-time solvable i is an induced subgraph &%
or P;UP,and it is NP-complete for any other graph In particular, COLOURING
2K»>-free graphs is NP-complete. However, there have beenaesterdies to obtain
tight upper and lower bounds for the chromatic number kKj-8raphs. A problem of
Gyarfas [12] asks for the smallest functidiix) such thatx(G) < f(w(G), for every
G belonging to the class ofka-free graphs, wherg(G) andw(G) respectively denote
the chromatic number and cligue number&f This problem is still open. In this re-
spect, an often quoted result is due to Wagon [19]. It stéi@sita graphG is 2K,-free,
then x(G) < (“/9*1). We look more closely at Wagon’s proof and obtaiD&w?)
upper bound for the chromatic number (& U P,)-free graphs, and sharper bounds for
(P3U P, diamond)-free graphs. By applying similar proof techm@gjwve obtain chro-
matic bounds for(2K,, diamond)-free graphs. The last two classes are perfeceif th
clique number is> 5 and > 4 respectively. The classes @, diamond)-free graphs
and(H1, H,, diamond)-free graphs, for various gragtsH; andH,, have been studied
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in many papers; see Arbib and Mosca [1], Brandstadt [5], @lion and Karthick [7],
Karthick and Maffrey|[14], Gyarfas [12], and Randerathi &@chiermeyer [17]. See also
a comprehensive book on problems of graph colourings byedeaisd Toft[[13] and an
extensive book of Brandtstadt et al.| [6], for interestindpcdasses and superclasses of
2K,-free graphs.

2. Terminology and Notation

We follow standard terminology of Bondy and Murty [4], and $¥¢20]. All our
graphs are simple and undirectedu)fv are two vertices of a grapB(V, E), then their
adjacency is denoted hy< v, and non-adjacency by« v. P,,C, andK, respectively
denote the path, cycle and complete grapmeertices. A chordless cycle of length5
is called ahole. If SC V(G), then[S| denotes the subgraph induced®yf SandT are
two disjoint subsets of (G), then[S, T] denotes the set of edgés € E(G) : s€ Sand
t € T}. AsubsetQ of V(G) is called aclique if any two vertices inQ are adjacent. The
clique number of G is defined to be maXQ| : Qis a clique inG}; it is denoted byw(G).
A clique Q is called amaximum cliqueif |Q| = w(G)). A subset of V(G) is called an
independent set if no two vertices in are adjacent. A-vertex colouring or ak-colouring
or acolouring is a functionf : V(G) — {1,2,--- ,k} such thatf (u) # f(v), for any two
adjacent verticeg, vin G. Itis also referred to as a proper colouring®for emphasis.
The chromatic number x(G) of G is defined to be mifk : G admits ak-colouring}. If
G1,Gy,- -+, Gk are vertex disjoint graphs, thé&y UG, U - - - U Gk denotes the graph with
vertex set _, V(G;) and edge sdtf_, E(Gj). If Gy ~ Gy~ --- ~ Gy ~ H, for someH,
thenG1 UG, U --- UG is denoted bykH. The three graphs which appear frequently in
this paper are shown in Fig.1.

Figure 1: Xy, P3UP,, Diamond

3. A partition of the vertex set of a graph.

Throughout this paper we use a particular partition of thiéexeset of a graps(V, E)
and use its properties. Some of these properties are duegon¥a9], but are restated
for ready reference. In what follows) denotes the clique number of a graph under con-
sideration.

Let A be a maximum clique it with vertices 12,---,w. We iteratively define the
setsCjj in the lexicographic order of pairs of verticeg of A.

C=o

fori:1tow

forj:i+1tow
Cij={veV(G)-C|veiandv j};
C=CuGy;



end
end

By definition, there ar¢?)) number ofC;; sets and these are pairwise disjoint. Also,
every vertex irC;; is adjacent to every vertekof A, where 1< k < j,k #i. Moreover,
every vertex iV (G) — A which is non-adjacent to two or more verticesfois in some
Cij. So, every vertex € V(G) — (AUC) is adjacent to all the vertices @éfor |A| —1
vertices ofA. The former case is impossible, sind@s a maximum cliqgue. Hence we
define the following sets. Fa e A, let

la={veV(G) - (AUC) | v x,Vxe A—{a} andv « a}.

By the above remarks, we conclude thatJCij, U

la
i acA

) is a partition oV (G).

4. Colouring of (P3UP,)-free graphs

We first observe a few properties of the s€tsandl,, and then obtain a@(w3)
upper bound for the chromatic number offa U P)-free graph.

Theorem 1. If agraph G is (P3UPy)-free, then x(G) < “l@t(@td)

Proof. Let A be a maximum clique i®. Let (1,2,3,---,w) be a vertex ordering oA.
SinceGis (PR3 UP»)-free, the set€ij andl,; possess a few more properties, in addition to
the ones stated in section 3.

Claim 1: Each induced subgraph [Cij] of G is Ps-free and hence it is a disjoint union
of cliques.

If someGC;j; contains an induceBs = (x,y,2), then[{x,y,z} U{i, j}| ~ PsUP,, a contra-
diction.

Claim 2: Each |5 isan independent set.
If somel, contains an edgew, thenAU {v,w} — {a} is a clique of sizav+ 1, a contra-
diction to the maximality ofA.

Claim3: w ([Gij]) < w—(j —2), where j > 2

Let B be a maximum clique inCj;]. Every vertex inB is adjacent to every vertex in
K={12---,j—1} - {i} € A by the definition ofCi;. So,BUK is a clique ofG.
Hence,w(G) > |BUK| = w([Cj]) + |K| = w([Cij]) + j — 2. Hence the claim.

Table[1 gives the the number of seg, for a fixed j, wherei < j and 2< j < w.
The entries of the last column, follow by Claim 3.
We now properly colou6 as follows:

(1) Colour the vertices,2, - -, w of Awith colours 12,---, w respectively.

(2) Colour the vertices dZij with w([C;j]) new colours, K i < j < w. By Claim 1,[Cij]
is a disjoint union of cliques and hence one can properlyuwrdl@ ;] with w([Cij])
colours. Note also that one requires at most (j — 2) colours, by Claim 3.

(3) Each vertex iy is given the colour o € A.



Table 1: Clique size of eadtyij]

j GCijs Number ofCij’s  w([Gij]) <
2 Cpo 1 w

3 C13,C23 2 w—1

4 Cy14,Cp4,C34 3 w-—2

J C117C2]7 7Cj*lj J_l w_(J _2)
W C1w,Cw - Ch1ew w—1 2

It is a proper colouring ofs by Claims 1, 2 and 3. We first estimate the number of
colours used in step (2) to colour the verticeofsee Table 1) and then estimate the
total number of colours used to colo@rentirely.

x([C]) < ( )+2(oo D+3(w—2)+...+ (w—1)2

3 1-k)
AT
w-1 w-1
= > k(w+1) K2
k=1 K=1
= (w+ 1)(‘"—;)(0"> _ (w—l>(w)t(32w—2+ 1)
- w(w-1)(w+4)
Bl 6

Hence,

X(G) < |Al+Xx([C])
w(w—1)(w+4)
6
w(w+1)(w+2)
6

= w+

Theorem 2. If agraph G is (P, UPy)-free, then x(G) < “l@tD(@t2),

Proof. The bound for the chromatic number (@ U P>)-free graphs holds foiP, U P»)-

free graphs too. In this case, ed€h] is P4-free and hence perfect, by a result of Seinsche
[1€]. So, we can properly colour eaf®;] with at mostw(Cij) < w— (j —2) colours,

and the entire with at most2“(@2) cojours | as in the proof of Theordh 1. [

We next conside(Ps UP,, diamond-free graphs and obtain sharper bounds for the
chromatic number. ltv = 1, then obviously chromatic number is 1. So in the following,
all graphs havev > 2.



Theorem 3. If agraph Gis (P3UP,, diamond)-free, then

w+2 ifw=2
X(G) < Jw+3 ifw=3
w+l ifw=4

and G is perfect if w > 5.

Proof. We continue to use the terminology and notation of secticarsd23. In particular,
we use the setg, Gij, I, and Claims 1, 2 and 3.

Claim4: If GisCs-free, thenit isa perfect graph.

Clearly, every hol€y 1,k > 3 contains an induce@UP,, and the complemefy 1,k >
3 of the hole contains an induced diamond. Gds (Cx . 1,Cox.1)-free for allk > 3.
Hence ifG is Cs-free, thenG is perfect, by the Strong Perfect Graph Theorem [8].

Claim5: Cjj = 0, for every j > 4.

On the contrary, let € Gjj, for somej > 4. Then by the definition ofij, there exist two
distinct vertice, q € {1,2,3} C A such thak «» p andx «+» q. But then[{Xx, j, p,q}] ~
diamond, a contradiction.

So, we conclude th& = C1o,UC13UCyg, for | > 4.

Claim6: If a€ A, then I isan empty set if w > 3, and it isan independent set if w = 2.

If w> 3, andx € |, for someac A—{1,2}, then[{x,a,1,2}] ~ diamond, a contradic-
tion; ifa =1 or 2, then [[x,1,2,3] is a diamond. Ifw = 2, then the assertion follows by
Claim 2.

ThereforeV (G) = AUC12UC13UCy3, if w > 3.

Recall that by Claim 3w([C13]) < w—1, andw([Cp3]) < w— 1. But[Cy2] may con-
tain anw-clique. However, we have the following claim.

Claim7: w([Ci2]) < w—1,if w(G) > 3,andCyz# 0 or C13# 0

On the contrary suppos€;,] contains anw-clique Q, and for definiteness suppose
Coz # 0 (if C13 £ 0, proof is similar). Letx € Cpz. If x is adjacent to all the vertices
of Q or |Q| — 1 vertices ofQ, then we have afw+ 1)-clique or a diamond i, both
impossible. Else, there exist two vertiaeandv in Q such thak «+» u andx < v. Then
[{x,1,2} U{u,v}] ~ P3UP,, a contradiction. Hence the claim.

Claim8: [Ci3, A—{2}] =0, and [Cp3,A—{1}] = 0.
If there exists an edgé € [C13, A— {2}], then[{x,i,1,2}] ~ diamond, a contradiction.
Similarly, [Cp3, A— {1}] =0

We now prove the theorem for different valuescof by making the cases as stated in
the theorem.

e w=2;s0A={12}.

ColouringG with four colours is easy in this case, SiINEG) = AUC12Ul1 U, w([Cro]) <
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Figure 2: Mycielski-Grotzsch graph
w = 2, andly, I» are independent sets, by Claim 6. MoreowelC12] < w(G) = 2. The
following is a proper 4-colouring d&:
(1) Colour the vertices 1 and 2 éfwith colours 1 and 2 respectively.
(2) Colour(l1] with colour 1.
(3) Colour(ly] with colour 2.

(4) Colour[Cy2] with two new colours.

An extremal(P; U P,, diamond)-free grapl® with w(G) = 2, andx(G) = 4 is the
Mycielski-Grotzsch graph; see Fig. 2. It is well known th@s graph has clique number
2 and chromatic number 4. The graph is clearly diamond freeesit is triangle free.

It can be observed that this graph(Rs U P,)-free by selecting every eddg® and then
verifying that the second neighborhoodm®f is Ps-free. There are not too many cases
for such a verification because of the symmetry of edges; wd t@choose only three
kinds of edgesvivo, viUup andugw.

e w=3;s0A={1,2,3}.

At the outset, recall that evety = 0, by Claim 6. SoV(G) = AUC12UC3UCs3.
Moreover,w[Cy2] < 2, w[C13] < 2, w[Cp3] < 2, by Claims 7 and 3. We colo@ with six
colours as follows:

(1) Colour the vertices 1, 2, 3 dfwith colours 1, 2, 3 respectively.
(2) Colour[Cy2] with colours 1 and 2.
(3) Colour[Cy3] with colours 3 and 4.

(4) Colour[Cy3] with colours 5 and 6.

It is a proper colouring by the above observations.

Remarks:

(i) If someC;j is empty, we may not require all the six colours.

6



Figure 3:(PsUP,, diamond)-free graph witb = 3 andy = 4

(i) We do not have extremal graphs with chromatic number 6.

(iii) However, we do have a graph with chromatic number 4 Eegel3). In this figure,
A'is an w-clique andN; C V(G) such that every vertex df; is adjacent td and
onlyiof Aji € {1,2}.

e w=4;s0A={1,234}.
We colourG with five colours by considering two cases.

Case l: [Cpz, Cy13] # 0; letab € [Cp3,C13).
Clearly,[{a,b,2}] ~ Ps.

Claim9: aisanisolated vertexin [Cp3], and b is an isolated vertex in [Cy3.
Supposea < ¢, for somec € Cpz. If ¢ <> b, then[{a,b,c,1}] ~ diamond, a contradic-
tion. If c +» b, then[{a,b,c} U{3,4}| ~ P3UP,, since no vertex o€,3UC;3 is adjacent
to the vertex 4 A, by Claim 8. Hence, we conclude theats an isolated vertex i€»3.
Similarly, b is an isolated vertex i€13.

Claim 10: Cp3 and C;3 are independent sets.

Suppose there exists an edgein [Cy3|, wherec # a andd # a, by Claim 9. Ifc« b
andd < b, then[{a,b,2} U{c,d}] ~ PsUP,. Next, without loss of generality, suppose
thatc <+ b. Then[{a,b,c} U{3,4}] ~ P3UP;, by Claim 8 and by the definition @;j’s,

a contradiction. Henc&,3 is independent. Similarlg,3 is independent.

We now colourG with five colours as follows:

(1) Colour the vertices 1, 2, 3, 4 éfwith colours 1, 2, 3, 4 respectively.
(2) Colour[Cy2] with colours 1, 2 and a new colour 5.

(3) Colour[Cy3] with colour 3.

(4) Colour[Cy3] with colour 4.



It is a proper colouring by Claims 8, 7 and 10.

Case?2: [C23, C13] =0.

If both Cy3 andCy3 are empty sets, theB is Cs-free, sincelCy5| is Ps-free and any 5-
cycle contains at most two vertices Af So,G is perfect, by Claim 4. If one of the sets
Co3 or Cy3is nonempty, then we have the following assertion.

Claim11: If Co3 or C13isnon empty, then the other isindependent.
Suppose&y3 # 0 andx € Cps. If uvis an edge iCy3], then[{x,1,3} U{u,v}] ~ PsUP;,
a contradiction. Henc€y3 is independent. Similarlyzo3 is independent i€;3 # 0.

Without loss of generality, we henceforth assume @at~ 0. SinceCy3 is honempty or
empty, we consider two subcases.

Subcase 2.1C,3 is nonempty.
This implies that botiC,3 andC; 3 are independent sets, by Claim 11.

(1) Colour the vertices 1, 2, 3, 4 éfwith colours 1, 2, 3, 4 respectively.
(2) Colour[Cy2] with colours 1, 2 and a new colour 5.
(3) Colour[Cy3] with colour 3.

(4) Colour[Cyg] with colour 3.

It is a proper 5-colouring by Claims 7, 11 and the fact fag, C13] = 0.

Subcase 2.2;3 is empty.

We now examine this subcase based on number of componetisamd the maximum
cliques inCy».

Case 2.2.aCy3 has exactly one component.

Recall that every component Gb3 is K1, Kz or K3, by Claim 3. If the component is;,
then colourG with five colours as follows:

(1) Colour the vertices 1, 2, 3, 4 éfwith colours 1, 2, 3, 4 respectively.
(2) Colour[Cyg] with colour 3.

(3) Colour[Cy2] with colours 1, 2 and a new colour 5.

It is a proper 5-colouring by Claim 7 and by our assumptions.

If the component i¥; or Kz, letcd be an edge ifCy3] (see Fig[¥4). We claim th&;, is
independent. Else, there is an edtpen [Cy,]. If cis neither adjacent tanor adjacent to

b, then[{c,1,2} U {a,b}] ~ P3sUP,, a contradiction. Without loss of generality, assume
thata <» c. But thena <+ d; else,[{a,c,d,1}] ~ diamond. By definition ofC;» and
Cps, no vertex in{a,c,d} is adjacent to vertex 2 oA. By Claim 8, a is adjacent to
at most one vertex oA — {1,2}, namely 3 or 4. Sd{a,c,d} U{2,3}] ~ PsUP, or
[{a,c,d} U{2,4}] ~ P3UP,, a contradiction. HenceZ,, is independent. Recall that
w([Cp3]) <3, by Claim 3.

We colour G with four colours:

(1) Colour the vertices 1, 2, 3, 4 éfwith colours 1, 2, 3, 4 respectively.



(2) ColourCy,3 with colours 2, 3 and 4.

(3) ColourCy» with colour 1.

It is a proper 4-colouring by Claims 3 and 8.

2 }.; di Cup

A

Figure 4:[Cy3] has one component

Case 2.2.bCy3 has> 2 components; let andy be vertices of two distinct components
(see Fig[h).

Our first claim is thato([C12]) < 2. On the contrary suppose tHéa, b, c}] is a triangle

in [C12]. Since{x, 1,2} induces &%, X is adjacent to every vertex of the triangle; else we
have an induced diamond B5UP, in G. Similarlyy is adjacent to every vertex of the
triangle. Ther[{a, b, x,y}] ~ diamond. Hencew([C12]) < 2. So we can colou® with 4
colours as follows:

(1) Colour the vertices 1, 2, 3, 4 éfwith colours 1, 2, 3, 4 respectively.
(2) ColourCy,3 with colours 3 and 4.

(3) ColourCy» with colour 1 and 2.

It is a proper 4-colouring by the above observations andhCaai

1 C
a‘A b Crw
, >:\‘ y C23

A

Figure 5:[Cz3] has more than one component



e w>5,

It is enough to show thas is Cs-free, in view of Claim 4.4. On the contrary, suppose
thatG contains an induce@s. As beforeV (G) —A=C =C12UC13UCp3. Since at most
two vertices ofCs can belong to the cliquad, aP; = (a,b,c) is an induced subgraph of
[C]. Since eacltij is Ps-free, either i) two vertices are in on€;j, and the third vertex is
in one of the other tw@;j’s, or (ii) eachCj; contains a vertex.

Claim 12: A vertex of C1, is adjacent to at most one vertex of A.

The claim is obvious fow = 2,3. Next, assume thab > 4. If some vertex € Cy, is
adjacent to two distinct vertices sayandj of A— {1, 2}, then[{1,x,i, j}] ~ diamond, a
contradiction.

Hence by the above claim, for any two verticey € Cyp, there is a vertex, say 5, in
A which is neither adjacent tonory. Also, by Claim 8,[C13UCp3,{3,4,5}] = 0. So,
whether () or (i) holds, there exists an edgien [A] such thaf{a,b,c} U{i, j}] ~ PsUP,,

a contradiction. For the choice of an appropriate edgg# is enough if we consider the
following four cases:

(a) If P3is aninduced subgraph §fC12UCy3}], then[{a,b,c,1,5}] ~ P3UP..
(b) If Psis an induced subgraph gfC1,UCps}], then[{a,b,c,2,5}] ~ PsUP..
(c) If Pyis aninduced subgraph gfC13UCzs}], then[{a,b,c,4,5}] ~ PsUP..

(d) If (ii) holds, then{a,b,c,4,5}] ~ P3UP,, where without loss of generality we as-
sume that the vertex @f, b, c) that is inCy» is adjacent to the vertex@A.

O

5. (2K, diamond)-free graphs

The Claims of Section 4 are valid f¢2K», diamond)-free graphs too. So we continue
to use the Claims made in Sections 3 and 4. In what follows,ssarae that graphs have
cligue number at least 2, as before.

Theorem 4. If agraph G is (2K, diamond)-free, then

w+l fw=2
G) <
X( )_{w ifw>3

and G is perfect if w > 4.

Proof. Since the proof is similar to the proof of Theoréin 3, we givecaitline. As
before, consider the partitia\, | JCij,Ula) of V(G). In this case, everg;; is Ko-free,
and so it is an independent set.

If w=2,thenV(G) =AUC12Ul1Ul,. So one can easily colo® with three colours.
Next supposev > 3. If j € A, thenl; = 0. Else, some e 1j. So, ifabe A—{j},
then[{x, j,a,b}] ~ diamond, a contradiction. Als@;; = 0, if j > 4; elseG contains an
induced diamond. Hendé(G) = C12UC;13UCy3. An w-colouring of G is obtained as
follows:

10



(1) Colour the vertices,P,---,w of A, by colours 12,--- | w.

(2) Colour every vertex o€,» with colour 1, colour every vertex @;3 with colour 3,
colour every vertex o€,3 with colour 2.

Remark: There exigK,, diamond)-free graphs wittv = 3, which are not perfect.
See FigLh, where each circled vertex is multiplied by an pedelent set.

Figure 6: Graphs that are not perfect and hgv@) = w(G)

Now we prove perfectness fos > 4.
It is similar to the proof of Theorer] 3, Case = 5. By Claim 4.4, it is enough if
we show thatG is Cs-free. On the contrary, ifs contains an induced 5-cycle, then
C(=C12UC13UCy3) contains an edgey of the 5-cycle. Sinc€ij’s are independent, no
[Cij] containsxy. We use Claims 8 and 12 and arrive at a contradiction:

(@) Ifxy € [C12,Cag], then[{x,y, 1,3}] = 2Kz or [{x,y, 1,4}] = 2K>.
(b) If xy € [C12,Czg], then[{x,y,2,3}] = 2Kz or [{x,Y,2,4}] = 2K>.
(c) If xy € [C13,Cag], then[{x,y,1,3}] = 2K, or [{X,y,1,4}] = 2Ko.

So,G isCs-free and hence it is perfect. O
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