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Abstract

In 1970, Plummer defined a well-covered graph to be a graph G in which
all maximal independent sets are in fact maximum. Later Hartnell and Rall
showed that if the Cartesian product G✷H is well-covered, then at least one of
G or H is well-covered. In this paper, we consider the problem of classifying all
well-covered Cartesian products. In particular, we show that if the Cartesian
product of two nontrivial, connected graphs of girth at least 4 is well-covered,
then at least one of the graphs is K2. Moreover, we show that K2✷K2 and
C5✷K2 are the only well-covered Cartesian products of nontrivial, connected
graphs of girth at least 5.
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1 Introduction

A graph G is called well-covered if all maximal independent sets of G have the same
cardinality. This class of graphs was introduced by Plummer [10] in 1970. To date
the study of the class of well-covered graphs seems to be primarily concentrated on
finding good characterizations of various subclasses. Examples of subclasses of well-
covered graphs that have been characterized include those of girth 8 or more [2], those
of girth at least 5 [4], those with neither 4-cycles nor 5-cycles [5], and subcubic [1].
See the survey articles by Plummer [11] and Hartnell [7].

Topp and Volkmann [12] initiated the study of well-covered graphs in the realm
of several of the standard graph products. They proved that a lexicographic product
G[H] is well-covered if and only if both of G and H are well-covered. Although they
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did not characterize the direct products that are well-covered, they did prove that
if G and H have no isolated vertices and the direct product G×H is well-covered,
then both of G and H are well-covered and α(G)·|V (H)| = α(H)·|V (G)|. (Here α is
the vertex independence number.) Cartesian products turn out to be more difficult
to deal with as far as well-covered is concerned. Topp and Volkmann showed that
the Cartesian product of any two complete graphs is well-covered and the Cartesian
product of two cycles is well-covered if and only if at least one of the cycles is C3.
Left unanswered in [12] was the question of whether a Cartesian productG✷H being
well-covered implies that at least one of G or H is well-covered.

Fradkin [6] pursued this question and showed that the Cartesian product of any
two triangle-free graphs, neither of which is well-covered, is also not well-covered.
Hartnell and Rall [8] settled the problem of Topp and Volkmann.

Theorem 1.1 ([8]). If G and H are graphs such that G✷H is well-covered, then at

least one of G or H is well-covered.

This suggests an interesting problem.

Problem 1. For a given graph H, characterize those graphs G such that G✷H is

well-covered.

In Section 2 we give two constructions that suggest the general solution to this
problem will likely be difficult. In Section 3 we provide a partial solution to Prob-
lem 1 by first considering the Cartesian product of two nontrivial, connected graphs
of girth at least 4 and show that if this Cartesian product is well-covered, then
one of the two factors is K2. Moreover, we show that for any two, nontrivial, con-
nected graphs G and H, both with girth at least 5, the Cartesian product G✷H is
well-covered if and only if G✷H ∈ {K2✷K2, C5✷K2}.

2 Notation and Preliminary Results

A subset A of the vertex set of a graph is independent if the vertices in A are pairwise
nonadjacent. If an independent set I of V (G) is maximal (with respect to being)
independent, then every vertex in V (G) − I has at least one neighbor in I. Thus,
a maximal independent set I in G is also dominating. That is, N [I] = V (G). The
smallest cardinality, i(G), of a maximal independent set in G is the independent

domination number of G. The vertex independence number of G is the largest
cardinality of the maximal independent sets of G and is denoted α(G). A graph G

is well-covered if all the maximal independent sets of G have the same cardinality.
Thus, G is well-covered if and only if i(G) = α(G). If J is any independent set in a
graph G, then J can be extended to a maximal independent set of G by repeatedly
adding new vertices that are not dominated by the current set. Thus, in a well-
covered graph G any independent set (in particular, any vertex) is contained in an
independent set of cardinality α(G).
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If G and H are two finite, simple graphs, then their Cartesian product, denoted
G✷H, is the graph with vertex set V (G)×V (H). Two vertices (g1, h1) and (g2, h2)
are adjacent in G✷H if one of the following holds:

• g1 = g2 and h1h2 ∈ E(H),

• h1 = h2 and g1g2 ∈ E(G).

The graphs G and H are called the factors of G✷H. For a given g ∈ V (G), the
subgraph of G✷H induced by the set of vertices {(g, h) : h ∈ V (H)} is called an
H-layer and is denoted by gH. In a similar way, for a fixed h ∈ V (H) the subgraph
Gh induced by {(g, h) : g ∈ V (G)} is called a G-layer. By definition, every H-layer
is isomorphic to H, and every G-layer is isomorphic to G. A significant portion of
this paper is dedicated to the study of Cartesian products where one of the factors
is K2. We assume that V (K2) = [2] = {1, 2}. (For a positive integer n we use [n] to
denote the set of positive integers no larger than n.) The Cartesian product G✷K2

is called the prism of G and G is called the base of the prism. In the prism of a
graph G we will simplify the notation and write gi in place of (g, i) for i ∈ [2] and
g ∈ V (G). Also for i ∈ [2], if A ⊆ V (G) we write Ai to denote the set of vertices
{ai : a ∈ A}.

A vertex of degree 1 in a graph is called a leaf and its unique neighbor is called
a support vertex. An edge incident with a leaf is a pendant edge. A support vertex
that has more than one leaf as a neighbor is called a strong support vertex. If a
graph G has a strong support vertex x, then G is not well-covered. This is easily
seen by letting I be a maximal independent set of G − N [x]. The set I ∪ {x} is a
maximal independent set of G, and yet if L denotes the set of leaves adjacent to x,
then I ∪ L is a larger independent set. The girth of a graph G, denoted by g(G),
is the length of its shortest cycle unless G is a forest, in which case we define the
girth to be ∞. For u, v ∈ V (G), the length of the shortest path in G joining u to v

is denoted dG(u, v), or simply d(u, v) if the graph is clear from the context.

If I is any independent set in a well-covered graph G and J1 and J2 are maximal
independent sets in the induced subgraph G − N [I], then both I ∪ J1 and I ∪ J2
are maximal independent in G. It follows immediately that |J1| = |J2|, and thus
G−N [I] is well-covered. This important and useful property of a well-covered graph
was proved by Finbow et al. [4]. We state its contrapositive form since we will often
use it to show that a graph is not well-covered.

Lemma 2.1 ([4]). If G is a graph and I is an independent set of G such that

G−N [I] is not well-covered, then G is not well-covered.

A vertex w in an arbitrary graph H is isolatable in H if there exists an in-
dependent set M in H such that {w} is a (isolated) component in H − N [M ].
Equivalently, w is isolatable in H if there exists an independent set J of H such
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that V (H)−N [J ] = {w}. As in [4], we say a vertex x of a well-covered graph G is
extendable in G if G−x is well-covered and α(G−x) = α(G). A well-covered graph
G is 1-well-covered if every v ∈ V (G) is extendable in G. In [4] it is proved that in
a well-covered graph the notions of extendable and not isolatable are equivalent.

Theorem 2.2 ([4]). Let G be a well-covered graph. A vertex x of G is an extendable

vertex of G if and only if x is not isolatable in G.

The next result by Finbow and Hartnell [3] shows that graphs of girth at least
4 having no isolatable vertices are actually well-covered. We provide a slightly
expanded proof for the sake of completeness.

Theorem 2.3 ([3]). Let G be a graph with g(G) ≥ 4. If no vertex in G is isolatable,

then G is well-covered.

Proof. Suppose that G is a graph of girth at least 4 in which no vertex is isolatable,
but that G is not well-covered. Consider the set F of certain pairs of maximal
independent sets of G defined by

F = {(L,K) : K and L are maximal independent in G and |K| < |L| = α(G)} .

Since G is not well-covered, F 6= ∅. Let n = min{ |K − L| : (L,K) ∈ F} and let
m = min{ |L ∩ N(w)| : (L,K) ∈ F , n = |K − L| and w ∈ K − L }. Choose a pair
(L0,K0) from F such that n = |K0 − L0| and a vertex v ∈ K0 − L0 such that
m = |L0∩N(v)|. Let u ∈ L0∩N(v) and set J = L0−{u}. Since u is not dominated
by the independent set J and since u is not isolatable (G has no isolatable vertices
by assumption), there is a vertex x ∈ N(u) − N(J). Since g(G) ≥ 4, xv 6∈ E(G).
Let M = J ∪ {x}. We see that M is a maximum independent set of G, and thus
(M,K0) ∈ F . If x 6∈ K0, then |K0 −M | = n but |M ∩ N(v)| = m − 1, which is a
contradiction to the choice ofm. On the other hand, if x ∈ K0, then |K0−M | = n−1,
which is a contradiction to the choice of n. Consequently, F is empty, and G is well-
covered.

Finbow et al. [4] were able to give a complete description of the well-covered
graphs of girth at least 5. By analyzing this collection Pinter [9] observed the
following characterization of connected 1-well-covered graphs of girth at least 5.

Theorem 2.4 ([9]). If G is a nontrivial, connected well-covered graph of girth at

least 5 that has no isolatable vertex, then G ∼= K2 or G ∼= C5.

To see that a general solution to Problem 1 is most likely very difficult, consider
the following. Let H be a graph with maximum degree k, let n > k, and let I be
any maximal independent set of Kn✷H. If I does not intersect some Kn-layer, say
Kh

n , then the vertices of Kh
n are dominated by ∪w∈N(h)(I ∩ V (Kw

n )). Since n > k,
the Pigeonhole Principle implies that |I ∩ V (Kw

n )| ≥ 2 for some w ∈ N(h). This
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contradicts the independence of I, and so I contains exactly one vertex from each
Kn-layer. Hence, |I| = |V (H)| and we see that Kn✷H is well-covered.

In fact, by generalizing this idea we can, for any graph H of maximum degree k,
construct many graphs G that have girth 3 such that G✷H is well-covered. Here is
one family of such graphs. Let r be any positive integer. Let G be any graph whose
vertex set V (G) can be partitioned as V1 ∪ · · · ∪ Vr in such a way that

1. The subgraph G[Vi] of G is a complete graph of order at least 3 for each i ∈ [r],
and

2. For each j ∈ [r] there is a subset Wj of Vj such that |Wj | ≥ k + 1 and
N(Wj) ⊆ Vj .

It is clear that such a graph G is well-covered and α(G) = r. We claim that
G✷H is a well-covered graph with independence number r|V (H)|. For each i ∈ [r]
let Gi = G[Vi]. Any subset of V (G) formed by choosing one vertex from each of
W1, . . . ,Wr is independent, and is in fact maximal independent, in G. In addition,
for each h ∈ V (H) we can choose a subset Mh of W1 ∪ · · · ∪ Wr that contains
one vertex from Wi for each i ∈ [r] in such a way that Mh ∩ Mh′ = ∅ for any
h′ ∈ N(h). This last sentence is true since ∆(H) = k and |Wi| ≥ k + 1. It now
follows that the set ∪h∈V (H)(Mh ×{h}) is a maximal independent set of G✷H with
cardinality r|V (H)|. On the other hand, let J be any maximal independent set of
G✷H. Suppose there exists a G-layer, say Gh, such that |J ∩ V (Gh)| < r. This
implies that there exists j ∈ [r] such that J ∩ (Vj ×{h}) = ∅. In this case no vertex
of Wj ×{h} is dominated by J ∩V (Gh). Since |Wj ×{h}| > k = ∆(H), we arrive at
a contradiction. Hence, |J ∩V (Gx)| ≥ r, for every x ∈ V (H). Since V (G) is covered
by r complete subgraphs we conclude that |J ∩ V (Gx)| = r for every x ∈ V (H).
Consequently, |J | = r|V (H)|, and this implies that G✷H is well-covered.

Figure 1: The graph H.

For a specific example, let H be the graph shown in Figure 1. Let G1, G2 and G3

be complete graphs of order 10 with V (G1) = {x1, . . . , x10}, V (G2) = {y1, . . . , y10},
and V (G3) = {z1, . . . , z10}. The graph G is formed from the disjoint union of
G1, G2, G3 by adding any subset of edges among vertices in the set ∪6

i=1{xi, yi, zi}.
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3 Factors of Girth at Least 4

If a graph G is not connected and has components C1, . . . , Cm, then for any graph
H, the product G✷H is the disjoint union of C1✷H, . . . , Cm✷H. This graph, G✷H,
is well-covered if and only if Ci✷H is well-covered for every i ∈ [m]. Consequently,
to determine which Cartesian products are well-covered we can restrict our attention
to those in which both factors are connected. As the examples presented at the end
of Section 2 show, the characterization of well-covered Cartesian products if at least
one of the factors has a triangle is unlikely. So we focus on Cartesian products of
connected factors that have girth larger than 3.

In this section we will prove the following characterization of well-covered Carte-
sian products of two connected graphs that each have girth at least 5.

Theorem 3.1. Let G and H be nontrivial, connected graphs, both of which have girth

at least 5. The Cartesian product G✷H is well-covered if and only if G✷H ∼= K2✷K2

or G✷H ∼= C5✷K2.

We first prove through a series of reductions that if G and H are both nontrivial,
connected, triangle-free graphs such that G✷H is well-covered, then G✷H is a prism.

Lemma 3.2. Let G and H be connected graphs, both of which have order at least 3
and girth at least 4. If either G or H has an isolatable vertex having degree at least

2, then G✷H is not well-covered.

Proof. Assume without loss of generality that G has an isolatable vertex x and let
y1 and y2 be distinct neighbors of x. Let I be an independent set in G such that
G −N [I] = {x}. Since H has order at least 3, we fix a vertex s in H with distinct
neighbors t1 and t2. We assume without loss of generality that degH(t1) ≤ degH(t2).
If degH(t1) = 1 = degH(t2), then let J = I × {t1, t2}. If 1 = degH(t1) < degH(t2),
then let J = (I × {t1, t2}) ∪ ({y1} × (NH(t2) − {s})). Finally, suppose that 1 <

degH(t1). Let T = NH({t1, t2})− {s}, let A = T −NH(t2), let B = T − A, and let
J = (I × {t1, t2}) ∪ ({y1} ×A) ∪ ({y2} ×B).

Since H is triangle-free and because of the definition of I, we see that all three
cases above J is independent in G✷H. In addition, the vertex (x, s) is a strong
support vertex adjacent to leaves (x, t1) and (x, t2) in G✷H −N [J ]. Therefore, by
Lemma 2.1 it follows that G✷H is not well-covered.

The following corollary follows immediately from Lemma 3.2, Theorem 2.2, and
Theorem 2.3.

Corollary 3.3. Let G and H be connected graphs, both of which have minimum

degree at least 2 and girth at least 4. If G✷H is well-covered, then both G and H

are 1-well-covered.
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Since a leaf in a graph of order at least 3 is isolatable, we are now able to
weaken the hypothesis of Lemma 3.2 to cover the case when one of the factors has
an isolatable vertex of degree 1 while making no assumption about the order of the
other factor.

Lemma 3.4. Let G and H be nontrivial, connected graphs both having girth at least

4. If G has minimum degree 1 and order at least 3, then G✷H is not well-covered.

Proof. Assume that x is a leaf in G that is adjacent to a support vertex y, and
assume that NG(y) = {x, z1, . . . , zr} where r ≥ 1. Let I = {z1, . . . , zr}. Note that
since g(G) ≥ 4, I is independent in G and x is isolated in G−N [I]. Fix any vertex
s of H and assume that NH(s) = {t1, . . . , tm}. If degH(t1) = 1, then let A = ∅;
otherwise, let A = NH(t1) − {s}. Let J = (I × NH(s)) ∪ ({y} × A). Since both G

and H have girth at least 4, it follows that J is independent in G✷H. The vertex
(x, s) is a strong support vertex in G✷H−N [J ], adjacent to leaves (y, s) and (x, t1).
By Lemma 2.1 we conclude that G✷H is not well-covered.

We now make the final reduction in the case when both nontrivial, connected
factors have girth at least 4. Here we do not assume that one of the factors has an
isolatable vertex.

Lemma 3.5. If G and H are connected graphs both having order at least 3 and girth

at least 4, then G✷H is not well-covered.

Proof. Assume that G and H are both of order at least 3 and girth at least 4. Sup-
pose, in order to arrive at a contradiction, that G✷H is well-covered. By Lemma 3.2
and Lemma 3.4, neither G nor H has an isolatable vertex, and hence δ(G) ≥ 2 and
δ(H) ≥ 2. In addition, it follows from Theorem 2.3 that both G and H are well-
covered. Fix a vertex s2 in H, and distinguish one of its neighbors, say s1. Let
NH(s2) = {s1, t1, . . . , tm} for some m ≥ 1 and let NH(s1) = {s2, z1, . . . , zr} for
some r ≥ 1. Select a vertex y in G, and let I be a maximal independent set of
G −N [y]. Since y is not isolatable in G, the graph G −N [I] contains at least one
neighbor x of y. Furthermore, since g(G) ≥ 4 and G is well-covered, it follows from
Lemma 2.1 that G − N [I] contains exactly the two adjacent vertices x and y. Let
w ∈ NG(x)− {y} and let

J = (I × {s1}) ∪ (NG(y)× {t1, . . . , tm}) ∪ ({w} × {z1, . . . , zr}) .

We note that I was chosen to be independent; NG(y)× {t1, . . . , tm} is independent
since both G and H are triangle-free; and {w} × {z1, . . . , zr} is independent since
g(H) ≥ 4. As a result, J is independent by the definition of the edge set of G✷H.
However, by appealing to Lemma 2.1, we now arrive at a contradiction since G✷H−
N [J ] has a strong support vertex (y, s1) that is adjacent to the leaves (y, s2) and
(x, s1). Consequently, G✷H is not well-covered.
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Corollary 3.6. If G and H are nontrivial, connected graphs with girth at least 4
such that G✷H is well-covered, then at least one of G or H is the graph K2.

Because of Corollary 3.6, for the remainder of the paper we restrict ourselves to
prisms of graphs that have girth at least 4. The following corollary, concerning the
prism of certain graphs, follows directly from Lemma 3.4.

Corollary 3.7. If a connected graph G has girth at least 4, has order at least 3 and

has minimum degree 1, then G✷K2 is not well-covered.

Recall from Theorem 2.3 that a graph is well-covered if it has girth at least 4
and has no isolatable vertices. We next ask whether a graph G with an isolatable
vertex can have a well-covered prism. The next result shows the answer is no if G
has girth at least 5.

Theorem 3.8. If G has girth at least 5 and has an isolatable vertex, then G✷K2 is

not well-covered.

Proof. By Corollary 3.7 we may assume G has minimum degree at least 2. Let x be
an isolatable vertex of G, let N(x) = {y1, . . . , yk}, and let Ai represent the vertices
other than x that are adjacent to yi for i ∈ [k]. Since G has girth at least 5, N(x)
is independent and the sets A1, . . . , Ak are independent and pairwise disjoint.

Suppose first that one of the sets A1, . . . , Ak, say A1, has cardinality 1. Let
A1 = {a}. Note by assumption that there exists an independent set J that isolates
x in G − N [J ] and necessarily it must contain a. This implies that y11 and x2 are
leaves adjacent to the same support vertex in G✷K2 −N [J2]. We conclude that in
this case G✷K2 is not well-covered.

So we may assume that |Ai| ≥ 2 for all i ∈ [k]. Let I be a maximal independent
set of G−N [{y1, . . . , yk}].

(a) Suppose first that I dominates at least one of the sets A1, . . . , Ak, say A1.
Let J be an independent set that isolates x in G − N [J ] and let S = I1 ∪
(

∪i∈[k](J ∩Ai)
)2
. It follows that S is independent in G✷K2, and y11 and x2

are leaves in G✷K2−N [S] both adjacent to x1. Again this implies that G✷K2

is not well-covered.

(b) Now suppose that there exists i ∈ [k] such that I does not dominate at least two
vertices of Ai. Without loss of generality we may assume i = 1 and a1 and b1
are vertices in A1 not dominated by I. Suppose first that degG(a1) > 2 and let
w ∈ N(b1)−{y1}. Thus, w can be adjacent to only one vertex of N(a1)−{y1}
for otherwise G contains a 4-cycle. In this case, choose z ∈ N(a1)−{y1} that is
not adjacent to w and choose S = I1∪{y12 , . . . , y

1
k, w

2, z2} so that a11 and b11 are
leaves in G✷K2 −N [S]. A similar argument can be used when degG(b1) > 2.

8



Next, suppose that degG(a1) = 2 and degG(b1) = 2 where N(a1) = {y1, z} and
N(b1) = {y1, w}. If wz 6∈ E(G), then again choose S = I1∪{y12, . . . , y

1
k, w

2, z2}
so that a11 and b11 are leaves in G✷K2 − N [S]. So we may assume that wz ∈
E(G).

Suppose first that z 6∈ ∪k
i=2Ai. Let J be any independent set in G that isolates

x in G−N [J ]. Let M = (J − {z})− (J ∩A1) and choose S = M1 ∪ {z2, y22}.
One can easily verify that S is indeed an independent set in G✷K2. We claim
that a11 and x1 are leaves in G✷K2 − N [S]. Note that N(a11) = {a21, y

1
1 , z

1}
and N(x1) = {x2, y11 , . . . , y

1
k}. The vertices z1 and a21 are dominated by z2 so

a11 is a leaf, M1 dominates y12, . . . , y
1
k, and y22 dominates x2. Thus, x1 is also a

leaf. A similar argument works if w 6∈ ∪k
i=2Ai.

So we may assume that z ∈ Ai and w ∈ Aj for some i, j ∈ {2, . . . , k}. It follows
that i 6= j since Ai is an independent set. If every independent set that isolates
x contains z, then none of these independent sets contain w as wz ∈ E(G).
In this case, let J be such an independent set that doesn’t contain w, and let
M = J − (J ∩A1). Let S = M1 ∪ {w2, y2i }. Note that S is independent since
w 6∈ J ∪ Ai. We claim that b11 and x1 are leaves in G✷K2 −N [S]. Note that
N(b11) = {b21, w

1, y11} and N(x1) = {x2, y11 , . . . , y
1
k}. The vertex w2 dominates

b21 and w1 so b11 is a leaf. SinceM
1 dominates {y12 , . . . , y

1
k} and y2i dominates x2,

it follows that x1 is a leaf. On the other hand, if there exists an independent
set that isolates x and does not contain z, we may choose a set S so that
a11 and x1 are leaves in G✷K2 − N [S]. In each of these cases the removal of
the closed neighborhood of an independent set from G✷K2 created a strong
support, and hence G✷K2 is not well-covered by Lemma 2.1.

(c) Finally, suppose that I does not dominate exactly one vertex from each Ai

for i ∈ [k], say ai. Note that if degG(x) ≥ 3, then there exist i and j such
that aiaj 6∈ E(G) for otherwise G would contain a triangle. Without loss
of generality, we may assume i = 1 and j = 2. In this case, choose S =
I1 ∪ {a21, a

2
2} and note that y11 and y12 are leaves, both adjacent to the same

support vertex in G✷K2 − N [S]. If degG(x) = 2 and a1a2 6∈ E(G), then
the above set S still works. So we may assume that a1a2 ∈ E(G). Choose
S = I1 ∪ {a12, a

2
1, t

2} where t ∈ A2 − {a2}. One can verify that S is an
independent set. We claim that y11 and x2 are leaves, both adjacent to x1 in
G✷K2 − N [S]. Note that N(y11) = {x1, y21} ∪ A1

1 and N(x2) = {x1, y21, y
2
2}.

The set I1∪{a12} dominates all of A1
1 and {a21, t

2} dominates y21 and y22 . Thus,
y11 and x2 are indeed leaves. Hence, by Lemma 2.1 G✷K2 is not well-covered.

Having considered all cases, we may conclude that G✷K2 is not well-covered.

It is straightforward to verify that both of the prisms K2✷K2 and C5✷K2 are
well-covered. This together with Theorems 2.3, 2.4, 3.8 proves Theorem 3.1, which
we restate here for completeness.
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Theorem 3.1. Let G and H be nontrivial, connected graphs, both of which have

girth at least 5. The Cartesian product G✷H is well-covered if and only if G✷H ∼=
K2✷K2 or G✷H ∼= C5✷K2.

We now show that, regardless of girth, if the base graph has no isolatable vertices,
then its prism is well-covered. Of course by the characterization theorems of Finbow
et al. every well-covered graph of girth larger than 5 has an isolatable vertex.

Theorem 3.9. If G is a well-covered graph with no isolatable vertices, then G✷K2

is well-covered.

Proof. Let m = α(G) and let I be any maximal independent set of G✷K2. Suppose
that |I ∩ V (G1)| < m. If necessary, enlarge I ∩ V (G1) to an independent set A

of G1 such that |A| = m − 1. The subgraph G1 − N [A] is a clique of order at
least 2, for otherwise G1 would contain an independent set of cardinality at least
m + 1, which is a contradiction. This implies that G1 − N [I ∩ V (G1)] contains a
clique C with vertices x11, . . . , x

1
k for some k ≥ 2. The vertices in C are dominated

by the set I ∩ V (G2), which implies that x21, x
2
2 ∈ I. Since C is a clique, we have

that x1x2 ∈ E(G), which contradicts the assumption that I is an independent set.
Consequently, |I ∩ V (G1)| = m. Similarly, |I ∩ V (G2)| = m. We conclude that
|I| = 2m, and hence G✷K2 is well-covered.

In particular, if g(G) = 4 and G has no isolatable vertex, then by Theorem 2.3 it
follows that G is well-covered. This proves the following corollary to Theorem 3.9.

Corollary 3.10. If G has girth 4 and has no isolatable vertex, then the prism of G

is well-covered.

There are many examples of 1-well-covered graphs of girth 4 as in the hypothesis
of Corollary 3.10. One such graph, commonly known as WL8, is shown in Figure 2.

Figure 2: The graph WL8.

4 Summary

We have shown that if a Cartesian product of two nontrivial, connected, triangle-
free graphs is well-covered, then this Cartesian product is a prism, say G✷K2. In
addition, if G has girth at least 5, then G is either K2 or C5, and indeed the prisms
K2✷K2 and C5✷K2 are both well-covered. If the girth of G is 4 and G has no

10



isolatable vertex, then the prism G✷K2 is well-covered. We suspect that being well-
covered and having no isolatable vertex is also a necessary condition for the prism
of a graph of girth 4 to be well-covered. We end by stating this as a conjecture.

Conjecture 4.1. Let G be a connected, triangle-free graph that contains a cycle of

order 4. If G✷K2 is well-covered, then G has no isolatable vertex.
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