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Abstract

We prove that for any integers p ≥ k ≥ 3 and any k-tuple of positive integers (n1, . . . , nk) such that

p =
∑k

i=1 ni and n1 ≥ n2 ≥ . . . ≥ nk, the condition n1 ≤
p

2
is necessary and sufficient for every subgraph

of the complete k-partite graph K(n1, . . . , nk) with at least

4− 2p+ 2n1 +
∑k

i=1 ni(p− ni)

2

edges to be chorded pancyclic. Removing all but one edge incident with any vertex of minimum degree

in K(n1, . . . , nk) shows that this result is best possible. Our result implies that for any integers, k ≥ 3

and n ≥ 1, a balanced k-partite graph of order kn with has at least (k2−k)n2−2n(k−1)+4
2

edges is chorded

pancyclic. In the case k = 3, this result strengthens a previous one by Adamus, who in 2009 showed that

a balanced tripartite graph of order 3n, n ≥ 2, with at least 3n2
− 2n+ 2 edges is pancyclic.

Keywords: hamiltonicity; pancyclicity; bipancyclicity; chorded pancycliclity; bipartite graphs; k-partite

graphs.

AMS subject classification 05C45

1 Background

A graph G is hamiltonian if it has a spanning cycle. One of the earliest sufficient conditions for a graph to

be hamiltonian is one due to Ore [12].

Theorem 1 (Ore 1960). Let G be a graph of order p ≥ 3. If for every pair u and v of nonadjacent vertices,

d(u) + d(v) ≥ p, then G is hamiltonian.

Two immediate corollaries of Ore’s theorem are a minimum degree condition due to Dirac [8] and a

simple edge condition.

Corollary 2 (Dirac 1952). Let G be a graph of order p ≥ 3. If d(v) ≥ p/2 for every vertex v of G, then G

is hamiltonian.

Corollary 3. Let G be a graph of order p ≥ 3. If G has at least
p2 − 3p+ 6

2
edges, then G is hamiltonian.

In [2] Bondy introduced the notion of pancylicity in graphs. A graph G of order p ≥ 3 is pancyclic if

it not only has a spanning cycle as do hamiltonian graphs, but also a cycle of order t for every 3 ≤ t ≤ p.

Thus every pancyclic graph is hamiltonian but not necessarily the converse. However, Bondy showed that

our three sufficient conditions for hamiltonicity were “almost” sufficient for pancyclicity.

Theorem 4 (Bondy 1971). Let G be a graph of order p ≥ 3. If for every pair u and v of nonadjacent

vertices, d(u) + d(v) ≥ p, then either G is pancyclic or p is even and G is the complete bipartite graph

Kp/2,p/2.
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Corollary 5. Let G be a graph of order p ≥ 3. If d(v) ≥ p/2 for every vertex v of G, then either G is

pancyclic or p is even and G is the complete bipartite graph Kp/2,p/2.

Corollary 6. Let G be a graph of order p ≥ 3. If G has at least
p2 − 3p+ 6

2
edges, then G is pancyclic.

The following result of Bondy [2] gives a sufficient condition for a hamiltonian graph to be pancyclic

that we will refer to later in this paper.

Theorem 7 (Bondy 1971). Let G be a hamiltonian graph of order p. If G has at least
p2

4
edges, then G is

pancyclic or p is even and G is the complete bipartite graph Kp/2,p/2.

In [11], Moon and Moser considered sufficient conditions for hamiltonicity in bipartite graphs. A

bipartite graph G of order 2n is balanced if the vertex set of G can be partitioned into two sets with n

vertices in each, such that every edge of G joins vertices in different sets. If G is a hamiltonian bipartite

graph, then necessarily, G is balanced. The next theorem gives a sufficient condition for hamiltonicity in

balanced bipartite graphs.

Theorem 8 (Moon and Moser 1963). Let G be a balanced bipartite graph of order p = 2n. If for every pair

u and v of nonadjacent vertices in different partite sets, d(u) + d(v) > n, then G is hamiltonian.

Note that Theorem 8 improves the lower bound on degree sums in Theorem 1 essentially from p to

p/2 if G is a balanced bipartite graph.

Corollary 9. Let G be a balanced bipartite graph of order p = 2n ≥ 4. If d(v) > n/2 for every vertex v of

G, then G is hamiltonian.

No bipartite graph is pancyclic since bipartite graphs contain no odd cycles. However, we can define

a concept similar to pancyclicity for bipartite graphs. We call a bipartite graph G of order 2n bipancyclic if

G contains a t- cycle for every even integer t between 4 and 2n. In [9] Entringer and Schmeichel established

an analogue to Theorem 7 for bipancyclicity.

Theorem 10 (Entringer and Schmeichel 1988). Let G be a balanced bipartite graph of order p = 2n ≥ 4. If

G has at least n2 − n+ 2 edges, then G is bipancyclic.

Quite recently, the result of Bondy in Theorem 7 was improved by Chen, Gould, Gu and Saito [4].

The improved result uses the concept of chorded pancyclicity, introduced by Cream, Gould and Hirohata [6],

which we recall now.

A chord of a cycle C is an edge joining two non-consecutive vertices of C. If a cycle C of order k has

a chord, we call C a chorded k-cycle. A graph G of order p ≥ 4 is called chorded pancyclic if G contains

a chorded k-cycle for every integer k with 4 ≤ k ≤ p. As observed in [4] and [6], chorded cycles are a

fundamental tool for the study of the cycle distribution in a graph.

The following result by Chen et. al. appeared in [4] and will be used repeatedly later in this paper.

Theorem 11 (Chen, Gould, Gu and Saito 2018). Let G be a hamiltonian graph of order p. If G has at least
p2

4 edges, then G is chorded pancyclic, or p is even and G = Kp/2,p/2 or G = K3�K2, the cartesian product

of K3 and K2.

In Section 2, we present some definitions and known sufficient conditions for hamiltonicity in balanced

k-partite graphs of order kn, for any integers k ≥ 3 and n ≥ 1. In Section 3 we prove that for all integers

k ≥ 3 and n ≥ 1, every balanced k-partite graph with kn vertices and at least (k2
−k)n2

−2n(k−1)+4
2 edges is

chorded pancyclic, and in Section 4, we present a similar edge condition that guarantees chorded pancyclicity

in k-partite graphs that are not necessarily balanced.
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2 Balanced k-partite graphs

A graph is k-partite if its vertex set can be partitioned into k disjoint sets, or parts, in such a way that

vertices in the same part are not adjacent. A k-partite graph is balanced if all its parts have the same

number of vertices. A k-partite graph is complete if any two vertices in different parts are adjacent. The

balanced complete k-partite graph of order kn, denoted Kk(n) is the k-partite graph with n vertices in each

part, such that any two vertices in different parts are adjacent. Note that Kk(1) is the complete graph of

order k, also denoted by Kk.

Obviously, every graph G can be viewed as a balanced k-partite graph of order kn if we take n = 1,

and k the order of G. The next theorem [5] and its corollary [3] extend Theorem 8 and Corollary 9 to

balanced k-partite graphs for k ≥ 3.

Theorem 12 (Chen and Jacobson 1997). Let k, n be integers, k ≥ 3 and n ≥ 1. Let G be a balanced

k-partite graph of order p = kn.

Case 1. If k is even and d(u) + d(v) >
(

k − 4
k+2

)

n for every pair of nonadjacent vertices u, v in

different partite sets, then G is hamiltonian.

Case 2.If k is odd and d(u) + d(v) >
(

k − 2
k+1

)

n for every pair of nonadjacent vertices u, v in

different partite sets, then G is hamiltonian.

Corollary 13 (Chen, Faudree, Gould, Jacobson and Lesniak 1995). Let k, n be integers, k ≥ 3 and n ≥ 1.

Let G be a balanced k-partite graph of order p = kn.

Case 1. If k is even and d(v) >
(

k
2 − 2

k+2

)

n for every vertex v of G, then G is hamiltonian.

Case 2. If k is odd and d(v) >
(

k
2 − 1

k+1

)

n for every vertex v of G, then G is hamiltonian.

Note Bondy’s result in Theorem 7 cannot be applied in the conditions of Theorem 12 or Corollary 13.

Hence, Theorem 11 cannot be applied either.

3 Edge results for balanced k-partite graphs

Corollary 6 gives a sufficient edge condition for a graph to be pancyclic; Theorem 11 extends Corollary 6 to

a sufficient edge condition for a graph to be chorded pancyclic. In [1], Adamus gave a sufficient condition

for a balanced tripartite graph to be pancyclic.

Since minimum degree at least 2 is a necessary condition for a graph to be hamiltonian, Adamus noted

that to guarantee that a balanced tripartite graph G of order 3n is hamiltonian, we can remove at most

2n− 2 edges from the complete tripartite graph K(n, n, n) to obtain G. In other words, such a G must have

at least 3n2 − 2n+ 2 edges. This condition is also sufficient.

Theorem 14 (Adamus 2009). Let G be a balanced tripartite graph of order 3n, n ≥ 2. If G has at least

3n2 − 2n+ 2 edges, then G is hamiltonian.

As Adamus pointed out in [1], while the edge condition in Corollary 3 follows directly from Ore’s con-

dition, the edge conditions in Theorem 10 and Theorem 14 follow from neither the Dirac minimum degree

condition nor the Ore minimum degree sum condition. Adamus also noted that his edge condition for hamil-

tonicity does, in fact, give pancyclicity by Bondy’s result in Theorem 7. Hence, by Theorem 11, the edge

condition for hamiltonicity given by Adamus for balanced tripartite graphs actually gives chorded pancylicity.

In this section we give a sufficient edge condition for chorded pancyclicity in balanced k-partite graphs

of order kn with k ≥ 3 and n ≥ 1. Again, since minimum degree at least 2 is necessary for hamiltonicity, we

3



can remove at most (k − 1)n − 2 edges from the complete balanced k-partite graph Kk(n) and still assure

hamiltonicity.

The proof given by Adamus for k = 3 relied only on Ore’s sufficient condition (Theorem 1). We

include this case in our proof because the proof for all k ≥ 3 follows rather quickly from the following classic

theorem of Pósa [13]. Furthermore, although Theorem 16 will follow from results in Section 4, we include its

simple proof here. Understanding the proof of Theorem 16 will help the reader follow the proof of Theorem

18, which uses the same method but with additional nuances.

Theorem 15 (Pósa 1962). Let G be a graph of order p ≥ 3. If for every integer r, with 1 ≤ r < p
2 the

number of vertices of degree at most r is less than r, then G is hamiltonian.

Notation. If G = (V,E) is a graph and S ⊆ V , then G[S] denotes the subgraph of G induced by the vertices

in S, i.e. V (G[S]) = S and E(G[S]) = {(x, y) ∈ E(G) : x ∈ S, y ∈ S}. We use ||G|| to denote the number of

edges of G.

Theorem 16. Let k, n be integers, k ≥ 3 and n ≥ 1. Let G be a balanced k-partite graph of order p = kn.

If G has at least

||Kk(n)|| − ((k − 1)n− 2) =
(k2 − k)n2 − 2n(k − 1) + 4

2

edges, then G is hamiltonian.

Proof. We prove that G satisfies Pósa’s condition by contradiction. If G does not satisfy Pósa’s condition,

there exists an integer r, 1 ≤ r < kn
2 , for which there are (at least) r vertices v1, . . . , vr such that di =

dG(vi) ≤ r. Since, in fact, G has minimum degree at least 2, we can assume that r ≥ 2.

We can view G as being obtained by deleting a set of edges from the complete k-partite graph Kk(n).

Since in Kk(n) every vertex has degree (k − 1)n, to obtain vertices v1, . . . , vr with degrees d1, . . . , dr it is

necessary to remove at least (k− 1)n−di edges incident with vertex vi, i = 1, . . . , r. Then, the total number

of removed edges is at least:

r
∑

i=1

(

(k−1)n−di
)

−
(

||Kk(n)[{v1, . . . , vr}]||−||G[{v1, . . . , vr}]||
)

≥

r
∑

i=1

(

(k−1)n−di
)

−||Kk(n)[{v1, . . . , vr}]||

where the term ||Kk(n)[{v1, . . . , vr}]|| − ||G[{v1, . . . , vr}]|| corresponds to the deleted edges that joined pairs

of vertices in the set {v1, . . . , vr} and were counted twice in the summation.

The number ||Kk(n)[{v1, . . . , vr}]|| depends on how the r vertices are distributed among the n parts.

However,

||Kk(n)[{v1, . . . , vr}]|| ≤ ||Kr|| =
r(r − 1)

2
,

so the number of edges removed from Kk(n) to produce G is at least:

r
∑

i=1

(

(k − 1)n− di
)

−
r(r − 1)

2
.

Since for every i = 1, . . . , r, di ≤ r,

r
∑

i=1

(

(k − 1)n− di
)

−
r(r − 1)

2
≥ r

(

(k − 1)n− r
)

−
r(r − 1)

2
.

By assumption, at most (k − 1)n− 2 edges were removed from Kk(n) to obtain G. It follows then, that

r
(

(k − 1)n− r
)

−
r(r − 1)

2
≤ (k − 1)n− 2

4



or equivalently,

r(k − 1)n− r2 −
r(r − 1)

2
< (k − 1)n− 1.

Using some some basic arithmetic, this last inequality can be reduced to

(r − 1)
(

(k − 1)n−
r

2

)

< r2 − 1 = (r + 1)(r − 1).

Since we are assuming r ≥ 2, dividing both sides by r − 1 we obtain

(k − 1)n−
r

2
< r + 1

and this last inequality can be written as (k − 1)n− r
2 ≤ r, yielding

2(k − 1)n ≤ 3r. (1)

Since 2 ≤ r < kn
2 , we have

2(k − 1)n ≤ 3r <
3kn

2

so, 4(k − 1)n < 3kn and this implies kn < 4n. This last inequality cannot hold if k ≥ 4. Therefore, if k ≥ 4

then G is hamiltonian by Pósa’s condition.

In the case k = 3 (Adamus’ result), we first show that Pósa’s condition holds for r = 2, 3. From (1) we

know 2(k − 1)n ≤ 3r and since k = 3 in we obtain 4n ≤ 3r. Besides, since r < 3n
2 , it must be 4n ≤ 3r < 9n

2

and the two inequalities are not compatible. If r = 2, the leftmost equality is only possible for n = 1 but the

rightmost inequality only holds for n ≥ 2; if r = 3 the leftmost inequality holds if n = 1, 2 but the rightmost

inequality only holds for n > 3.

Let us now prove Pósa’s condition for r ≥ 4. By contradiction, assume there exists r, 4 ≤ r < 3n
2

such that G has r vertices v1, . . . , vr such that di = dG(vi) ≤ r. Then, r ≥ 4 and the fact that there can be

at most 5 edges between any four vertices in K3(n), together imply that the number of edges deleted from

K3(n) to create G is at least,

2n− d1 + 2n− d2 + 2n− d3 + 2n− d4 − 5 ≥ 8n− 4r − 5

and the condition on the size of G guarantees that 8n−4r−5 ≤ 2n−2, which implies 3n
2 ≤ r and contradicts

the condition r < kn
2 .

The following result is a direct consequence of Theorem 16 combined with Theorem 11.

Corollary 17. Let k, n be integers, k ≥ 3 and n ≥ 1. Let G be a balanced k-partite graph of order p = kn.

If G has at least
(k2

−k)n2
−2n(k−1)+4
2 edges, then G is chorded pancyclic.

Proof. Observe that G is neither Kp/2,p/2 nor K3�K2. Then, by Theorem 11, since G has order p = kn, it

is sufficient to show that
(k2 − k)n2 − 2n(k − 1) + 4

2
≥

(kn)2

4

or equivalently,
(k2 − k)n2 − 2n(k − 1) + 4

2
>

(kn)2

4
− 1.

Since (kn)2

4 − 1 = (kn−2)(kn+2)
4 , this inequality can be written as

(k2 − k)n2 − 2n(k − 1) + 4 >
(kn− 2)(kn+ 2)

2
. (2)

It is straightforward to verify that 2 holds if k = 4, n = 1 and if k = 3, n = 1, 2. Assume that this is not the

case. We then show

(k2 − k)n2 − 2n(k − 1) >
(kn− 2)(kn+ 2)

2
(3)

5



which suffices to complete the proof. Using basic arithmetic it can be shown that

(k2 − k)n2 − 2n(k − 1) = (k − 1)n(nk − 2)

so the previous inequality is equivalent to

2(k − 1)n > kn+ 2

and can be reduced to kn > 2(n + 1). This inequality holds for any k ≥ 3 and n ≥ 1, except when k = 4

and n = 1 or k = 3 and n = 1, 2. This completes the proof.

The previous two results are best possible since the graph obtained from Kk(n) by removing all but

one edge from any vertex gives a nonhamiltonian graph with exactly (k2
−k)n2

−2n(k−1)+4
2 − 1 edges.

Analogosuly to the edge conditions for bipartite graphs in Theorem 10 and for tripartite graphs in

Theorem 14, the edge condition in Theorem 16 follows neither from the Dirac minimum degree condition

nor the Ore minimum degree sum condition.

We close by noting that the number of edges required for bipancyclicity in Theorem 10 is that of

Theorem 14 if k is replaced with 2.

4 Edge results for general k-partite graphs

We begin by setting up the notation needed to study general k-partite graphs.

Notation. For an integer k ≥ 3, consider a k-tuple of positive integers (n1, . . . , nk) such that n1 ≥ n2 ≥

. . . ≥ nk. Define p =
∑k

i=1 ni and let G(n1, . . . , nk) denote the set of all k-partite graphs with parts V1, . . . , Vk

such that |Vi| = ni for every i = 1, . . . , k. Note that, as in the previous sections, p denotes the order of G.

If n1 > p
2 , then no graph in G(n1, . . . , nk) is hamiltonian, so a necessary condition for our work is

that n1 ≤ p
2 . The graphs in G(n1, . . . , nk) are the result of removing edges from the complete k-partite

graph K(n1, . . . , nk). The condition n1 ≤ n
2 guarantees that K(n1, . . . , nk) is hamiltonian, and we want to

determine the maximum integer m such that removing any set of at most m edges from K(n1, . . . , nk) yields

a hamiltonian graph.

Another necessary condition for a graph to have a hamiltonian cycle is that every vertex must have

at least degree 2. In the graph K(n1, . . . , nk), each vertex in Vi has degree p − ni, for i = 1, . . . , k. Thus,

the condition n1 ≥ n2 ≥ . . . ≥ nk implies that the minimum degree of K(n1, . . . , nk) is p− n1. Therefore, a

necessary condition for the integer m that we want to determine, is that m ≤ p− n1 − 2.

The following results show that if n1 ≤ p
2 , any graph obtained by deleting at most p − n1 − 2 edges

from K(n1, . . . , nk) is hamiltonian. As a consequence, these two necessary conditions for hamiltonicity turn

out to be sufficient. Our first theorem corresponds to the case when n1 < p
2 − 1 and its proof follows from

Pósa’s condition for hamiltonicity as in the balanced case.

Theorem 18. Let k ≥ 3 be an integer and let (n1, . . . , nk) be a k-tuple of positive integers such that

n1 ≥ n2 ≥ . . . ≥ nk. Let p =
∑k

i=1 ni. If n1 < p
2 − 1, then every graph G in G(n1, . . . , nk) with at least

||K(n1, . . . , nk)|| − (p− n1 − 2) =
4− 2p+ 2n1 +

∑k
i=1 ni(p− ni)

2

edges is hamiltonian.
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Proof. We prove that G satisfies Pósa’s condition for hamiltonicity by contradiction, as we did in the proof

of Theorem 16. If G does not satisfy Pósa’s condition, there exists an integer r, 1 ≤ r < p
2 , for which there

are (at least) r vertices v1, . . . , vr such that dG(vj) ≤ r. As in the proof of Theorem 16, we may assume

r ≥ 2.

Furthermore, if there exists a vertex v with dG(v) = 2 it is necessary for v to have minimum degree in

K(n1, . . . , nk), and also that each of the edges removed from K(n1, . . . , nk) to produce G is incident with v.

The only way to obtain a second vertex u with dG(u) = 2 is if there exists a neighbor of v with degree 3 in

K(n1, . . . , nk). However, this can only happen if p = 4, but in this case r < 2. Thus, we may assume r ≥ 3.

As in the proof of Theorem 16 every graph G in G(n1, . . . , nk) is obtained by deleting some edges from

K(n1, . . . , nk). If a vertex v has dG(v) ≤ r, at least p − n1 − r edges incident with v were removed from

K(n1, . . . , nk). Since at most p− n1 − 2 edges were removed from K(n1, . . . , nk) to produce G, it must be:

r
(

p− n1 − r
)

−
r(r − 1)

2
< p− n1 − 1,

or equivalently,

(r − 1)(p− n1)−
r(r − 1)

2
< r2 − 1 = (r + 1)(r − 1).

Then, (r − 1)(p− n1)−
r(r−1)

2 < (r + 1)(r − 1), and since r ≥ 3, dividing by r − 1, we obtain

p− n1 −
r

2
< r + 1.

As in balance case, this inequality can be reduced to

2(p− n1) ≤ 3r (4)

where p− n1 in 4 is the same as (k − 1)n in 1.

Since r < p
2 , from equation 4 we conclude 2(p − n1) < 3p

2 and using some basic arithmetic this

expression can be reduced to n1 > p
4 . Therefore, when n1 ≤ p

4 Pósa’s condition guarantees that G is

hamiltonian.

In the case p
4 < n1 < p

2 − 1, let E′ be the set of all t edges removed from K(n1, . . . , nk) to produce G,

and assume

E′ = {aibi : 1 ≤ i ≤ t} with t ≤ p− n1 − 2.

Define

V ′ = {v ∈ V (K(n1, . . . , nk)) : ∃i, 1 ≤ i ≤ t, such that v = ai or v = bi},

so that G′ = (V ′, E′) is the subgraph of K(n1, . . . , nk) induced by the edges removed from K(n1, . . . , nk) to

produce G.

If G contains r vertices of degree at most r, then G′ must contain at least r vertices of degree at least

p− n1 − r. Thus
∑

u∈V ′

dG′(u) ≥ r(p− n1 − r). (5)

At the same time,
∑

u∈V ′ dG′(u) = 2||G′|| and ||G′|| = |E′| ≤ p− n1 − 2, so it must be

∑

u∈V ′

dG′(u) ≤ 2(p− n1 − 2). (6)

Combining equations 5 and 6 we obtain

2(p− n1 − 2) ≥
∑

u∈V ′

dG′(u) ≥ r(p − n1 − r).

As a consequence, 2(p− n1 − 2) ≥ r(p − n1 − r), and this expression can be rewritten as

(r − 2)(r + 2) = r2 − 4 ≥ (r − 2)(p− n1)

7



Using that r ≥ 3, this expression can be reduced to

r + 2 ≥ p− n1, (7)

and adding the condition r < p
2 ,

p

2
+ 2 > r + 2 ≥ p− n1.

From this expression we obtain n1 ≥ p
2 − 1, which contradicts n1 < p

2 − 1.

We now consider the case p
2 − 1 ≤ n1 ≤ p

2 . Depending on p being even or odd, there are three cases

where this can happen:

1) p even and n1 = p
2 ,

2) p odd and n1 = p−1
2 and

3) p even and n1 = p
2 − 1.

Remark 19. The technique we used to prove Theorem 16 and Theorem 18 cannot be applied if p
2 − 1 ≤

n1 ≤ p
2 . Indeed, the following examples show that for each of the cases above, it is possible to construct at

least one family of graphs satisfying the edge the condition in Theorem 18 for which Pósa’s condition does

not hold. However, the graphs in the families we present are hamiltonian.

1) Assume p is even and n1 = p
2 .

For any integer a ≥ 5, let G be the graph in G(a, a − 2, 2) obtained by choosing any a − 2 vertices

v1, . . . , va−2 among the a vertices in V1, a vertex u in V2, and removing the a− 2 edges viu, for every

i = 1, . . . , a − 2. Then, G satisfies the edge condition in Theorem 18 but G fails Pósa’s condition for

r = a− 1 < p
2 .

2) Assume p is odd and n1 = p−1
2 .

For any integer a ≥ 3, let G be the graph in G(a, a−1, 2) obtained by choosing a−1 vertices v1, . . . , va−1

among the a vertices in V1, a vertex u in V2, and removing the a − 1 edges viu, for i = 1, . . . , a − 1.

Then, G satisfies the edge condition in Theorem 18 but G fails Pósa’s condition for r = a < p
2 .

3) Assume p is even and n1 = p
2 − 1.

For an integer a ≥ 1, consider K(4a, 4a, 2) and assume V1 = {u1
1, . . . , u

1
a}∪{u2

1, . . . , u
2
a}∪{u3

1, . . . , u
3
a}∪

{u4
1, . . . , u

4
a} and V2 = {v11 , . . . , v

1
a} ∪ {v21 , . . . , v

2
a} ∪ {v31, . . . , v

3
a} ∪ {v41 , . . . , v

4
a}. Let G be the graph

in G(4a, 4a, 2) obtained by removing from K(4a, 4a, 2) the 4a edges u1
i v

1
i , u

2
i v

2
i , u

1
i v

2
i and u2

i v
1
i for

i = 1, . . . , a. Then, G satisfies the edge condition in Theorem 18 but G fails Pósa’s condition for

r = 4a = p
2 − 1.

Next, we prove the edge condition when p
2 − 1 ≤ n1 ≤ p

2 . In the cases when Pósa’s condition is not

satisfied, we apply Theorem 10 to a balanced complete bipartite subgraph of K(n1, . . . , nk).

In the case n even and n1 = p
2 , since exactly half of the vertices are in V1, if there is a hamiltonian

cycle in a graph G in G(n1, . . . , nk), then every edge in the cycle must have an endpoint in V1 and the other

in V \ V1. Therefore, edges having both endpoints in V \V1 do not affect the hamiltonicity of G and we can

prove a stronger result in this case.

Theorem 20. Let k ≥ 3 be an integer and let (n1, . . . , nk) be a k-tuple of positive integers n1 ≥ n2 ≥

. . . ≥ nk. Let p =
∑k

i=1 ni. If p is even and n1 = p
2 , then every graph G in G(n1, . . . , nk) having at least

(

p
2

)2
− p

2 + 2 edges with an endpoint in V1, is hamiltonian.
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Proof. Assume that all edges with both endpoints in V \V1 are deleted from K(n1, . . . , nk) and as a result, G

is obtained by deleting at most p−n1− 2 edges from K2

(

p
2

)

. Then, G has at least ||K2

(

p
2

)

||− (p−n1− 2) =
(

p
2

)2
− p

2 + 2 edges, and by Theorem 10 G is hamiltonian.

Corollary 21. Let k ≥ 3 be an integer and let (n1, . . . , nk) be a k-tuple of positive integers n1 ≥ n2 ≥ . . . ≥

nk. Let p =
∑k

i=1 ni. If p is even and n1 = p
2 , then every graph G in G(n1, . . . , nk) with at least

||K(n1, . . . , nk)|| − (p− n1 − 2) =
4− 2p+ 2n1 +

∑k
i=1 ni(p− ni)

2

edges is hamiltonian.

Proof. Since the graph G is in G(n1, . . . , nk) and ||G|| ≥ ||K(n1, . . . , nk)||− (p−n1 − 2), then G is the result

of deleting at most p − n1 − 2 = p
2 − 2 edges from K(n1, . . . , nk). As a consequence, even if all the p

2 − 2

deleted edges are selected from the n1(n − n1) =
(

p
2

)2
edges incident with a vertex in V1, G has at least

(

p
2

)2
− p

2 + 2 edges with an endpoint in V1, so Theorem 20 guarantees that G is hamiltonian.

In the case when p is odd and n1 = p−1
2 , we have |V \V1| = |V1|+1. Therefore, if there is a hamiltonian

cycle in in a graph G in G(n1, . . . , nk), then there is exactly one edge in the cycle having both endpoints in

V \ V1.

Theorem 22. Let k ≥ 3 be an integer and let (n1, . . . , nk) be a k-tuple of positive integers n1 ≥ n2 ≥ . . . ≥

nk. Let p =
∑k

i=1 ni. If p is odd and n1 = p−1
2 , then every graph G in G(n1, . . . , nk) with at least

||K(n1, . . . , nk)|| − (p− n1 − 2) =
4− 2p+ 2n1 +

∑k
i=1 ni(p− ni)

2

edges is hamiltonian.

Proof. Since G has at least ||K(n1, . . . , nk)|| − (p − n1 − 2) edges, G is the result of deleting at most

p− n1 − 2 = p−3
2 edges from K(n1, . . . , nk).

In K(n1, . . . , nk) there are p+1
2 vertices in V \ V1. Therefore, in every graph G obtained by removing

at most p−3
2 edges from K(n1, . . . , nk), there exists a vertex w in V \ V1 such that V1 ⊆ NG(w). Define

G′ = G− w, and observe that since G is obtained by removing at most p−3
2 from K(n1, . . . , nk), then G′ is

the result of removing at most p−3
2 edges from K(n1, . . . , nk)− w.

Let us distinguish two types of edges in K(n1, . . . , nk)−w. Edges of type 1 are those with an endpoint

in V1 and the other in V \ V1, while edges of type 2 are those with both endpoints in V \ V1.

First, consider the case when G′ is a graph obtained by removing from K(n1, n2, . . . , nk)−w at most
p−5
2 edges of type 1 and at most p−3

2 edges of type 2.

Since k ≥ 3, the graph K(n1, n2, . . . , nk) − w has at least p−1
2 edges of type 2. Thus, even when

deleting exactly p−3
2 edges of type 2, there exists an edge e in G′ with both endpoints in V \ V1.

Observe that K2

(

p−1
2

)

, the balanced complete bipartite graph of order p− 1, is a spanning subgraph

of K(n1, . . . , nk) − w and it contains all edges of type 1 in K(n1, . . . , nk) − w. As a consequence, there is

a spanning subgraph of G′ that results from deleting at most p−5
2 edges from K2

(

p−1
2

)

. By Theorem 10,

removing at most p−5
2 edges from K2

(

p−1
2

)

yields a hamiltonian graph. Thus, G′ has a hamiltonian spanning

subgraph so G′ is hamiltonian.

We show next that if G′ is hamiltonian, then G is also hamiltonian. To do this, we construct a hamil-

tonian cycle in G from a hamiltonian cycle in G′, together with w and the edge e from above. Observe that

G′ is a k-partite graph of even order p − 1 with exactly p−1
2 vertices in V1. Therefore, a hamiltonian cycle

in G′ is an alternating sequence of vertices in V1 and vertices in V \V1. Let C = v1, . . . , vp−1, v1 be a hamil-

tonian cycle in G′, where the vertices with odd sub-indices are in V1 and the vertices with even sub-indices
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are in V \ V1. Since e has both endpoints in V \ V1, there exist integers i and j, 1 ≤ i < j ≤ p− 1 such that

e = v2iv2j . Then, v2i−1 ∈ V1 and v2j−1 ∈ V1 and V1 ⊆ NG(w) implies that there is a path v2i−1, w, v2j−1 in

G, so v1, . . . , v2i−1, w, v2j−1, v2j−2, . . . , v2i, v2j , . . . , vp−1 is a hamiltonian cycle in G.

Now consider the case when G′ is obtained by deleting from K(n1, . . . , nk)−w, exactly p−3
2 edges of

type 1. In this case, since no edges of type 2 are removed, we have NG(w) = NK(n1,...,nk)(w).

As in the previous case, K2

(

p−1
2

)

is a spanning subgraph of K(n1, . . . , nk) − w and it contains all

edges of type 1 in K(n1, . . . , nk) − w. Then, there is a spanning subgraph of G′ that results from deleting

at most p−3
2 edges from K2

(

p−1
2

)

. By Theorem 10, removing at most p−5
2 edges from K2

(

p−1
2

)

yields a

hamiltonian graph, so we conclude that G′ has a hamiltonian path P . Assume P = v1, . . . , vp−1 where the

vertices with odd sub-indices are in V1 and the vertices with even sub-indices are in V \ V1. If vp−1 and

w are different parts, then the path v1, w, vp−1 together with P form a hamiltonian cycle in G. If vp−1

and w are in the same part, since k ≥ 3 and no edges of type 2 had been removed, vp−1 has a neighbor

in V \ V1, say v2i. Since P alternate vertices in V \ V1 and vertices in V1, v2i+1 is in V1 ⊆ NG(w). Then,

vp−1, v2i, v2i−1, . . . , v1, w, v2i+1, . . . , vp−1 is a hamiltonian cycle in G.

Theorem 23. Let k ≥ 3 be an integer and let (n1, . . . , nk) be a k-tuple of positive integers n1 ≥ n2 ≥ . . . ≥

nk. Let p =
∑k

i=1 ni. If p is even and n1 = p
2 − 1, then every graph G in G(n1, . . . , nk) with at least

||K(n1, . . . , nk)|| − (p− n1 − 2) =
4− 2p+ 2n1 +

∑k
i=1 ni(p− ni)

2

edges is hamiltonian.

Proof. If n2 < n1 we will show that G satisfies Pósa’s condition. By contradiction, assume there exists an

integer r, 1 ≤ r < p
2 for which there exist r vertices v1, . . . , vr with dG(vi) ≤ r. As in the proof of Theorem

18, this implies r + 2 ≥ p − n1 7. Replacing n1 = p
2 − 1 we obtain r ≥ p

2 − 1 and thus, Pósa’s condition

holds for r ≤ p
2 − 2. Since r < p

2 , the only remaining possibility is r = p
2 − 1. However, if r = p

2 − 1, then

p − n1 − r = 2 and for each vertex v in V1 with dG(v) ≤ r, it is necessary to delete from K(n1, . . . , nk) at

least two edges incident with v. The assumption n2 < n1 implies n2 ≤ p
2 − 2, so p − n2 − r ≥ 3 and for

each vertex u in V \ V1 with dG(u) ≤ r, it is necessary to remove at least three edges incident with u in

K(n1, . . . , nk). As a result, there are at most
⌊

p−2
4

⌋

+
⌊

p−2
6

⌋

< r vertices of degree at most r in G so Pósa’s

condition also holds for r = p
2 − 1 and G is hamiltonian.

If n2 = n1, then n1 + n2 = p − 2. Thus, G is obtained by removing at most p − n1 − 2 = p
2 − 1

edges from K(p2 − 1, p
2 − 1, 2) or K

(

p
2 − 1, p2 − 1, 1, 1

)

. Since K
(

p
2 − 1, p

2 − 1, 1, 1
)

has one more edge

than K(p2 − 1, p2 − 1, 2), it is sufficient to show that any graph G obtained by removing p
2 − 1 edges from

K
(

p
2 − 1, p2 − 1, 2

)

is hamiltonian.

Note that G[V1 ∪V2] is a sub-graph of K2

(

p
2 − 1

)

. Then, Theorem 10 guarantees that if at most p
2 − 3

of the edges removed from K
(

p
2 − 1, p2 − 1, 2

)

join a vertex in V1 and a vertex in V2, then G[V1 ∪ V2] is

hamiltonian. Therefore, there exists a cycle in G that contains all p−2 vertices in V1∪V2. Denote such cycle

as C = v1, . . . , vp−2, v1, where the vertices with odd sub-indices are in V1, the vertices with even sub-indices

are in V2 and assume V3 = {x, y}. If there exist two different edges v2iv2i+1 and v2jv2j+1 in C such that v2i,

v2i+1 are in NG(x) and v2j , v2j+1 are in NG(y), then respectively replacing these edges in C with v2i, x, v2i+1

and v2j , y, v2j+1 we obtain a hamiltonian cycle in G.

Since G results from deleting p
2 − 1 edges from K

(

p
2 − 1, p

2 − 1, 2
)

, dG(x) + dG(y) ≥ 3
(

p
2 − 1

)

. If

dG(x) = p
2 − 1, then dG(y) = p − 2. If x has neighbors in V1 and V2, then there exists an edge v2iv2i+1

with v2i, v2i+1 in NG(x), and for any other edge v2jv2j+1 we have v2j ,v2j+1 in NG(y), so we construct a

hamiltonian cycle in G as above. If NG(x) = V1, then v1, x, v3, v2, y, v4, . . . , vp−2, v1 is a hamiltonian cycle in

G; if NG(x) = V2 we proceed in the same way as when NG(x) = V1. If dG(y) =
p
2 − 1, then dG(x) = p− 2, so

we proceed as in the previous case. In all other cases, there exist two different edges v2iv2i+1 and v2jv2j+1
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in C such that v2i,v2i+1 are in NG(x) and v2j , v2j+1 are in NG(y), so we construct a hamiltonian cycle in

G.

Now, consider that p
2 −2 of the edges removed from K

(

p
2 −1, p2 −1, 2

)

, join a vertex in V1 and a vertex

in V2. After removing the first p
2 − 3 edges, there is a cycle C = v1, . . . , vp−2, v1 containing the p− 2 vertices

in V1∪V2. Suppose that an edge v2iv2i+1 in C is deleted. Since at most one additional edge can be removed,

at least one of the two vertices in V3 remain adjacent with all vertices in V1 ∪ V2. Suppose NG(x) = V1 ∪ V2.

Then, v1, . . . , v2i, x, v2i+1, . . . , vp−2, v1 is a hamiltonian cycle in G.

Finally, if two edges in the hamiltonian cycle are removed, say v2iv2i+1 and v2jv2j+1 with i < j, then

NG(x) = V1 ∪ V2, NG(y) = V1 ∪ V2, and v1, . . . , v2i, x, v2i+1, . . . , v2j , y, v2j+1, . . . , vp−2, v1 is a hamiltonian

cycle in G.

Since every balanced k-partite graph satisfies the conditions of one of Theorems 18, 21, 22 or 23,

Theorem 16 is a corollary of the results in this section.

Analogously to the balanced case, combining the hamiltonicity results in Theorems 18, 21, 22 and 23

with the minimum edge condition for chorded pancyclicity in Theorem 11 we obtain the primary result of

this section.

Theorem 24. Let k ≥ 3 be an integer and let (n1, . . . , nk) be a k-tuple of positive integers n1 ≥ n2 ≥ . . . ≥

nk. Let p =
∑k

i=1 ni. If n1 ≤ p
2 , then every graph G in G(n1, . . . , nk) having at least

||K(n1, . . . , nk)|| − (p− n1 − 2) =
4− 2p+ 2n1 +

∑k
i=1 ni(p− ni)

2

edges is chorded pancyclic.

Proof. By Theorem 11, it is sufficient to show ||K(n1, . . . , nk)|| − (p− n1 − 2) ≥ p2

4 , or equivalently,

4− 2(p− n1) +

k
∑

i=1

ni(p− ni) ≥
p2

2
.

By hypothesis, for every integer i = 1, 2, . . . , k, n1 ≥ ni, and as a consequence p− ni ≥ p− n1. Then,
∑k

i=1 ni(p− ni) ≥ (p− n1)
∑k

i=1 ni = p(p− n1) and it is sufficient to show

4 + (p− 2)(p− n1) ≥
p2

2
.

Case 1) If n1 ≤ p−2
2 , then p− n1 ≥ p+2

2 and we conclude

4 + (p− 2)(p− n1) ≥ 4 + (p− 2)
(p+ 2

2

)

= 2 +
p2

2
.

Case 2) If p−2
2 < n1, imposing the necessary condition n1 ≤ p

2 leaves only two possibilities: p is even and

n1 = p
2 , or p is odd and n1 = p−1

2 . In these cases we write

4− 2(p− n1) +

k
∑

i=1

ni(p− ni) = 4− 2(p− n1) + n1(p− n1) +

k
∑

i=2

ni(p− ni).

By hypothesis, again, for every integer i, i = 2, . . . , k, n2 ≥ ni, and this implies p− ni ≤ p− n2. Also, note

that
∑k

i=2 ni = p− n1, and as a consequence,
∑k

i=2 ni(p− ni) ≥ (p− n2)
∑k

i=2 ni = (p− n2)(p− n1). Then,

it is sufficient to prove

4 + (n1 − 2)(p− n1) + (p− n2)(p− n1) ≥
p2

2
.

Suppose n2 ≤ n1 − 2, so that p− n2 ≥ p− (n1 − 2). Then,

4 + (n1 − 2)(p− n1) + (p− n2)(p− n1) ≥ 4 + p(p− n1)
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and it is sufficient to check that when n1 = p
2 (p even) or n1 = p−1

2 (p odd), then 4 + p(p − n1) ≥ p2

2 , a

straightforward verification.

If n2 > n1 − 2, since n2 ≤ n1, either n1 = n2 or n2 = n1 − 1 and the only possibilities are:

• p even, k = 3, n1 = p
2 , n2 = p

2 − 1 and n3 = 1

• p odd, k = 3, n1 = p−1
2 , n2 = p−1

2 and n3 = 1

• p odd, k = 3, n1 = p−1
2 , n2 = p−3

2 and n3 = 2

• p odd, k = 4, n1 = p−1
2 , n2 = p−3

2 , n3 = 1 and n4 = 1

In these cases, it is straightforward to verify 4− 2(p− n1) +
∑k

i=1 ni(p− ni) ≥
p2

2 .

We close by noting that in [7], DeBiasio et al. considered minimum degree conditions corresponding

to Corollary 12 for k-partite graphs that are fair. They used a parameter λ and gave asymptotic results on

λ-fair graphs with λ ≥ 2. Our necessary condition, n1 ≤ p
2 is equivalent to λ ≥ 2 but G does not need to be

λ-fair for our results to hold.
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