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Abstract

An equitable coloring is a proper coloring of a graph such that the sizes of the color
classes differ by at most one. A graphG is equitably k-colorable if there exists an equitable
coloring of G which uses k colors, each one appearing on either ⌊|V (G)|/k⌋ or ⌈|V (G)|/k⌉
vertices of G. In 1994, Fu conjectured that for any simple graph G, the total graph of G,
T (G), is equitably k-colorable whenever k ≥ max{χ(T (G)),∆(G) + 2} where χ(T (G)) is
the chromatic number of the total graph of G and ∆(G) is the maximum degree of G. We
investigate the list coloring analogue. List coloring requires each vertex v to be colored
from a specified list L(v) of colors. A graph is k-choosable if it has a proper list coloring
whenever vertices have lists of size k. A graph is equitably k-choosable if it has a proper
list coloring whenever vertices have lists of size k, where each color is used on at most
⌈|V (G)|/k⌉ vertices. In the spirit of Fu’s conjecture, we conjecture that for any simple
graph G, T (G) is equitably k-choosable whenever k ≥ max{χl(T (G)),∆(G) + 2} where
χl(T (G)) is the list chromatic number of T (G). We prove this conjecture for all graphs
satisfying ∆(G) ≤ 2 while also studying the related question of the equitable choosability
of powers of paths and cycles.

Keywords. graph coloring, total coloring, equitable coloring, list coloring, equitable
choosability.
Mathematics Subject Classification. 05C15.

1 Introduction

In this paper all graphs are finite, simple graphs unless otherwise noted. Generally speak-
ing we follow West [39] for terminology and notation.

1.1 Equitable Coloring and Total Coloring

An equitable k-coloring of a graph G is a proper k-coloring of G, f , such that the sizes
of the color classes differ by at most one (where a k-coloring has exactly k color classes). It
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is easy to see that for an equitable k-coloring, the color classes associated with the coloring
are each of size ⌈|V (G)|/k⌉ or ⌊|V (G)|/k⌋. We say that a graph G is equitably k-colorable if
there exists an equitable k-coloring of G. Equitable coloring has found many applications,
see for example [35], [33], [15], and [14].

Unlike ordinary graph coloring, increasing the number of colors may make equitable col-
oring more difficult. Thus, for each graph G we have the equitable chromatic number χ=(G),
the minimum k for which there exists an equitable k-coloring, and the equitable chromatic
threshold χ∗

=(G), the minimum k for which G is equitably j-colorable for all j ≥ k. For
example, K2m+1,2m+1 is equitably k-colorable for k ≥ 2m + 2 and for even integers k less
than 2m + 1, but it is not equitably (2m + 1)-colorable [27], so χ∗

=(K2m+1,2m+1) = 2m + 2
and χ=(K2m+1,2m+1) = 2. It is clear that χ(G) ≤ χ=(G) ≤ χ∗

=(G) where χ(G) is the usual
chromatic number of G.

Erdös [7] conjectured that χ∗
=(G) ≤ ∆(G) + 1 for all graphs G, where ∆(G) denotes the

maximum degree of G. In 1970, Hajnál and Szemerédi proved it.

Theorem 1 ([13]). Every graph G has an equitable k-coloring when k ≥ ∆(G) + 1.

In 1994, Chen, Lih, and Wu [4] conjectured an equitable analogue of Brooks’ Theorem [3],
known as the ∆-Equitable Coloring Conjecture.

Conjecture 2 ([4]). A connected graph G is equitably ∆(G)-colorable if and only if it is
different from Km, C2m+1, and K2m+1,2m+1.

Conjecture 2 has been proven true for interval graphs, trees, outerplanar graphs, subcubic
graphs, and several other classes of graphs [4, 26, 40].

For disconnected graphs, equitable k-colorings on components can be merged after appro-
priately permuting color classes within each component [40], to obtain an equitable k-coloring
of the whole graph. On the other hand, an equitable k-colorable graph may have compo-
nents that are not equitably k-colorable, for example, the disjoint union G = K3,3 + K3,3

with k = ∆(G). With this in mind, Kierstead and Kostochka [16] extended Conjecture 2 to
disconnected graphs.

A total k-coloring of a graph G is a labeling f : V (G) ∪ E(G) → S where |S| = k and
f(u) 6= f(v) whenever u and v are adjacent or incident in G. For some basic applications
of total coloring, see [23]. The total chromatic number of a graph G, denoted χ′′(G), is the
smallest integer k such that G has a total k-coloring. Clearly, for any graph G, χ′′(G) ≥
∆(G) + 1. A famous open problem in total coloring is the Total Coloring Conjecture.

Conjecture 3 ([1]). For any graph G, we have χ′′(G) ≤ ∆(G) + 2.

Total coloring can be rephrased in terms of vertex coloring. Specifically, the total graph of
graph G, T (G), is the graph with vertex set V (G) ∪E(G) and vertices are adjacent in T (G)
if and only if the corresponding elements are adjacent or incident in G. Then G has a total
k-coloring if and only if T (G) has a proper k-coloring. It follows that χ′′(G) = χ(T (G)).

Given a graph G, one can construct T (G) in two steps: first subdivide every edge of G to
get a new graph H, then take its square H2 (i.e. add an edge uv whenever u, v are vertices in
H with distance 2). For example, for paths on m vertices and cycles on n vertices, we have
that: T (Pm) = P 2

2m−1 and T (Cn) = C2
2n.
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In 1994, Fu [9] initiated the study of equitable total coloring. A total k-coloring of a graph
G is an equitable total k-coloring of G if the sizes of the color classes differ by at most 1. In
the same paper, Fu introduced the Equitable Total Coloring Conjecture.

Conjecture 4 ([9]). For every graph G, G has an equitable total k-coloring for each k ≥
max{χ′′(G),∆(G) + 2}.

The “∆(G) + 2” is required because Fu [9] found an infinite family of graphs G with
χ′′(G) = ∆(G) + 1 but no equitable total (∆(G) + 1)-coloring. Note that if Conjecture 3 is
true, we would have max{χ′′(G),∆(G) + 2} = ∆(G) + 2.

In terms of total graphs, Conjecture 4 states that for any graph G, T (G) has an equitable
k-coloring for each k ≥ max{χ(T (G)),∆(G) + 2}. Since ∆(T (G)) = 2∆(G), this is much
stronger than Theorem 1 and the ∆-ECC for total graphs.

Fu [9] showed that Conjecture 4 holds for complete bipartite graphs, complete t-partite
graphs of odd order, trees, and certain split graphs. Equitable total coloring has also been
studied for graphs with maximum degree 3 [37], joins of certain graphs [11, 12, 41], the
Cartesian product of cycles [5], and the corona product of cubic graphs [10].

1.2 Equitable Choosability and List Total Coloring

List coloring is a well-studied variation of classic vertex coloring, and list versions of
total coloring and equitable coloring have each received a lot of attention. List coloring was
introduced independently by Vizing [36] and Erdős, Rubin, and Taylor [8] in the 1970’s.
For a graph G, if each vertex v ∈ V (G) is assigned a list of colors L(v), we say L is a list
assignment for G. The graph G is L-colorable if there exists a proper coloring f of G such
that f(v) ∈ L(v) for each v ∈ V (G) (and f is a proper L-coloring of G). The list chromatic
number of a graph G, denoted χl(G), is the smallest k such that G is L-colorable whenever
L is a list assignment with lists of size k (or more). We say that a graph G is k-choosable
when χl(G) ≤ k. When the lists associated with the list assignment L have uniform size k,
we say that L is a k-assignment.

Considering identical lists yields χ(G) ≤ χl(G), while greedy coloring yields χl(G) ≤
∆(G) + 1, for all graphs G. Vizing [36] proved a list version of Brooks’ Theorem: every
connected graph G which is neither a complete graph nor an odd cycle satisfies χl(G) ≤ ∆(G).
Erdős, Taylor, and Rubin [8] observed that bipartite graphs can have arbitrarily large list
chromatic numbers, which shows that the gap between χ(G) and χl(G) can be arbitrarily
large. Graphs for which χ(G) = χl(G) are called chromatic-choosable graphs [32].

List total coloring (i.e., list coloring of total graphs) has been studied by many researchers.
In 1997, Borodin, Kostochka, and Woodall introduced the List Total Coloring Conjecture.

Conjecture 5 ([2]). For any multigraph G, χ(T (G)) = χl(T (G)); i.e., total graphs are
chromatic-choosable.

Conjecture 5 has been verified for certain planar graphs [6, 28, 25, 38] and multicircuits [20,
21]. In [19] it was conjectured that the square of every graph is chromatic-choosable (a much
stronger conjecture), but this was recently disproved by Kim and Park [18].

A list analogue of equitable coloring was introduced in 2003 by Kostochka, Pelsmajer, and
West [22]. Suppose L is a k-assignment for the graph G. A proper L-coloring of G is equitable
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if each color appears on at most ⌈|V (G)|/k⌉ vertices. A graph is equitably k-choosable if an
equitable L-coloring of G exists whenever L is a k-assignment for G.

While a k-choosable graph is always k-colorable, it can happen that a graph is equitably
k-choosable but not equitably k-colorable: for example, K1,6 with k = 3. Like equitable
k-coloring, equitable k-choosability of a graph G is not necessarily inherited by components
or subgraphs H: the color class size restriction may be harder to satisfy. Unlike equitable
k-coloring, equitable k-choosability of its components does not imply that the whole (discon-
nected) graph is also equitably k-choosable: for example, K1,6 +K2 with k = 3.

List analogues of Theorem 1 and Conjecture 2 are proposed in [22].

Conjecture 6 ([22]). Every graph G is equitably k-choosable when k ≥ ∆(G) + 1.

Conjecture 7 ([22]). A connected graph G is equitably k-choosable for each k ≥ ∆(G) if it
is different from Km, C2m+1, and K2m+1,2m+1.

Conjectures 6 and 7 have been proved for forests, connected interval graphs, 2-degenerate
graphs with ∆(G) ≥ 5, and small graphs (at most 2k vertices) [22], as well as outerplanar
graphs [44], series-parallel graphs [42], and other classes of planar graphs [24, 43, 45]). In
2013, Kierstead and Kostochka made substantial progress on Conjecture 6, as follows.

Theorem 8 ([17]). If G is any graph, then G is equitably k-choosable whenever

k ≥











∆(G) + 1 if ∆(G) ≤ 7

∆(G) + ∆(G)+6
7 if 8 ≤ ∆(G) ≤ 30

∆(G) + ∆(G)
6 if ∆(G) ≥ 31.

We are finally ready to turn our attention to total equitable choosability, a combination
originally suggested by Nakprasit [31]. We begin with a natural extension of Conjecture 4,
which may be called the List Equitable Total Coloring Conjecture.

Conjecture 9. For every graph G, T (G) is equitably k-choosable for each
k ≥ max{χl(T (G)),∆(G) + 2}.

Fu’s infinite family of graphs G with χ′′(G) = ∆(G) + 1 and no equitable total (∆(G) +
1)-coloring also has the property that T (G) is not equitably (∆(G) + 1)-choosable, so the
Conjecture 9 would be sharp if true. Also note that since ∆(T (G)) = 2∆(G), the Conjecture 9
is saying something stronger about total graphs than Conjectures 6 and 7.

1.3 Results

For our main result, we will need to consider certain powers of paths and powers of cycles.
Recall that Gk, power of a graph G, has the same vertex set as G and edges between any
two vertices within distance k in G. Since powers of paths are interval graphs, Conjectures 6
and 7 follow from [22], but a stronger result is possible.

Theorem 10. For p, n ∈ N, P p
n is equitably k-choosable whenever k ≥ p+ 1.

4



Note that P p
n is a complete graph when n ≤ p + 1 and Cp

n is a complete graph when
n ≤ 2p + 1. Theorem 10 is sharp because P p

n contains a copy of Kp+1 (unless n ≤ p) so it
isn’t even p-colorable.

We next prove Conjectures 6 and 7 for powers of cycles. Note that Theorem 11 needs
p ≥ 2 to avoid odd cycles and it needs n ≥ 2p + 2 to avoid complete graphs.

Theorem 11. For p, n ∈ N with p ≥ 2 and n ≥ 2p+ 2, Cp
n is equitably k-choosable for each

k ≥ 2p = ∆(Cp
n).

We will use a lemma from [22] which was used to prove many earlier results. If L is a
list assignment for a graph G and H is a subgraph of G, we will also consider L to be a list
assignment for H by restricting L to the vertices of H. Let NG(v) represent the neighborhood
of v, which is the set of vertices in V (G) adjacent to v in G.

Lemma 12 ([22]). Let G be a graph, and let L be a k-assignment for G. Let
S = {x1, x2, . . . , xk} be a set of k vertices in G. If G− S has an equitable L-coloring and

|NG(xi)− S| ≤ k − i

for 1 ≤ i ≤ k, then G has an equitable L-coloring.

Lemma 12 is all that is needed for the proof of Theorem 10. However, for our proof of
Theorem 11, we have created a slightly more general lemma which is a bit trickier to apply.

For any graph G and U ⊆ V (G), let G[U ] denote the subgraph of G induced by U , which
is the graph with vertex set U and edge set {uv ∈ E(G) : u ∈ U, v ∈ U}.

Lemma 13. Let G be a graph, and let L be a k-assignment for G. Let S = {x1, x2, . . . , xmk}
where m ∈ N and x1, x2, . . . , xmk are distinct vertices in G. Suppose that c is an equitable
L-coloring of G− S. For each i satisfying 1 ≤ i ≤ mk, let

L′(xi) = L(xi)− {c(u) : u ∈ NG(xi)− S}.

If there is a proper L′-coloring of G[S] which has no color class of size exceeding m, then G
has an equitable L-coloring.

That all happens in Section 2. In Section 3 we prove our main result: we verify Conjec-
ture 9 for graphs G with ∆(G) ≤ 2.

Theorem 14. If G is a multigraph with ∆(G) ≤ 2, then T (G) is equitably k-choosable for
each k ≥ ∆(G) + 2. In particular, the List Equitable Total Coloring Conjecture holds for all
graphs G with ∆(G) ≤ 2.

If G is a graph with ∆(G) ≤ 2, then its components are paths and cycles. Recall that
T (Pm) = P 2

2m−1 and T (Cn) = C2
2n. Thus, by the end of Section 2 we will already have shown

Theorem 14 for connected graphs and linear forests, but that does not suffice: recall that
in general, it isn’t enough to prove equitable k-choosability for every component of a graph.
The disconnected case of the proof of Theorem 14 will require heavy use of Lemma 13 and
further ideas. We should note that Theorem 14 is obvious when ∆(G) is 0 or 1 and the k ≥ 5
case follows from Theorem 8, so we need only consider the case where ∆(G) = 2 and k = 4.
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We will actually prove something a bit stronger than Theorem 14 in Section 3. Note
that for multigraphs G with ∆(G) ≤ 2, each component of T (G) is a square of an odd path,
a square of an even cycle on at least 6 vertices, or a copy of K4. We will prove equitable
4-choosability for graphs where components may be square of any path, square of any cycle
on at least 6 vertices, or a copy of K4, and we also prove equitable 3-choosability for graphs
where each component is a square of a cycle of length divisible by 3 or a square of a path
(Theorem 17). So we find exactly which total graphs T (G) with ∆(G) = 2 are equitably
3-choosable.

Finally, we mention that Conjecture 9 has also been proved for trees of maximum degree
3, stars, and double stars [30], but for the sake of brevity, we have not included these results
in this paper.

2 Equitable Choosability of Powers of Paths and Cycles

List coloring powers of cycles and paths is well understood. It is easy to see that χl(P
p
n) =

p + 1 whenever 1 ≤ p ≤ n − 1. Prowse and Woodall [34] determined the chromatic number
for all cycle powers and showed that powers of cycles are chromatic-choosable.

We begin with a straightforward application of Lemma 12.

Proof of Theorem 10. We will use induction on n, with p and k fixed. Let L be any k-
assignment for G = P p

n . If n ≤ k, it suffices to greedily L-color vertices with distinct colors.
Suppose that n > k and that the desired result holds for natural numbers less than

n. Label the vertices v1, v2, . . . , vn in order taken from the underlying path Pn. Now, let
xi = vk−i+1 for each 1 ≤ i ≤ k. We let S = {x1, x2, . . . , xk}. Note that |NG(xi) − S| =
max{0, p − i + 1} ≤ k − i for each xi ∈ S. The inductive hypothesis guarantees that G − S
has an equitable L-coloring. Applying Lemma 12 completes the proof.

Next, we work toward proving Theorem 11. We begin with the proof of Lemma 13.

Proof of Lemma 13. Let n = |V (G)|. Then each color class associated with c has size at
most ⌈(n−mk)/k⌉ = ⌈n/k⌉ −m. Suppose that c′ is a proper L′-coloring of G[S] which uses
no color more than m times. If we combine c and c′, we get a proper L-coloring of G such
that each color class has size at most ⌈n/k⌉, as required.

The next lemma is a straightforward fact. We use α(G) to denote the independence
number of G, which is the size of the largest independent set of vertices in G.

Lemma 15. Suppose that G is a graph with n vertices, and suppose k is a positive integer
such that α(G) ≤ ⌈n/k⌉ and χl(G) ≤ k. Then, G is equitably k-choosable.

Proof. Suppose that L is an any k-assignment for G. Since χl(G) ≤ k, we know that there is
a proper L-coloring, c, of G. Moreover, since each of the color classes associated with c are
independent sets, we know that there is no color classes associated with c of size exceeding
α(G). Since α(G) ≤ ⌈n/k⌉, we have that c is an equitable L-coloring of G.

6



Now, we extend the basic idea of Lemma 12 to apply when the bound |NG(xi)−S| ≤ k−i
isn’t quite satisfied. To do that, it’s not enough to look at the number of colors remaining for
each xi ∈ S after removing colors on neighbors not in S; we need to actually look at which
colors remain available for each xi ∈ S.

Lemma 16. Suppose H is a graph with V (H) = {xi : 1 ≤ i ≤ k}. Suppose L is a k-
assignment for H such that |L(xi)| ≥ i for 1 ≤ i ≤ k − 1 and |L(xk)| ≥ k − 1. If |L(xk)| ≥ k
or L(xk−1) 6= L(xk), then H is L-colorable with k distinct colors.

Proof. The result is obvious when |L(xk)| ≥ k. So, suppose that |L(xk)| = k − 1 and
L(xk−1) 6= L(xk). By the restrictions on the list sizes, we can greedily color the vertices
x1, x2, . . . , xk−2 with k− 2 distinct colors. Let C be the set of k− 2 colors used to color these
vertices, and let L′(vi) = L(vi) − C for i = k − 1, k. Note that |L′(vi)| ≥ 1 for i = k − 1, k,
and we are done if L′(vk−1) or L′(vk) have two or more elements. So, assume |L′(vi)| = 1
for i = k − 1, k. Then, C ⊂ L(vi) for i = k − 1, k, and since L(xk−1) 6= L(xk), we know
L′(xk−1) 6= L′(xk). Thus, we can complete a proper L-coloring ofH with k distinct colors.

We now prove Theorem 11.

Proof of Theorem 11. Let G = Cp
n, and V (G) = {v1, v2, . . . , vn} where the vertices are writ-

ten in cyclic order based upon the underlying Cn used to form G. Let L be an arbitrary
k-assignment for G. If k ≥ n, we can obtain an equitable L-coloring of G by coloring the
vertices of G with n distinct colors. Thus, we may assume that n ≥ k + 1.

If k ≥ 2p+1, we will apply Lemma 12. Let S = {vi : 1 ≤ i ≤ k}. Then, for 1 ≤ i ≤ p+1,
|NG(vi) − S| ≤ p − i + 1. For p + 2 ≤ i ≤ k, |NG(vi) − S| ≤ p. Now, let xi = vk+1−i

for 1 ≤ i ≤ k − p − 1, and let xk−p = v1, xk−p−1 = v2, . . . , xk = vp+1. It is now easy to
check |NG(xi) − S| ≤ k − i for 1 ≤ i ≤ k. Since G − S is the square of a path, Theorem 10
implies G− S has an equitable L-coloring. Lemma 12 then implies that G has an equitable
L-coloring. So, we assume that k = 2p.

Suppose that n ≥ 2p+ 3. Let S = {vi : 1 ≤ i ≤ 2p}, S′ = {vi : 2p + 3 ≤ i ≤ min{4p, n}},
and S′′ = {v2p+1, v2p+2}. We let A = S ∪ S′ ∪ S′′. Note that if n ≥ 4p+ 1, H = G−A is the
square of a path and Theorem 10 implies there is an equitable L-coloring of H. Suppose we
color H according to an equitable L-coloring. With the intent of using Lemma 13, we will
show that we can find a proper L-coloring of G[A] which uses no color more than twice, and
is not in conflict with the coloring used for H.

We claim we can greedily L-color the vertices in S′ in reverse order with distinct colors
while avoiding colors already used on neighbors of each vertex. Specifically, the ith vertex in
this order for 1 ≤ i ≤ p must avoid i− 1 colors already used on S′ and up to p− i+ 1 colors
already used on V (H), and there are k > p = (i − 1) + (p − i + 1) colors choices available.
Each remaining vertex of S′ must only avoid the colors already used on vertices in S′ which
is doable since k > 2p − 2 ≥ |S′|. Thus, S′ is colored with distinct colors, and we call the
proper L-coloring of G− (S ∪ S′′) we have thus far c.

Note that vp has exactly one neighbor that is already colored, vn. Let L′(vp) = L(vp) −
{c(vn)}. If |L′(vp)| = 2p − 1, we can let c∗p+1 be an element in L(vp+1) − L′(vp). Otherwise,
let c∗p+1 be any element of L(vp+1) (note we have not colored vp+1 yet).
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We will now color the vertices in S′′. Clearly, all their neighbors that have been colored
are in S′ since 2p + 2 + p ≤ 4p. Since |S′| ≤ 2p − 2 and |L(v2p+1)| ≥ 2p, we can color v2p+1

with a color in L(v2p+1) which avoids the colors used on S′ and avoids the color c∗p+1. Then,
we can color v2p+2 with a color in L(v2p+2) which avoids the colors used on S′ ∪{v2p+1}. We
have now colored S′ ∪ S′′ with 2p distinct colors.

Now, for each vi ∈ S let L′(vi) be equal to L(vi) after removing all colors used on
neighbors of vi. Notice that c∗p+1 ∈ L′(vp+1). Also, for 1 ≤ i ≤ p, |L′(vi)| ≥ p + i − 1 and
|L′(v2p−i+1)| ≥ p + i − 1. With the intent of applying Lemma 16, we rename the vertices of
S′ as follows

x1 = v2p, x2 = v1, x3 = v2p−1, x4 = v2, . . . , x2p−1 = vp+1, x2p = vp.

If |L′(vp)| = 2p − 1, then c∗p+1 ∈ L′(vp+1)− L′(vp). So, L′(vp) 6= L′(vp+1). Thus, Lemma 16
applies, and we can find a proper L′-coloring of G[S] which uses 2p distinct colors. By
Lemma 13, the case where n ≥ 2p+ 3 is complete.

Finally, when n = 2p+2, since G is not a complete graph or odd cycle, χl(G) ≤ ∆(G) = 2p
by the Vizing’s extension of Brooks’ Theorem [36]. Also, α(G) = ⌊n/(p+1)⌋ = 2 = ⌈n/(2p)⌉.
So, Lemma 15 implies that there is an equitable L-coloring of G. (Note that this last argument
actually works whenever 2p+ 2 ≤ n ≤ 3p + 2 and k = 2p.)

3 Maximum Degree Two

In this section we prove our main result, Theorem 14. The difficulty of the proof is that
we must deal with disconnected graphs. We heavily rely on Theorem 8 and Lemma 13 to
prove this result, which we restate here.

Theorem 14. If G is a multigraph with ∆(G) ≤ 2, then T (G) is equitably k-choosable for
each k ≥ ∆(G) + 2. In particular, the List Equitable Total Coloring Conjecture holds for all
graphs G with ∆(G) ≤ 2.

Theorem 14 is obvious when ∆(G) = 0. When ∆(G) = 1, the graph T (G) consists of
disjoint copies of K3 and isolated vertices (and there must be at least one copy of K3), so
∆(T (G)) = 2 and Theorem 8 implies that T (G) is equitably k-choosable for each k ≥ 3 =
∆(G) + 2 (although one could instead give an inductive proof using Lemma 12).

When G is a multigraph (or simple graph) with ∆(G) = 2, proving Theorem 14 is not
as straightforward. In this case T (G) consists of the disjoint union of squares of cycles on
at least 6 vertices, squares of paths, and copies of K4. Theorem 8 tells us that T (G) is
equitably k-choosable for each k ≥ ∆(T (G)) + 1, but ∆(T (G)) + 1 may be as large as 5.
So, we still need to show that T (G) is equitably 4-choosable in this case. From the previous
section, we know that squares of cycles of order at least 6, squares of paths, and copies of
K4 are all equitably 4-choosable. However, one should recall from Section 1.2 that this does
not necessarily imply that the disjoint union of such graphs will be equitably 4-choosable.
Overcoming this obstacle is the main difficulty in the proof of Theorem 14.

Theorem 17 will complete the proof of Theorem 14. In the proof we will use the fact
from Prowse and Woodall [34] that when n ≥ 6, χl(C

2
n) = 3 if and only if 3 divides n and

χl(C
2
n) = 4 otherwise.
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Theorem 17. Suppose that G is a graph with components that are squares of paths, squares
of cycles on at least 6 vertices, and copies of K4. Then G is equitably 4-choosable. Moreover,
G is equitably 3-choosable if and only if its components consist of no copies of K4 and all of
its components that are squares of cycles have order divisible by 3.

Theorem 17 is stronger than Theorem 14 in a couple ways. One, it includes many graphs
that are not total graphs. Two, it tells us exactly which total graphs T (G) with ∆(G) = 2
are equitably 3-choosable.

Proof. If there are any components that are squares of paths, let Q be their union. Since the
underlying paths form a spanning subgraph of a single path, we can add edges to obtain the
square of a path. Adding edges can only make the problem more difficult, so we may assume
that Q is a square of a path. Also, let R1, . . . , Rm be the squares of cycles.

We will prove the second part first. If G is equitably 3-choosable, then each of its com-
ponents are 3-choosable. Since χl(K4) = 4 and χl(C

2
n) = 4 when 3 does not divide n, we

know that the components of G consist of no copies of K4, and all of G’s components that
are squares of cycles have order divisible by 3.

Conversely, suppose each |V (Ri)| is divisible by 3 and G = Q +
∑m

i=1Ri. Let L be an
arbitrary 3-assignment for G. Since χl(Ri) = 3 and α(Ri) = |V (Ri)|/3, Lemma 15 yields a
proper L-coloring of Ri with color classes of size at most |V (Ri)|/3, for each i. By Theorem 10,
Q has a proper L-coloring with color classes of size at most ⌈|V (Q)|/3⌉. Combining these
colorings gives a proper L-coloring of G with color classes of size at most

⌈|V (Q)|/3⌉ +
m
∑

i=1

|V (Ri)|/3 =

⌈

|V (Q)|/3 +
m
∑

i=1

|V (Ri)|/3

⌉

= ⌈|V (G)/3⌉

since |V (Ri)|/3 is an integer for each i. Thus, G is equitably 3-choosable.
Now we prove the first part by induction on |V (G)|. The result is clear when |V (G)| ≤ 4.

So, suppose |V (G)| ≥ 5 and the result holds for graphs on fewer than |V (G)| vertices. Let
L be any 4-assignment for G. If |V (Q)| ≥ 4, delete four vertices from one end, and apply
induction to L-color the rest of the graph. Then apply Lemma 12 to extend the L-coloring to
G. If there are any copies of K4 in G, remove one and apply induction, then apply Lemma 12.
So, assume that there are no copies of K4 and that |V (Q)| ≤ 3. Since |V (G)| ≥ 5, m ≥ 1.

Suppose without loss of generality that |V (R1)| = maxi |V (Ri)|. Let n = |V (Ri)| and
label the vertices of R1 in cyclic order v1, . . . , vn. If n ≥ 8, then we can apply the method used
in the proof of Theorem 11 (with p = 2 and k = 4 and this n): delete a set S = {v1, . . . , v8},
apply induction to G− S, then use Lemmas 13 and 16 to extend to S.

It remains to consider cases n = 6 and n = 7.
Case where n = 6: First, we will specify a proper L-coloring of R1. Pick any color

c1 ∈ L(v1) and let c(v1) = c1. Let L′(vi) = L(vi)− {c1} for 2 ≤ i ≤ 6. Since χl(R1) = 3, we
can find a proper L′-coloring of R1 − {v1} to complete c. Since α(R1 − {v1}) = 2, at most
two color classes associated with c have size 2, and the rest of the color classes are of size 1.
Let C be the set of colors used twice by c on R1.

Now consider the sub-case where m ≥ 2. In this case, |V (R2)| = 6. Let u1, u2, . . . , u6 be
the vertices of R2 in cyclic order. Note that the only independent sets of size greater than 1
in R2 are {u1, u4}, {u2, u5}, and {u3, u6}.
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Now, for each 1 ≤ i ≤ 3: If L(ui) ∩ C 6= ∅, let L′(ui) be obtained from L(ui) by deleting
one of the elements in L(ui) ∩ C; otherwise, let L′(ui) = L(ui). Next, if L′(ui) ∩ C 6= ∅ and
L(ui+3) contains the color in L′(ui)∩C, remove it from L(ui+3) to define L′(ui+3); otherwise
let L′(ui+3) = L(ui+3).

By the construction, any proper L′-coloring of R2 uses each color in C at most once. Since
χl(R2) = 3 and every list L′(ui) on R2 has size at least 3, there is a proper L′-coloring of R2;
since α(R2) = 2 each color is used at most 2 times on R2. Combining this with c on R1 we
get a proper L-coloring of R1 + R2 which uses each color at most 3 times. If |V (G)| = 6 we
are done; otherwise apply induction and Lemma 13 to extend the coloring to G.

Now consider the sub-case m = 1. If |V (G)| ≤ 8 we need a proper L-coloring with color
classes of size at most 2. We are done if G = R1. If G = R1 +Q and |V (Q)| is 1 or 2, we can
remove C from lists on V (Q) and then L-color Q without repeating a color, which suffices.
Otherwise |V (Q)| = 3, in which case we just greedily L-color Q with distinct colors. Then
each color is used at most 3 times on G, which suffices since ⌈9/4⌉ = 3.

Case where n = 7: Suppose that n = 7. First consider the sub-case wherem ≥ 2. In this
sub-case 6 ≤ |V (R2)| ≤ 7, and suppose that u1, u2, . . . , us (s is 6 or 7) are the vertices of R2

in cyclic order. With the intent of applying Lemma 13, let S = {v1, v2, . . . , v7, u1, u2, . . . , u5}.
By induction there is an equitable L-coloring, c, of G−S, and we let L′ be the list assignment
for G[S] given by L′(x) = L(x)−{c(u) : u ∈ (NG(x)−S)} for each x ∈ S. Now, consider the
graph H = G[u1, u2, . . . , u5]. We claim that there exists a proper L′-coloring, c′, of H which
has at most one color class of size 2 and no color classes of size more than 2. We will prove
this claim when s = 7 and when s = 6.

When s = 7, H is a copy of P 2
5 . Note that |L

′(ui)| ≥ 2 for i = 1, 5, |L′(ui)| ≥ 3 for i = 2, 4,
and |L′(u3)| = 4 (since L(u3) = L′(u3)). We form c′ by first coloring u4 with c4 ∈ L′(u4)
so that |L′(u5) − {c4}| ≥ 2 (this is possible since |L′(u4)| ≥ 3 and |L′(u5)| ≥ 2). Now, let
L′′(ui) = L′(ui) − {c4} for i = 1, 2, 3, 5. For i = 1, 2, 3, |L′′(ui)| ≥ i. This means we may
greedily color u1, u2, and u3 with distinct colors from L′′. Having colored u1, u2, u3, u4 with 4
distinct colors, we may complete c′ by coloring u5 with a color in L′′(u5) distinct from the
color used on u3.

When s = 6, note that H is the same as in the case s = 7 except u1 is adjacent to u5.
When s = 6, |L′(ui)| ≥ 3 for i = 1, 2, 4, 5 and |L′(u3)| = 4 (since L(u3) = L′(u3)). We
form c′ by coloring u3 with c3 ∈ L′(u3) so that |L′(u4) − {c3}| ≥ 3 (this is possible since
|L′(u3)| = 4 and |L′(u4)| ≥ 3). Now, let L′′(ui) = L′(ui) − {c3} for i = 1, 2, 4, 5. We notice
that |L′′(ui)| ≥ 2 for i = 1, 2, 5 and |L′′(u4)| ≥ 3. Also, H[{u1, u2, u4, u5}] is a 4-cycle. We
complete c′ by finding a proper L′′-coloring, f , of this 4 cycle. If f has two color classes of
size 2, we recolor u4 with a color not used by f (this is possible since |L′′(u4)| ≥ 3). The
resulting coloring has the desired property.

Having proven our claim, we now return to the sub-case where n = 7 and m ≥ 2. In
order to apply Lemma 13, we will show that there is a proper L′-coloring of G[S] which has
no color class of size more than 3. To construct such a coloring, we begin with a proper
L′-coloring, c′, of H which has at most one color class of size 2 and no color class of size more
than 2. Suppose that c1 is the color used twice by c′, or an arbitrary color used by c′ if c′

uses no color twice. Notice that L(vi) = L′(vi) for i = 1, 2, . . . 7. If c1 /∈ ∪7
i=1L

′(vi), we find
a proper L′-coloring, c′′, of R1 (which is possible since χl(R1) = 4). Note c′′ never uses the
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color c1 and no color class associated with c′′ has size more than α(R1) = ⌊7/3⌋ = 2. Thus,
if we combine c′ and c′′, we obtain a proper L′-coloring of G[S] with no color class of size
more than 3. So, without loss of generality, suppose that c1 ∈ L′(v1). In this situation we
color v1 with c1, and we let L′′(vi) = L′(vi)−{c1} for i = 2, 3, . . . , 7. We note that R1−{v1}
is a spanning subgraph of a copy of C2

6 . Since χl(C
2
6 ) = 3, there exists a proper L′′-coloring

of R1 − {v1} which uses no color more than α(C2
6 ) = 2 times. Let c′′ be the coloring of R1

obtained when we color v1 with c1 and use such an L′′-coloring of R1−{v1} for what remains.
If we combine c′ and c′′, we obtain a proper L′-coloring of G[S] with no color class of size
more than 3 (since c1 is only used once by c′′) as desired.

Now, consider the sub-case m = 1. Let c′ be a proper L-coloring of R1, and suppose
we color R1 according to c′. Clearly, c′ has at most 3 color classes of size 2 and no color
class of size more than 2. Let C consist of the colors that are used more than once by c′. If
|V (G)| ≤ 8, we need a proper L-coloring with color classes of size at most 2. We are done if
G = R1. If G = R1 + Q with |V (Q)| = 1, we color the remaining vertex with a color that
is not in C. Otherwise |V (Q)| is 2 or 3, and we use distinct colors to color the remaining
vertices, and each color is used at most 3 times on G, which suffices since ⌈9/4⌉ = 3.

Notice that if our goal was to only prove Theorem 14 the above proof could be significantly
shortened. In particular, we would not need to prove the result about equitable 3-choosability,
and we could completely eliminate the case where n = 7 since the total graph of a multigraph
with maximum degree 2 does not have any squares of odd cycles as components. The reason
we present the stronger result is that the equitable choosability of the disjoint union of powers
of paths and cycles is an interesting topic in its own right.
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