Graphs with conflict-free connection number two*

Hong Chang ${ }^{1}$, Trung Duy Doan ${ }^{2,3}{ }^{\dagger}$, Zhong Huang ${ }^{1}$, Stanislav Jendrol ${ }^{4} \ddagger$ Xueliang Li ${ }^{1}$, Ingo Schiermeyer ${ }^{2}$ §
${ }^{1}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
${ }^{2}$ Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg, Germany
${ }^{3}$ School of applied Mathematics and Informatics
Hanoi University of Science and Technology, Hanoi, Vietnam
${ }^{4}$ Institute of Mathematics, P. J. Šafárik University
Jesenná 5, 04001 Košice, Slovakia
Email: changh@mail.nankai.edu.cn, trungdoanduy@gmail.com, stanislav.jendrol@upjs.sk 2120150001@mail.nankai.edu.cn, lxl@nankai.edu.cn, Ingo.Schiermeyer@tu-freiberg.de

February 12, 2018

Abstract

An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of

[^0]its edges. The conflict-free connection number of a connected graph G, denoted by $c f c(G)$, is the smallest number of colors needed in order to make G conflict-free connected. For a graph G, let $C(G)$ be the subgraph of G induced by its set of cut-edges. In this paper, we first show that, if G is a connected non-complete graph G of order $n \geq 9$ with $C(G)$ being a linear forest and with the minimum degree $\delta(G) \geq \max \left\{3, \frac{n-4}{5}\right\}$, then $c f c(G)=2$. The bound on the minimum degree is best possible. Next, we prove that, if G is a connected non-complete graph of order $n \geq 33$ with $C(G)$ being a linear forest and with $d(x)+d(y) \geq \frac{2 n-9}{5}$ for each pair of two nonadjacent vertices x, y of $V(G)$, then $c f c(G)=2$. Both bounds, on the order n and the degree sum, are tight. Moreover, we prove several results concerning relations between degree conditions on G and the number of cut edges in G.

Keywords: edge-coloring; conflict-free connection number; degree condition.
AMS subject classification 2010: 05C15, 05C40, 05C07.

1 Introduction

All graphs in this paper are undirected, finite and simple. We follow [3] for graph theoretical notation and terminology not described here. Let G be a graph. We use $V(G), E(G), n(G), m(G)$, and $\delta(G)$ to denote the vertex-set, edge-set, number of vertices, number of edges, and minimum degree of G, respectively. For $v \in V(G)$, let $N(v)$ denote the neighborhood of v in $G, \operatorname{deg}(x)$ denote the degree of v in G.

Let G be a nontrivial connected graph with an associated edge-coloring c : $E(G) \rightarrow\{1,2, \ldots, t\}, t \in \mathbb{N}$, where adjacent edges may have the same color. If adjacent edges of G are assigned different colors by c, then c is a proper (edge-)coloring. For a graph G, the minimum number of colors needed in a proper coloring of G is referred to as the edge-chromatic number of G and denoted by $\chi^{\prime}(G)$. A path of an edge-colored graph G is said to be a rainbow path if no two edges on the path have the same color. The graph G is called rainbow connected if every pair of distinct vertices of G is connected by a rainbow path in G. An edge-coloring of a connected graph is a rainbow connection coloring if it makes the graph rainbow connected. This concept of rainbow connection of graphs was introduced by Chartrand et al. [7] in 2008. For a connected graph G, the rainbow connection number $\operatorname{rc}(G)$ of G is defined as the smallest number of colors that are needed in order to make G rainbow connected. Readers interested in this topic are referred to [17, 18, 19] for a survey.

Inspired by the rainbow connection coloring and the proper coloring in graphs,

Andrews et al. [1] and Borozan et al. (4) independently introduced the concept of a proper connection coloring. Let G be a nontrivial connected graph with an edgecoloring. A path in G is called a proper path if no two adjacent edges of the path receive the same color. An edge-coloring c of a connected graph G is a proper connection coloring if every pair of distinct vertices of G is connected by a proper path in G. And if k colors are used, then c is called a proper connection k-coloring. An edge-colored graph G is proper connected if any two vertices of G are connected by a proper path. For a connected graph G, the minimum number of colors that are needed in order to make G proper connected is called the proper connection number of G, denoted by $p c(G)$. Let G be a nontrivial connected graph of order n and size m (number of edges). Then we have that $1 \leq p c(G) \leq \min \left\{\chi^{\prime}(G), r c(G)\right\} \leq m$. For more details, we refer to [2, 13, 14, 15] and a dynamic survey [16].

Our research was motivated by the following three results.
Theorem 1.1 5] If G is a 2-connected graph of order $n=n(G)$ and minimum degree $\delta(G)>\max \left\{2, \frac{n+8}{20}\right\}$, then $p c(G) \leq 2$.

Theorem 1.2 [5] For every integer $d \geq 3$, there exists a 2-connected graph of order $n=42 d$ such that $p c(G) \geq 3$.

Theorem 1.3 [14] Let G be a connected noncomplete graph of order $n \geq 5$. If $G \notin\left\{G_{1}, G_{2}\right\}$ and $\delta(G) \geq \frac{n}{4}$, then $p c(G)=2$, where G_{1} and G_{2} are two exceptional graphs on 7 and 8 vertices.

A coloring of the vertices of a hypergraph H is called conflicted-free if each hyperedge E of H has a vertex of unique color that is not repeated in E. The smallest number of colors required for such a coloring is called the conflict-free chromatic number of H. This parameter was first introduced by Even et al. [12] in a geometric setting, in connection with frequency assignment problems for cellular networks. One can find many results on the conflict-free coloring, see [9, 10, 20].

Recently, Czap et al. 8] introduced the concept of a conflict-free connection of graphs. An edge-colored graph G is called conflict-free connected if each pair of distinct vertices is connected by a path which contains at least one color used on exactly one of its edges. This path is called a conflict-free path, and this coloring is called a conflict-free connection coloring of G. The conflict-free connection number of a connected graph G, denoted by $c f c(G)$, is the smallest number of colors needed to color the edges of G so that G is conflict-free connected. In [8], they showed that it is easy to compute the conflict-free connection number for 2-connected graphs and very difficult for other connected graphs, including trees.

This paper is organized as follows. In Section 2, we list some fundamental results on the conflict-free connection of graphs. In Sections 3 and 4, we prove our main results.

2 Preliminaries

At the very beginning, we state some fundamental results on the conflict-free connection of graphs, which will be used in the sequel.

Lemma 2.1 [8] If P_{n} is a path on n edges, then $c f c(P)=\left\lceil\log _{2}(n+1)\right\rceil$.

Let $C(G)$ be the subgraph of G induced on the set of cut-edges of G. The following lemmas respectively provide a necessary condition and a sufficient condition for graphs G with $c f c(G)=2$.

Recall that a linear forest is a forest where each of its components is a path.
Lemma 2.2 [8] If $c f c(G)=2$ for a connected graph G, then $C(G)$ is a linear forest whose each component has at most three edges.

Lemma 2.3 [8] If G is a connected graph, and $C(G)$ is a linear forest in which each component is of order 2 , then $c f c(G)=2$.

The following lemma, which can be seen as a corollary of Lemma 2.3 for $C(G)$ being empty, is of extra interest. A rigorous proof can be found in [11.

Lemma 2.4 [8, 11] If G is a 2-edge-connected non-complete graph, then $c f c(G)=2$.

A block of a graph G is a maximal connected subgraph of G that has no cutvertex. If G is connected and has no cut-vertex, then G is a block. An edge is a block if and only if it is a cut-edge, this block is called trivial. Therefore, any nontrivial block is 2 -connected.

Lemma 2.5 [8] Let G be a connected graph. Then from its every nontrivial block an edge can be chosen so that the set of all such chosen edges forms a matching.

Let $C(G)$ be a linear forest consisting of $k(k \geq 0)$ components $Q_{1}, Q_{2}, \ldots, Q_{k}$ with $n_{i}=\left|V\left(Q_{i}\right)\right|$ such that $2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. We now present a stronger result than Lemma 2.3, which will be important to show our main results.

Theorem 2.6 If G is a connected non-complete graph with $C(G)$ being a linear forest with $2=n_{1}=n_{2}=\cdots=n_{k-1} \leq n_{k} \leq 4$ or $C(G)$ being edgeless, then $c f c(G)=2$.

Proof. If $C(G)$ is edgeless then the theorem is true by Lemma 2.4. If $C(G)$ a linear forest with at least one edge, then G is a non-complete graph and therefore $\operatorname{cfc}(G) \geq 2$. It remains to verify the converse. Note that one can choose from each nontrivial block an edge so that all the chosen edges create a matching set S by Lemma 2.5. We define an edge-coloring of G as follows. First, we color all edges from S with color 2, and the edges in $E(G) \backslash\left\{S \cup Q_{k}\right\}$ with color 1. Next, we only need to color the edges of Q_{k}. If $n_{k}=2$, then color the unique edge of Q_{k} with color 1. If $n_{k}=3$, then color two edges of Q_{k} with colors 1 and 2 . Suppose $n_{k}=4$. It follows that Q_{k} is a path of order 4 , say $w_{1} w_{2} w_{3} w_{4}$. We color the two edges $w_{1} w_{2}$ and $w_{3} w_{4}$ with color 1 , and $w_{2} w_{3}$ with color 2 . It is easy to check that this coloring is a conflict-free connection coloring of G. Thus, we have $c f c(G) \leq 2$, and hence $c f c(G)=2$.

Remark 1: The following example points out that Theorem 2.6 is optimal in sense of the number of components with more than two vertices of the linear forest $C(G)$ of a graph G.

For $t \geq 3$, let S_{n} be the graph with $n=5 t$ vertices, consisting of the path $P_{6}=v_{0} v_{1} v_{2} v_{3} v_{4} v_{5}$ with complete graphs K_{t} attached to the vertices $v_{i}, i \in\{0,1,4,5\}$ and one more K_{t} sharing the edge $v_{2} v_{3}$ with P_{6}. Observe that $\delta\left(S_{n}\right)=t-1=\frac{n-5}{5}$, and $C\left(S_{n}\right)$ is a linear forest with two components of order 3 , paths $v_{0} v_{1} v_{2}$ and $v_{3} v_{4} v_{5}$. In any conflict-free connection coloring of S_{n} with two colors the edges $v_{0} v_{1}$ and $v_{1} v_{2}$ (resp. $v_{3} v_{4}$ and $v_{4} v_{5}$) receive different colors. But then any $v_{0}-v_{5}$ path has a conflict. This means that $\operatorname{cfc}\left(S_{n}\right) \geq 3$.

3 Degree conditions and the number of cut-edges

Theorem 3.1 Let G be a connected graph of order $n \geq k^{2}, k \geq 3$. If $\delta(G) \geq \frac{n-k+1}{k}$, then G has at most $k-2$ cut edges.

Proof. Assume or the sake of contradiction that G has at least $k-1$ cut edges. Let B be a set of $k-1$ cut edges of G. Then the graph $G \backslash B$ has exactly k components G_{1}, \ldots, G_{k}. Consider the following two cases.

Case 1. For every $j \in[k]$ there is a vertex $v_{j} \in V\left(G_{j}\right)$ such that $N\left(v_{j}\right) \subseteq V\left(G_{j}\right)$.

Then every component G_{j} has at least $\frac{n-k+1}{k}+1$ vertices and we have

$$
n=|V(G)|=\sum_{j=1}^{k}\left|V\left(G_{j}\right)\right| \geq k \cdot\left(\frac{n-k+1}{k}+1\right)=n+1,
$$

a contradiction.
Case 2. There exists some $i \in[k]$ such that $N(v) \nsubseteq V\left(G_{i}\right)$ for every vertex $v \in V\left(G_{i}\right)$. Then $a=\left|V\left(G_{i}\right)\right| \leq k-1$ and every vertex $v \in V\left(G_{i}\right)$ is incident with a cut edge from B. Let m_{i} denote the degree sum of all the vertices of $V\left(G_{i}\right)$ within $G\left[V\left(G_{i}\right) \cup B\right]$. Then we have

$$
\frac{n-k+1}{k} \cdot a \leq m_{i} \leq a \cdot(a-1)+k-1 .
$$

This, together with the bounds on a, provides

$$
0 \leq a \cdot\left(a-1-\frac{n-k+1}{k}\right)+k-1 \leq(k-1) \cdot\left(k-2-\frac{n-k+1}{k}\right)+k-1 .
$$

This leads to $n \leq k^{2}-1$, a contradiction.
The next theorem shows that the bound on the minimum degree in Theorem 3.1 cannot be lowered.

Theorem 3.2 For every $k \geq 3$ and $t \geq 3$ there exists a connected n-vertex graph H_{n} with $n=k \cdot t, \delta\left(H_{n}\right)=\frac{n-k}{k}$, and $k-1$ cut edges.

Proof. The graph H_{n} consists of a path P_{k} on k vertices to every vertex of it a complete graph K_{t} is attached.

The following theorem shows that the bound k^{2} on the number n of vertices in Theorem 3.1 is best possible.

Theorem 3.3 For every $k \geq 3$ there exists a graph R_{n} on $n=k^{2}-1$ vertices with $\delta\left(R_{n}\right)=\frac{n-k+1}{k}$ and $k-1$ cut edges.

Proof. The graph R_{n} is a connected graph consisting of a central block B_{0}, isomorphic to the complete graph $K_{k-1}, k-1$ blocks B_{1}, \ldots, B_{k-1}, that are complete graphs on k vertices, and a matching M of $k-1$ cut edges. This matches the vertices of B_{0} with the remaining blocks.

Theorem 3.4 Let G be a connected graph of order

$$
n \geq \max \left\{k^{2}+k, \frac{\left\lfloor\frac{k}{2}\right\rfloor \cdot k(k-2)+k^{2}-5 k+3}{k-4}\right\}, k \geq 5 .
$$

If $\operatorname{deg}(x)+\operatorname{deg}(y) \geq \frac{2 n-2 k+1}{k}$ for any two non-adjacent vertices x and y of G, then G has at most $k-2$ cut edges.

Proof. Assume for the sake of contradiction that G has at least $k-1$ cut edges. Let B be a set of $k-1$ cut edges of G. Then the graph $G \backslash B$ has exactly k components G_{1}, \ldots, G_{k}. Consider the following two cases.

Case 1. For every $j \in[k]$ there is a vertex $v_{j} \in V\left(G_{j}\right)$ such that $N\left(v_{j}\right) \subseteq V\left(G_{j}\right)$.
Case 1.1. Let k be even. Then

$$
n=|V(G)|=\sum_{j=1}^{\frac{k}{2}}\left|V\left(G_{j}\right) \cup V\left(G_{k-j+1}\right)\right| \geq \frac{k}{2} \cdot\left(\frac{2 n-2 k+1}{k}+2\right)=n+\frac{1}{2}
$$

a contradiction.
Case 1.2. Let k be odd. Then, w.l.o.g., we can suppose that $\left|V\left(G_{k}\right)\right| \geq \frac{n-k+1}{k}+1$. Therefore,

$$
\begin{aligned}
n=\left|V\left(G_{k}\right)\right|+\sum_{j=1}^{\frac{k-1}{2}}\left|V\left(G_{j}\right) \cup V\left(G_{k-j}\right)\right| & \geq \frac{n-k+1}{k}+1+\frac{k-1}{2} \cdot\left(\frac{2 n-2 k+1}{k}+2\right) \\
& =n+\frac{k+1}{2 k},
\end{aligned}
$$

a contradiction.
Case 2. There exists some $i \in[k]$ such that $N(v) \nsubseteq V\left(G_{i}\right)$ for every vertex $v \in V\left(G_{i}\right)$.

Case 2.1. There exists only one $i \in[k]$ such that all vertices $v \in V\left(G_{i}\right)$ have $N(v) \nsubseteq V\left(G_{i}\right)$. Observe that $\left|V\left(G_{i}\right)\right|=a \leq k-1$. Notice that every vertex $v \in V\left(G_{i}\right)$ is incident with an edge from B, and there is a vertex $y \in V\left(G_{i}\right)$ with $\operatorname{deg}(y) \leq a-1+\frac{k-1}{a}$. For any component $G_{j}, j \neq i \in[k]$, there is

$$
\left|V\left(G_{j}\right)\right| \geq\left\lceil\frac{2 n-2 k+1}{k}\right\rceil-\operatorname{deg}(y)+1 \geq\left\lceil\frac{2 n-2 k+1}{k}\right\rceil-a+1-\frac{k-1}{a}+1 .
$$

This means that the number of vertices in G is

$$
\begin{aligned}
n & =|V(G)| \geq(k-1) \cdot\left(\left\lceil\frac{2 n-2 k+1}{k}\right\rceil-a+1-\frac{k-1}{a}+1\right)+a \\
& \geq(k-1) \cdot\left(\frac{2 n-2 k+1}{k}-a+1-\frac{k-1}{a}+1\right)+a .
\end{aligned}
$$

After some manipulations we get

$$
n \leq \frac{k(k-1)}{k-2}\left(a \cdot \frac{k-2}{k-1}+\frac{k-1}{a}-\frac{1}{k}\right) .
$$

This, together with the bounds on a, provides

$$
n \leq \frac{k(k-1)}{k-2}\left(1 \cdot \frac{k-2}{k-1}+\frac{k-1}{1}-\frac{1}{k}\right) .
$$

The inequality yields

$$
n \leq k^{2}+k+\frac{1}{k-2}
$$

Next we check whether $n=k^{2}+k$ satisfies the original inequality

$$
n=|V(G)| \geq(k-1) \cdot\left(\left\lceil\frac{2 n-2 k+1}{k}\right\rceil-a+1-\frac{k-1}{a}+1\right)+a .
$$

After some manipulations we get

$$
k^{2}+k \geq k^{2}+2 k-2
$$

which is impossible. Then we have

$$
n \leq k^{2}+k-1,
$$

a contradiction.
Case 2.2 There exists more than one $i \in[k]$ such that all vertices $v \in V\left(G_{i}\right)$ have $N(v) \nsubseteq V\left(G_{i}\right)$. Assume that there exists a pair of non-adjacent vertices u, w with $u \in V\left(G_{i_{1}}\right)$ and $w \in V\left(G_{i_{2}}\right)$. It is possible that $i_{1}=i_{2}$. Notice that every vertex in such a component is incident with an edge from B, and the two vertices u and w are incident with at most one edge from B in common, then $\operatorname{deg}(u)+\operatorname{deg}(w)-1 \leq k-1$. It implies $n \leq \frac{k^{2}+2 k-1}{2}$, a contradiction. Now we get that every vertex in such components is adjacent to the remaining vertices of such components. Hence all possible configurations have been excluded except for two adjacent singletons $\{u\},\{w\}$ as the only such two components $V_{i_{1}}, V_{i_{2}}$. As $\operatorname{deg}(u)+\operatorname{deg}(w)-1 \leq k-1$, w.l.o.g., we assume that $\operatorname{deg}(u) \leq\left\lfloor\frac{k}{2}\right\rfloor$. For any component $G_{j}, j \neq i_{1}$ or i_{2}, then

$$
\left|V\left(G_{j}\right)\right| \geq \frac{2 n-2 k+1}{k}-\operatorname{deg}(u)+1 \geq \frac{2 n-2 k+1}{k}-\left\lfloor\frac{k}{2}\right\rfloor+1 .
$$

This means that the number of vertices in G is

$$
n=|V(G)| \geq(k-2) \cdot\left(\frac{2 n-2 k+1}{k}-\left\lfloor\frac{k}{2}\right\rfloor+1\right)+2 .
$$

After some manipulations we get

$$
n \leq \frac{\left\lfloor\frac{k}{2}\right\rfloor \cdot k(k-2)+k^{2}-5 k+2}{k-4}
$$

a contradiction.
Remark 2: Observe that the graph H_{n} of Theorem 3.2 is a good example showing that the bound on the sum of degrees in Theorem 3.4 is tight.

The next theorem shows that the bound on n cannot be lower than $k^{2}+k$.

Theorem 3.5 For every $k \geq 5$ there exists a graph D_{n} on $n=k^{2}+k-1$ vertices with $\operatorname{deg}(x)+\operatorname{deg}(y) \geq \frac{2 n-2 k+1}{k}$ for any two non-adjacent vertices x and y and having $k-1$ cut edges.

Proof. Let D_{n} be a graph consisting of a vertex $v_{0}, k-1$ blocks B_{1}, \ldots, B_{k-1}, that are complete graphs on $k+2$ vertices, and a set M of $k-1$ cut edges joining the vertex of v_{0} with the $k-1$ blocks B_{1}, \ldots, B_{k-1}. Observe that D_{n} is a connected graph on $k^{2}+k-1$ vertices such that $\operatorname{deg}(x)+\operatorname{deg}(y) \geq 2 k \geq \frac{2 n-2 k+1}{k}$ for any two non-adjacent vertices x and y.

4 Degree conditions for $c f c(G)=2$

Theorem 4.1 Let G be a connected non-complete graph of order $n \geq 25$. If $C(G)$ induces a linear forest and $\delta(G) \geq \frac{n-4}{5}$, then $\operatorname{cfc}(G)=2$.

Proof. Observe that, by Theorem 3.1, the subgraph $C(G)$ of any connected graph G with $\delta(G) \geq \frac{n-4}{5}$ contains at most three cut edges. As $C(G)$ is a linear forest, we conclude that $c f c(G)=2$ by Theorem 2.6.

Remark 3: The graph S_{n} defined in the end of Section 2 provides a good example showing the tightness of the minimum degree in Theorem 4.1.

Next, we discuss the minimum degree condition for small graphs to have conflictfree connection number 2 .

Theorem 4.2 Let G be a connected non-complete graph of order $n, 9 \leq n \leq 24$. If $C(G)$ induces a linear forest and $\delta(G) \geq \max \left\{3, \frac{n-4}{5}\right\}$, then $c f c(G)=2$.

Proof. We may assume that $C(G) \neq \emptyset$ by Lemma 2.4. Let $C(G)$ consist of k components $Q_{1}, Q_{2}, \ldots, Q_{k}$ with $n_{i}=\left|V\left(Q_{i}\right)\right|$ such that $2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. We may also assume that $3 \leq n_{k-1} \leq n_{k} \leq 4$ by Lemma 2.2 and Theorem 2.6. Then $G \backslash\left(E\left(Q_{k-1}\right) \cup E\left(Q_{k}\right)\right)$ has at least five components $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$. Since $\delta(G) \geq 3$,
it follows that $\left|V\left(C_{i}\right)\right|>3$ for $1 \leq i \leq 5$. Notice that at most two vertices in C_{i} can be contained in $Q_{k-1} \cup Q_{k}$, then for each C_{i} there exists a vertex u_{i} such that $N\left(u_{i}\right) \subseteq V\left(C_{i}\right)$ for $1 \leq i \leq 5$. Thus, $|V(G)| \geq \sum_{i=1}^{5}\left|V\left(C_{i}\right)\right| \geq \sum_{i=1}^{5}\left(d\left(u_{i}\right)+1\right) \geq$ $5\left(\frac{n-4}{5}+1\right)=n+1>n$, a contradiction, which completes the proof.

Remark 4: The following examples show that the minimum degree condition in Theorem 4.2 is best possible. Let H_{i} be a complete graph of order three for $1 \leq i \leq 2$, and take a vertex v_{i} of H_{i} for $1 \leq i \leq 2$. Let H be a graph obtained from H_{1}, H_{2} by connecting v_{1} and v_{2} with a path of order t for $t \geq 5$. Note that $\delta(H)=2$, but $c f c(H) \geq 3$. Another graph class is given as follows. Let G_{i} be a complete graph of order $\frac{n}{5}$, and take a vertex w_{i} of G_{i} for $1 \leq i \leq 5$. Let G be a graph obtained from $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ by joining w_{i} and w_{i+1} with an edge for $1 \leq i \leq 4$. Notice that $\delta(G)=\frac{n-5}{5}$, but $c f c(G) \geq 3$.

Theorem 4.3 Let G be a connected noncomplete graph of order n with $4 \leq n \leq 8$. If $C(G)$ induces a linear forest and $\delta(G) \geq 2$, then $c f c(G)=2$.

Proof. If $|E(C(G))| \leq 3$, then the proof follows from Theorem 2.6. Otherwise the subgraph $G \backslash E(C(G))$ has at least five components. Since $\delta(G) \geq 2$, at least two components of it have at least three vertices. Thus $|V(G)| \geq 3 \times 2+3=9>8$, a contradiction.

Remark 5. The following example shows that the minimum degree condition in Theorem 4.3 is best possible. Let G be a path of order t with $t \geq 5$. It is easy to see that $\delta(G)=1$, but $c f c(G)=\left\lceil\log _{2} t\right\rceil \geq 3$ by Lemma 2.1.

If we do not require that $C(G)$ is a linear forest in above theorems, then we can get the following theorem.

Theorem 4.4 Let G be a connected non-complete graph of order $n \geq 16$. If $\delta(G) \geq$ $\frac{n-3}{4}$, then $\operatorname{cfc}(G)=2$.

Proof. Observe that Theorem 3.1 shows that $C(G)$ of any connected graph G with $\delta(G) \geq \frac{n-3}{4}$ has at most two edges. This, when applying Theorem 2.6, immediately gives our theorem.

Remark 6: The following example shows that the minimum degree condition in Theorem 4.4 is best possible. Let H_{i} be a complete graph of order $\frac{n}{4}$ for $1 \leq i \leq 4$, and take a vertex v_{i} of H_{i} for $1 \leq i \leq 4$. Let H be a graph obtained from $H_{1}, H_{2}, H_{3}, H_{4}$ by adding the edges $v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}$. Note that $\delta(H)=\frac{n-4}{4}$, but $c f c(H) \geq 3$. On
the other hand, the condition $n \geq 16$ in Theorem 4.4 is also best possible. Let $G_{1}, G_{2}, G_{3}, G_{4}$ be complete graphs of order $1,4,5,5$, respectively, and take a vertex w_{i} of G_{i} for $1 \leq i \leq 4$. Let G be a graph obtained from $G_{1}, G_{2}, G_{3}, G_{4}$ by adding the edges $w_{1} w_{2}, w_{1} w_{3}, w_{1} w_{4}$. Note that $\delta(G) \geq \frac{n-3}{4}$, but $c f c(G) \geq 3$. Also the graph R_{4} from Theorem 3.3 shows the sharpness of the bound of n.

Theorem 4.5 Let G be a connected non-complete graph of order $n \geq 33$. If $C(G)$ is a linear forest, and $\operatorname{deg}(x)+\operatorname{deg}(y) \geq \frac{2 n-9}{5}$ for each pair of two non-adjacent vertices x and y of $V(G)$, then $\operatorname{cfc}(G)=2$.

Proof. From Theorem 3.4 we deduce that the subgraph $C(G)$ of G has at most three edges. Now the proof follows from Theorem [2.6.

Remark 7: An example of the graph S_{n}, introduced in Remark 1, shows that the degree sum condition in Theorem 4.5 is best possible. On the other hand, the condition $n \geq 33$ in Theorem 4.5 is also best possible. Let G_{i} be a complete graph of order $\frac{n-2}{3}$ for $1 \leq i \leq 3$ and $n \leq 32$, and $G_{4}=v_{1} u_{1} u_{2} v_{2} v_{3}$ be a path of order 5 . Let G be a graph obtained from $G_{1}, G_{2}, G_{3}, G_{4}$ by identifying a vertex of G_{i} to the vertex v_{i} for $1 \leq i \leq 3$. Note that the resulting graph G satisfies that $\operatorname{deg}(x)+\operatorname{deg}(y) \geq \frac{2 n-9}{5}$ for each pair of two non-adjacent vertices x and y of $V(G)$ and $c f c(G) \geq 3$.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016), 189-207.
[2] S. A. van Aardt, C. Brause, A. P. Burger, M. Frick, A. Kemnitz, and I. Schiermeyer, Proper connection and size of graphs, Discrete Math. 340 (11) (2017), 2673-2677.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[4] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012), 2550-2560.
[5] C. Brause, T. Duy Doan, and I. Schiermeyer, Minimum Degree Conditions for the Proper Connection Number of Graphs, Graphs and Combinatorics 33 (2017), 833-843.
[6] H. Chang, Z. Huang, X. Li, Y. Mao, H, Zhao, Nordhaus-Gaddum-type theorem for conflict-free connection number of graphs, arXiv:1705.08316 [math.CO].
[7] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008), 85-98.
[8] J. Czap, S. Jendrol', J. Valiska, Conflict-free connection of graphs, Discuss. Math. Graph Theory, in press.
[9] P. Cheilaris, B. Keszegh. D. Pálvöigyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, SIAM J. Discrete Math. 27 (2013), 1775-1787.
[10] P. Cheilaris, G. Tóth, Graph unique-maximum and conflict-free colorings, J. Discrete Algorithms 9 (2011), 241-251.
[11] B. Deng, W. Li, X. Li, Y. Mao, H. Zhao, Conflict-free connection numbers of line graphs, graphs, Lecture Notes in Computer Science No. 10627 (2017), 141-151.
[12] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometic regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33 (2003), 94-136.
[13] R. Gu, X. Li, Z. Qin, Proper connection number of random graphs, Theoret. Comput. Sci. 609(2) (2016), 336-343.
[14] F. Huang, X. Li, Z. Qin, C. Magnant, Minimum degree condition for proper connection number 2, Theoret. Comput. Sci., DOI 10.1016/j.tcs.2016.04.042, in press.
[15] E. Laforge, C. Lumduanhom, P. Zhang, Characterizations of graphs having large proper connection numbers, Discuss. Math. Graph Theory 36(2) (2016), 439-453.
[16] X. Li, C. Magnant, Properly colored notions of connectivity-a dynamic survey, Theory ${ }^{83}$ Appl. Graphs 0(1) (2015), Art. 2.
[17] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs \mathcal{E} Combin. 29 (2013), 1-38.
[18] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[19] X. Li, Y. Sun, An updated survey on rainbow connections of graphs - a dynamic survey, Theory \& Appl. Graphs 0(1)(2017), Art.3. DOI: 10.20429/tag.2017.000103.
[20] J. Pach, G. Tardos, Conflict-free colourings of graphs and hypergraphs, Comb. Probab. Comput. 18 (2009), 819-834.

[^0]: *Supported by NSFC No. 11531011.
 ${ }^{\dagger}$ Financial support by the Free State of Saxony (Landesstipendium) is thankfully acknowledged.
 ${ }^{\ddagger}$ This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0116 and by the Slovak VEGA Grant 1/0368/16.
 ${ }^{\S}$ Part of this research was done while the author was visiting the Center for Combinatorics. Financial support is gratefully acknowledged.

