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Abstract

An edge-colored graph G is conflict-free connected if any two of its ver-

tices are connected by a path, which contains a color used on exactly one of
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its edges. The conflict-free connection number of a connected graph G, de-

noted by cfc(G), is the smallest number of colors needed in order to make G

conflict-free connected. For a graph G, let C(G) be the subgraph of G induced

by its set of cut-edges. In this paper, we first show that, if G is a connected

non-complete graph G of order n ≥ 9 with C(G) being a linear forest and with

the minimum degree δ(G) ≥ max{3, n−4

5
}, then cfc(G) = 2. The bound on

the minimum degree is best possible. Next, we prove that, if G is a connected

non-complete graph of order n ≥ 33 with C(G) being a linear forest and with

d(x)+d(y) ≥ 2n−9

5
for each pair of two nonadjacent vertices x, y of V (G), then

cfc(G) = 2. Both bounds, on the order n and the degree sum, are tight. More-

over, we prove several results concerning relations between degree conditions

on G and the number of cut edges in G.

Keywords: edge-coloring; conflict-free connection number; degree condition.

AMS subject classification 2010: 05C15, 05C40, 05C07.

1 Introduction

All graphs in this paper are undirected, finite and simple. We follow [3] for graph

theoretical notation and terminology not described here. Let G be a graph. We

use V (G), E(G), n(G), m(G), and δ(G) to denote the vertex-set, edge-set, number of

vertices, number of edges, and minimum degree of G, respectively. For v ∈ V (G), let

N(v) denote the neighborhood of v in G, deg(x) denote the degree of v in G.

Let G be a nontrivial connected graph with an associated edge-coloring c :

E(G) → {1, 2, . . . , t}, t ∈ N, where adjacent edges may have the same color. If adja-

cent edges of G are assigned different colors by c, then c is a proper (edge-)coloring.

For a graph G, the minimum number of colors needed in a proper coloring of G is

referred to as the edge-chromatic number of G and denoted by χ′(G). A path of an

edge-colored graph G is said to be a rainbow path if no two edges on the path have the

same color. The graph G is called rainbow connected if every pair of distinct vertices

of G is connected by a rainbow path in G. An edge-coloring of a connected graph is

a rainbow connection coloring if it makes the graph rainbow connected. This concept

of rainbow connection of graphs was introduced by Chartrand et al.[7] in 2008. For

a connected graph G, the rainbow connection number rc(G) of G is defined as the

smallest number of colors that are needed in order to make G rainbow connected.

Readers interested in this topic are referred to [17, 18, 19] for a survey.

Inspired by the rainbow connection coloring and the proper coloring in graphs,
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Andrews et al.[1] and Borozan et al.[4] independently introduced the concept of a

proper connection coloring. Let G be a nontrivial connected graph with an edge-

coloring. A path in G is called a proper path if no two adjacent edges of the path

receive the same color. An edge-coloring c of a connected graph G is a proper con-

nection coloring if every pair of distinct vertices of G is connected by a proper path

in G. And if k colors are used, then c is called a proper connection k-coloring. An

edge-colored graph G is proper connected if any two vertices of G are connected by

a proper path. For a connected graph G, the minimum number of colors that are

needed in order to make G proper connected is called the proper connection number

of G, denoted by pc(G). Let G be a nontrivial connected graph of order n and size

m (number of edges). Then we have that 1 ≤ pc(G) ≤ min{χ′(G), rc(G)} ≤ m. For

more details, we refer to [2, 13, 14, 15] and a dynamic survey [16].

Our research was motivated by the following three results.

Theorem 1.1 [5] If G is a 2-connected graph of order n = n(G) and minimum degree

δ(G) > max{2, n+8

20
}, then pc(G) ≤ 2.

Theorem 1.2 [5] For every integer d ≥ 3, there exists a 2-connected graph of order

n = 42d such that pc(G) ≥ 3.

Theorem 1.3 [14] Let G be a connected noncomplete graph of order n ≥ 5. If

G /∈ {G1, G2} and δ(G) ≥ n
4
, then pc(G) = 2, where G1 and G2 are two exceptional

graphs on 7 and 8 vertices.

A coloring of the vertices of a hypergraph H is called conflicted-free if each hy-

peredge E of H has a vertex of unique color that is not repeated in E. The smallest

number of colors required for such a coloring is called the conflict-free chromatic

number of H . This parameter was first introduced by Even et al. [12] in a geometric

setting, in connection with frequency assignment problems for cellular networks. One

can find many results on the conflict-free coloring, see [9, 10, 20].

Recently, Czap et al. [8] introduced the concept of a conflict-free connection of

graphs. An edge-colored graph G is called conflict-free connected if each pair of

distinct vertices is connected by a path which contains at least one color used on

exactly one of its edges. This path is called a conflict-free path, and this coloring is

called a conflict-free connection coloring of G. The conflict-free connection number

of a connected graph G, denoted by cfc(G), is the smallest number of colors needed

to color the edges of G so that G is conflict-free connected. In [8], they showed that

it is easy to compute the conflict-free connection number for 2-connected graphs and

very difficult for other connected graphs, including trees.
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This paper is organized as follows. In Section 2, we list some fundamental results

on the conflict-free connection of graphs. In Sections 3 and 4, we prove our main

results.

2 Preliminaries

At the very beginning, we state some fundamental results on the conflict-free

connection of graphs, which will be used in the sequel.

Lemma 2.1 [8] If Pn is a path on n edges, then cfc(P ) = ⌈log2(n+ 1)⌉.

Let C(G) be the subgraph of G induced on the set of cut-edges of G. The follow-

ing lemmas respectively provide a necessary condition and a sufficient condition for

graphs G with cfc(G) = 2.

Recall that a linear forest is a forest where each of its components is a path.

Lemma 2.2 [8] If cfc(G) = 2 for a connected graph G, then C(G) is a linear forest

whose each component has at most three edges.

Lemma 2.3 [8] If G is a connected graph, and C(G) is a linear forest in which each

component is of order 2, then cfc(G) = 2.

The following lemma, which can be seen as a corollary of Lemma 2.3 for C(G)

being empty, is of extra interest. A rigorous proof can be found in [11].

Lemma 2.4 [8, 11] If G is a 2-edge-connected non-complete graph, then cfc(G) = 2.

A block of a graph G is a maximal connected subgraph of G that has no cut-

vertex. If G is connected and has no cut-vertex, then G is a block. An edge is a block

if and only if it is a cut-edge, this block is called trivial. Therefore, any nontrivial

block is 2-connected.

Lemma 2.5 [8] Let G be a connected graph. Then from its every nontrivial block an

edge can be chosen so that the set of all such chosen edges forms a matching.

Let C(G) be a linear forest consisting of k (k ≥ 0) components Q1, Q2, . . . , Qk

with ni = |V (Qi)| such that 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk. We now present a stronger

result than Lemma 2.3, which will be important to show our main results.
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Theorem 2.6 If G is a connected non-complete graph with C(G) being a linear forest

with 2 = n1 = n2 = · · · = nk−1 ≤ nk ≤ 4 or C(G) being edgeless, then cfc(G) = 2.

Proof. If C(G) is edgeless then the theorem is true by Lemma 2.4. If C(G) a

linear forest with at least one edge, then G is a non-complete graph and therefore

cfc(G) ≥ 2. It remains to verify the converse. Note that one can choose from each

nontrivial block an edge so that all the chosen edges create a matching set S by

Lemma 2.5. We define an edge-coloring of G as follows. First, we color all edges

from S with color 2, and the edges in E(G) \ {S ∪ Qk} with color 1. Next, we only

need to color the edges of Qk. If nk = 2, then color the unique edge of Qk with color

1. If nk = 3, then color two edges of Qk with colors 1 and 2. Suppose nk = 4. It

follows that Qk is a path of order 4, say w1w2w3w4. We color the two edges w1w2

and w3w4 with color 1, and w2w3 with color 2. It is easy to check that this coloring

is a conflict-free connection coloring of G. Thus, we have cfc(G) ≤ 2, and hence

cfc(G) = 2.

Remark 1: The following example points out that Theorem 2.6 is optimal in sense

of the number of components with more than two vertices of the linear forest C(G)

of a graph G.

For t ≥ 3, let Sn be the graph with n = 5t vertices, consisting of the path

P6 = v0v1v2v3v4v5 with complete graphs Kt attached to the vertices vi, i ∈ {0, 1, 4, 5}

and one more Kt sharing the edge v2v3 with P6. Observe that δ(Sn) = t− 1 = n−5

5
,

and C(Sn) is a linear forest with two components of order 3, paths v0v1v2 and v3v4v5.

In any conflict-free connection coloring of Sn with two colors the edges v0v1 and v1v2

(resp. v3v4 and v4v5) receive different colors. But then any v0-v5 path has a conflict.

This means that cfc(Sn) ≥ 3.

3 Degree conditions and the number of cut-edges

Theorem 3.1 Let G be a connected graph of order n ≥ k2, k ≥ 3. If δ(G) ≥ n−k+1

k
,

then G has at most k − 2 cut edges.

Proof. Assume or the sake of contradiction that G has at least k− 1 cut edges. Let

B be a set of k − 1 cut edges of G. Then the graph G \B has exactly k components

G1, . . . , Gk. Consider the following two cases.

Case 1. For every j ∈ [k] there is a vertex vj ∈ V (Gj) such that N(vj) ⊆ V (Gj).
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Then every component Gj has at least
n−k+1

k
+ 1 vertices and we have

n = |V (G)| =
k∑

j=1

|V (Gj)| ≥ k · (
n− k + 1

k
+ 1) = n+ 1,

a contradiction.

Case 2. There exists some i ∈ [k] such that N(v) 6⊆ V (Gi) for every vertex

v ∈ V (Gi). Then a = |V (Gi)| ≤ k − 1 and every vertex v ∈ V (Gi) is incident with

a cut edge from B. Let mi denote the degree sum of all the vertices of V (Gi) within

G[V (Gi) ∪B]. Then we have

n− k + 1

k
· a ≤ mi ≤ a · (a− 1) + k − 1.

This, together with the bounds on a, provides

0 ≤ a · (a− 1−
n− k + 1

k
) + k − 1 ≤ (k − 1) · (k − 2−

n− k + 1

k
) + k − 1.

This leads to n ≤ k2 − 1, a contradiction.

The next theorem shows that the bound on the minimum degree in Theorem 3.1

cannot be lowered.

Theorem 3.2 For every k ≥ 3 and t ≥ 3 there exists a connected n-vertex graph Hn

with n = k · t, δ(Hn) =
n−k
k
, and k − 1 cut edges.

Proof. The graph Hn consists of a path Pk on k vertices to every vertex of it a

complete graph Kt is attached.

The following theorem shows that the bound k2 on the number n of vertices in

Theorem 3.1 is best possible.

Theorem 3.3 For every k ≥ 3 there exists a graph Rn on n = k2 − 1 vertices with

δ(Rn) =
n−k+1

k
and k − 1 cut edges.

Proof. The graph Rn is a connected graph consisting of a central block B0, isomor-

phic to the complete graph Kk−1, k−1 blocks B1, . . . , Bk−1, that are complete graphs

on k vertices, and a matching M of k − 1 cut edges. This matches the vertices of B0

with the remaining blocks.

Theorem 3.4 Let G be a connected graph of order

n ≥ max{k2 + k,
⌊k
2
⌋ · k(k − 2) + k2 − 5k + 3

k − 4
}, k ≥ 5.
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If deg(x)+ deg(y) ≥ 2n−2k+1

k
for any two non-adjacent vertices x and y of G, then G

has at most k − 2 cut edges.

Proof. Assume for the sake of contradiction that G has at least k− 1 cut edges. Let

B be a set of k − 1 cut edges of G. Then the graph G \B has exactly k components

G1, . . . , Gk. Consider the following two cases.

Case 1. For every j ∈ [k] there is a vertex vj ∈ V (Gj) such that N(vj) ⊆ V (Gj).

Case 1.1. Let k be even. Then

n = |V (G)| =

k

2∑

j=1

|V (Gj) ∪ V (Gk−j+1)| ≥
k

2
· (
2n− 2k + 1

k
+ 2) = n +

1

2
,

a contradiction.

Case 1.2. Let k be odd. Then, w.l.o.g., we can suppose that |V (Gk)| ≥
n−k+1

k
+1.

Therefore,

n = |V (Gk)|+

k−1

2∑

j=1

|V (Gj) ∪ V (Gk−j)| ≥
n− k + 1

k
+ 1 +

k − 1

2
· (
2n− 2k + 1

k
+ 2)

= n+
k + 1

2k
,

a contradiction.

Case 2. There exists some i ∈ [k] such that N(v) 6⊆ V (Gi) for every vertex

v ∈ V (Gi).

Case 2.1. There exists only one i ∈ [k] such that all vertices v ∈ V (Gi) have

N(v) 6⊆ V (Gi). Observe that |V (Gi)| = a ≤ k − 1. Notice that every vertex

v ∈ V (Gi) is incident with an edge from B, and there is a vertex y ∈ V (Gi) with

deg(y) ≤ a− 1 + k−1

a
. For any component Gj , j 6= i ∈ [k], there is

|V (Gj)| ≥ ⌈
2n− 2k + 1

k
⌉ − deg(y) + 1 ≥ ⌈

2n− 2k + 1

k
⌉ − a+ 1−

k − 1

a
+ 1.

This means that the number of vertices in G is

n = |V (G)| ≥ (k − 1) · (⌈
2n− 2k + 1

k
⌉ − a+ 1−

k − 1

a
+ 1) + a

≥ (k − 1) · (
2n− 2k + 1

k
− a+ 1−

k − 1

a
+ 1) + a.

After some manipulations we get

n ≤
k(k − 1)

k − 2
(a ·

k − 2

k − 1
+

k − 1

a
−

1

k
).
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This, together with the bounds on a, provides

n ≤
k(k − 1)

k − 2
(1 ·

k − 2

k − 1
+

k − 1

1
−

1

k
).

The inequality yields

n ≤ k2 + k +
1

k − 2
.

Next we check whether n = k2 + k satisfies the original inequality

n = |V (G)| ≥ (k − 1) · (⌈
2n− 2k + 1

k
⌉ − a + 1−

k − 1

a
+ 1) + a.

After some manipulations we get

k2 + k ≥ k2 + 2k − 2,

which is impossible. Then we have

n ≤ k2 + k − 1,

a contradiction.

Case 2.2 There exists more than one i ∈ [k] such that all vertices v ∈ V (Gi) have

N(v) 6⊆ V (Gi). Assume that there exists a pair of non-adjacent vertices u, w with

u ∈ V (Gi1) and w ∈ V (Gi2). It is possible that i1 = i2. Notice that every vertex in

such a component is incident with an edge from B, and the two vertices u and w are

incident with at most one edge from B in common, then deg(u)+deg(w)−1 ≤ k−1.

It implies n ≤ k2+2k−1

2
, a contradiction. Now we get that every vertex in such com-

ponents is adjacent to the remaining vertices of such components. Hence all possible

configurations have been excluded except for two adjacent singletons {u}, {w} as the

only such two components Vi1, Vi2 . As deg(u) + deg(w) − 1 ≤ k − 1, w.l.o.g., we

assume that deg(u) ≤ ⌊k
2
⌋. For any component Gj, j 6= i1 or i2, then

|V (Gj)| ≥
2n− 2k + 1

k
− deg(u) + 1 ≥

2n− 2k + 1

k
− ⌊

k

2
⌋+ 1.

This means that the number of vertices in G is

n = |V (G)| ≥ (k − 2) · (
2n− 2k + 1

k
− ⌊

k

2
⌋+ 1) + 2.

After some manipulations we get

n ≤
⌊k
2
⌋ · k(k − 2) + k2 − 5k + 2

k − 4
,
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a contradiction.

Remark 2: Observe that the graph Hn of Theorem 3.2 is a good example showing

that the bound on the sum of degrees in Theorem 3.4 is tight.

The next theorem shows that the bound on n cannot be lower than k2 + k.

Theorem 3.5 For every k ≥ 5 there exists a graph Dn on n = k2 + k − 1 vertices

with deg(x)+deg(y) ≥ 2n−2k+1

k
for any two non-adjacent vertices x and y and having

k − 1 cut edges.

Proof. Let Dn be a graph consisting of a vertex v0, k − 1 blocks B1, . . . , Bk−1, that

are complete graphs on k + 2 vertices, and a set M of k − 1 cut edges joining the

vertex of v0 with the k − 1 blocks B1, . . . , Bk−1. Observe that Dn is a connected

graph on k2 + k − 1 vertices such that deg(x) + deg(y) ≥ 2k ≥ 2n−2k+1

k
for any two

non-adjacent vertices x and y.

4 Degree conditions for cfc(G) = 2

Theorem 4.1 Let G be a connected non-complete graph of order n ≥ 25. If C(G)

induces a linear forest and δ(G) ≥ n−4

5
, then cfc(G) = 2.

Proof. Observe that, by Theorem 3.1, the subgraph C(G) of any connected graph

G with δ(G) ≥ n−4

5
contains at most three cut edges. As C(G) is a linear forest, we

conclude that cfc(G) = 2 by Theorem 2.6.

Remark 3: The graph Sn defined in the end of Section 2 provides a good example

showing the tightness of the minimum degree in Theorem 4.1.

Next, we discuss the minimum degree condition for small graphs to have conflict-

free connection number 2.

Theorem 4.2 Let G be a connected non-complete graph of order n, 9 ≤ n ≤ 24. If

C(G) induces a linear forest and δ(G) ≥ max{3, n−4

5
}, then cfc(G) = 2.

Proof. We may assume that C(G) 6= ∅ by Lemma 2.4. Let C(G) consist of k

components Q1, Q2, . . . , Qk with ni = |V (Qi)| such that 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk. We

may also assume that 3 ≤ nk−1 ≤ nk ≤ 4 by Lemma 2.2 and Theorem 2.6. Then

G\(E(Qk−1)∪E(Qk)) has at least five components C1, C2, C3, C4, C5. Since δ(G) ≥ 3,

9



it follows that |V (Ci)| > 3 for 1 ≤ i ≤ 5. Notice that at most two vertices in Ci

can be contained in Qk−1 ∪ Qk, then for each Ci there exists a vertex ui such that

N(ui) ⊆ V (Ci) for 1 ≤ i ≤ 5. Thus, |V (G)| ≥
∑

5

i=1
|V (Ci)| ≥

∑
5

i=1
(d(ui) + 1) ≥

5(n−4

5
+ 1) = n+ 1 > n, a contradiction, which completes the proof.

Remark 4: The following examples show that the minimum degree condition in

Theorem 4.2 is best possible. Let Hi be a complete graph of order three for 1 ≤ i ≤ 2,

and take a vertex vi of Hi for 1 ≤ i ≤ 2. Let H be a graph obtained from H1, H2

by connecting v1 and v2 with a path of order t for t ≥ 5. Note that δ(H) = 2, but

cfc(H) ≥ 3. Another graph class is given as follows. Let Gi be a complete graph of

order n
5
, and take a vertex wi of Gi for 1 ≤ i ≤ 5. Let G be a graph obtained from

G1, G2, G3, G4, G5 by joining wi and wi+1 with an edge for 1 ≤ i ≤ 4. Notice that

δ(G) = n−5

5
, but cfc(G) ≥ 3.

Theorem 4.3 Let G be a connected noncomplete graph of order n with 4 ≤ n ≤ 8.

If C(G) induces a linear forest and δ(G) ≥ 2, then cfc(G) = 2.

Proof. If |E(C(G))| ≤ 3, then the proof follows from Theorem 2.6. Otherwise the

subgraph G \ E(C(G)) has at least five components. Since δ(G) ≥ 2, at least two

components of it have at least three vertices. Thus |V (G)| ≥ 3 × 2 + 3 = 9 > 8, a

contradiction.

Remark 5. The following example shows that the minimum degree condition in

Theorem 4.3 is best possible. Let G be a path of order t with t ≥ 5. It is easy to see

that δ(G) = 1, but cfc(G) = ⌈log2 t⌉ ≥ 3 by Lemma 2.1.

If we do not require that C(G) is a linear forest in above theorems, then we can

get the following theorem.

Theorem 4.4 Let G be a connected non-complete graph of order n ≥ 16. If δ(G) ≥
n−3

4
, then cfc(G) = 2.

Proof. Observe that Theorem 3.1 shows that C(G) of any connected graph G with

δ(G) ≥ n−3

4
has at most two edges. This, when applying Theorem 2.6, immediately

gives our theorem.

Remark 6: The following example shows that the minimum degree condition in

Theorem 4.4 is best possible. LetHi be a complete graph of order n
4
for 1 ≤ i ≤ 4, and

take a vertex vi of Hi for 1 ≤ i ≤ 4. Let H be a graph obtained from H1, H2, H3, H4

by adding the edges v1v2, v1v3, v1v4. Note that δ(H) = n−4

4
, but cfc(H) ≥ 3. On
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the other hand, the condition n ≥ 16 in Theorem 4.4 is also best possible. Let

G1, G2, G3, G4 be complete graphs of order 1, 4, 5, 5, respectively, and take a vertex

wi of Gi for 1 ≤ i ≤ 4. Let G be a graph obtained from G1, G2, G3, G4 by adding the

edges w1w2, w1w3, w1w4. Note that δ(G) ≥ n−3

4
, but cfc(G) ≥ 3. Also the graph R4

from Theorem 3.3 shows the sharpness of the bound of n.

Theorem 4.5 Let G be a connected non-complete graph of order n ≥ 33. If C(G) is

a linear forest, and deg(x)+deg(y) ≥ 2n−9

5
for each pair of two non-adjacent vertices

x and y of V (G), then cfc(G) = 2.

Proof. From Theorem 3.4 we deduce that the subgraph C(G) of G has at most three

edges. Now the proof follows from Theorem 2.6.

Remark 7: An example of the graph Sn, introduced in Remark 1, shows that

the degree sum condition in Theorem 4.5 is best possible. On the other hand, the

condition n ≥ 33 in Theorem 4.5 is also best possible. Let Gi be a complete graph of

order n−2

3
for 1 ≤ i ≤ 3 and n ≤ 32, and G4 = v1u1u2v2v3 be a path of order 5. Let G

be a graph obtained from G1, G2, G3, G4 by identifying a vertex of Gi to the vertex vi

for 1 ≤ i ≤ 3. Note that the resulting graph G satisfies that deg(x) + deg(y) ≥ 2n−9

5

for each pair of two non-adjacent vertices x and y of V (G) and cfc(G) ≥ 3.
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