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Packing chromatic number of subdivisions of cubic graphs
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Abstract

A packing k-coloring of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for
each 1 ≤ i ≤ k the distance between any two distinct x, y ∈ Vi is at least i + 1. The packing
chromatic number, χp(G), of a graph G is the minimum k such that G has a packing k-coloring.
For a graph G, let D(G) denote the graph obtained from G by subdividing every edge. The
questions on the value of the maximum of χp(G) and of χp(D(G)) over the class of subcubic
graphs G appear in several papers. Gastineau and Togni asked whether χp(D(G)) ≤ 5 for any
subcubic G, and later Brešar, Klavžar, Rall and Wash conjectured this, but no upper bound
was proved. Recently the authors proved that χp(G) is not bounded in the class of subcubic
graphs G. In contrast, in this paper we show that χp(D(G)) is bounded in this class, and does
not exceed 8.

Mathematics Subject Classification: 05C15, 05C35.
Key words and phrases: packing coloring, cubic graphs, independent sets.

1 Introduction

For a positive integer i, a set S of vertices in a graph G is i-independent if the distance in G
between any two distinct vertices of S is at least i+1. In particular, a 1-independent set is simply
an independent set.

A packing k-coloring of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for
each 1 ≤ i ≤ k, the set Vi is i-independent. The packing chromatic number, χp(G), of a graph
G, is the minimum k such that G has a packing k-coloring. The notion of packing k-coloring
was introduced in 2008 by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [16] (under the
name broadcast coloring) motivated by frequency assignment problems in broadcast networks. The
concept has attracted a considerable attention recently: there are around 30 papers on the topic
(see e.g. [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22] and references in them). In particular, Fiala and
Golovach [10] proved that finding the packing chromatic number of a graph is NP-hard even in the
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class of trees. Sloper [22] showed that there are graphs with maximum degree 4 and arbitrarily
large packing chromatic number. In particular, coloring of graph subdivisions were considered. For
a graph G, let D(G) denote the graph obtained from G by subdividing every edge.

The questions on how large can χp(G) and χp(D(G)) be if G is a subcubic graph (i.e., a
graph with maximum degree at most 3) were discussed in several papers (see [6, 7, 13, 21, 22]).
In particular, Gastineau and Togni [13] asked whether χp(D(G)) ≤ 5 for every subcubic graph G.
Brešar, Klavžar, Rall, and Wash [7] later conjectured this and proved the validity of their conjecture
for some special classes of subcubic graphs (e.g., the class of generalized Petersen graph). However,
no upper bounds for the whole class of (sub)cubic graphs were proved in either case. Recently, the
authors [2] showed that χp(G) is not bounded in the class of cubic graphs and that ‘many’ cubic
graphs have ‘high’ packing chromatic number.

In contrast, in this paper we give the first upper bound on χp(D(G)) for subcubic G: we show
that χp(D(G)) is bounded by 8 in this class. We will prove the following slightly stronger result.

Theorem 1. For every connected subcubic graph G, the graph D(G) has a packing 8-coloring such
that color 8 is used at most once.

The theorem will be proved in the language of S-colorings introduced in [17] and used in [13, 18].

Definition 2. For a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an S-coloring
of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for each 1 ≤ i ≤ k the distance
between any two distinct x, y ∈ Vi is at least si + 1.

In particular, a (1, . . . , 1)-coloring is an ordinary coloring, and a (1, 2, . . . , k)-coloring is a packing
k-coloring. For subcubic graphs, Gastineau and Togni [13] proved that they are (1, 1, 2, 2, 2)-
colorable and (1, 2, 2, 2, 2, 2, 2)-colorable. We will use the following observation of Gastineau and
Togni [13].

Proposition 3 ([13] Proposition 1). Let G be a graph and S = (s1, . . . , sk) be a non-decreasing
sequence of integers. If G is S-colorable then D(G) is (1, 2s1 + 1, . . . , 2sk + 1)-colorable.

In particular, if G is (1, 1, 2, 2, 3, 3)-colorable, then D(G) has a packing 7-coloring. In view of
this, by a feasible coloring of G we call a coloring of G with colors 1a, 1b, 2a, 2b, 3a, 3b such that the
distance between any two distinct vertices of color ix is at least i+1 for all 1 ≤ i ≤ 3 and x ∈ {a, b}.

Definition 4. A k-degenerate graph is a graph in which every subgraph has a vertex of degree at
most k.

In the next two sections we discuss feasible coloring of 2-degenerate subcubic graphs. In Sec-
tion 2, we will show that if a 2-degenerate subcubic graph G has a feasible coloring f and v, u are
vertices of G with degree at most 2, then we can change f to another feasible coloring with some
control on the colors of v and u. The long proof of one of the lemmas, Lemma 9, is postponed till
the last section. Based on the lemmas of Section 2, in Section 3 we prove the following theorem
(that gives a better bound than Theorem 1 but for a more restricted class of graphs).

Theorem 5. Every 2-degenerate subcubic graph G has a feasible coloring. In particular, D(G) has
a packing 7-coloring.

In Section 4 we use Theorem 5 and the lemmas in Section 2 to derive Theorem 1. In the final
section we present a proof of Lemma 9.
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2 Lemmas on feasible coloring

Definition 6. For a positive integer s and a vertex a in a graph G, the ball BG(a, s) in G of radius
s with center a is {v ∈ V (G) : dG(v, a) ≤ s}, where dG(v, a) denotes the distance in G between v
and a. We abbreviate BG(a, s) to B(a, s) when the graph G is clear from the context.

Definition 7. For a positive integer k, a k-vertex is a vertex of degree exactly k.

For A = {a1, . . . , an} ⊆ V (G) and a coloring f , by f(A) we mean {f(a1), . . . , f(an)}.

Lemma 8. Let G be a subcubic graph and f be a feasible coloring of G. Suppose there are 2-vertices
u, v ∈ V (G) with f(u) = f(v) = 2a. Let N(u) = {u1, u2} and N(v) = {v1, v2}. Then G has a
feasible coloring g satisfying one of the following:
(a) g(u) = 2a and g(v) ∈ {1a, 1b} or g(v) = 2a and g(u) ∈ {1a, 1b};
(b) {g(u), g(v)} = {2a, 2b};
(c) {g(u1), g(u2)} = {g(v1), g(v2)} = {1a, 1b}, and exactly one of u, v has color 2a.

Proof. If {f(u1), f(u2)} 6= {1a, 1b}, then we recolor u with a color α ∈ {1a, 1b}−{f(u1), f(u2)},
and (a) holds. Thus by the symmetry between u and v we may assume

f(u1) = f(v1) = 1a and f(u2) = f(v2) = 1b. (1)

Since f(u) = f(v) = 2a, N(u) ∩N(v) = ∅. In other words,

all vertices u1, u2, v1 and v2 are distinct. (2)

Let G1 denote the subgraph of G induced by the vertices of colors 1a and 1b. If u1 and u2 are in
distinct components of G1, then after switching the colors in the component of G1 containing u2,
we obtain a coloring contradicting (1). Thus we may assume

G has a 1a, 1b-colored u1, u2-path Pu and a 1a, 1b-colored v1, v2-path Pv. (3)

Case 1: u1u2 ∈ E(G). If |N(u1)| = 3, then let u3 ∈ N(u1)− {u, u2}. Similarly, if |N(u2)| = 3,
then let u4 ∈ N(u2)− {u, u1}. If 2b /∈ f(N(u1) ∪N(u2)), then after recoloring u with 2b we get a
coloring satisfying (b). Thus we may assume

|N(u1)| = 3 and f(u3) = 2b. (4)

Let N(u3) ⊆ {u1, u5, u6}. If 2a /∈ f(N(u3)), then since f(u4) 6= 2a (because d(u, u4) = 2) after
switching the colors of u and u1 we obtain a coloring satisfying (a). So we may assume f(u5) = 2a.

Case 1.1: |N(u2)| < 3 or f(u4) 6= 2b. If 1b /∈ f(N(u3)), then we can recolor u3 with 1b. By the
case, we can recolor u with 2b to obtain a coloring satisfying (b). So we may assume f(u6) = 1b
(See Figure 1). Then the coloring g obtained from f by recoloring u and u3 with 1a and u1 with
2b satisfies (a).

Case 1.2: |N(u2)| = 3 and f(u4) = 2b. If u4 = u3, then N(u3) = {u1, u2, u5}. Then u has
no vertices of color 3a at distance at most 3, so after recoloring u with 3a, we obtain a coloring g
satisfying (c). Thus, u4 6= u3.

Case 1.2.1: 1b /∈ f(N(u3)). We recolor u3 with 1b. If 2a /∈ f(N(u4)− u2), then we recolor u2
with 2a and u with 1b to obtain a coloring satisfying (a). If 1a /∈ f(N(u4) − u2), then we recolor
u4 with 1a, u2 with 2b, and u with 1b to obtain a coloring satisfying (a). Thus, we may assume
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Figure 1: Case 1.1.
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Figure 2: Case 2.1.

f(N(u4)− u2) = {1a, 2a}.

Then recoloring u4 with 1b, u2 with 2b, and u with 1b, we obtain a coloring satisfying (a).
Case 1.2.2: 1b ∈ f(N(u3)). Since f(u5) = 2a, this means u6 exists and f(u6) = 1b. Then we

recolor u3 and u2 with 1a and u1 with 1b. If 2a /∈ f(N(u4)− u2), then we recolor u2 with 2a and u
with 1a to obtain a coloring satisfying (a). If 1b /∈ f(N(u4) − u2), then we recolor u4 with 1b and
u with 2b to obtain a coloring satisfying (b). Thus, we may assume

f(N(u4)− u2) = {1b, 2a}.

Then we recolor u4 with 1a, u2 with 2b, and u with 1a to obtain a coloring satisfying (a).
Case 2: u1u2 /∈ E(G). Then we may assume that N(u1) ⊆ {u, u3, u5}, N(u2) ⊆ {u, u4, u6}

and by (3), f(u3) = 1b and f(u4) = 1a. Furthermore, since by the case, u3 6= u2, we may assume
that N(u3) ⊆ {u1, u7, u9} and f(u7) = 1a. It is possible that u7 = u4, but this will not affect the
proof below. Similarly, we will assume that N(u4) ⊆ {u2, u8, u10} and f(u8) = 1b. As in Case 1,
2b ∈ f(N(u1)∪N(u2)), since otherwise we can recolor u with 2b and (b) will hold. In our notation,
this means 2b ∈ {f(u5), f(u6)}. By symmetry, we will assume f(u5) = 2b. We also will assume
N(u5) ⊆ {u1, u11, u13} and N(u6) ⊆ {u2, u12, u14}, where some vertices can coincide.

Case 2.1: |N(u2)| < 3 or f(u6) 6= 2b. If 1b /∈ f(N(u5)), then we can recolor u5 with 1b,
and then u with 2b. The resulting coloring satisfies (b). So we may assume f(u11) = 1b. If
2a /∈ {f(u9), f(u13)}, then by switching the colors of u and u1, we obtain a coloring satisfying (a).
Thus 2a ∈ {f(u9), f(u13)}. If f(u9) = 2a and f(u13) 6= 1a or if f(u13) = 2a and f(u9) 6= 2b, then
after switching the colors of u1 and u5 and recoloring u with 1a, we again get a coloring satisfying
(a). So,

either f(u9) = 2a and f(u13) = 1a or f(u13) = 2a and f(u9) = 2b. (5)

If u6 does not exist, then by (5), the only vertex in B(u, 3) − (N(u) ∪ {u}) that can be colored
with 3a or 3b is u10. Thus after recoloring u with a color in {3a, 3b} − f(u10) we obtain a coloring
satisfying (c). So suppose u6 exists. Let A = {u6, u10, u12, u14}. If 1a /∈ {f(u12), f(u14)}, then we
can recolor u6 with 1a without changing color of any other vertex. Thus we may assume

1a ∈ f(A). (6)

If a color x ∈ {2a, 2b} is not in f(A), then after recoloring u2 with x and u with 1b, we get a coloring
satisfying (a). Thus

2a, 2b ∈ f(A). (7)
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By the argument above, in particular, by (5), colors 3a and 3b are not used on vertices in
B = {u1, u2, u3, u4, u5, u7, u8, u9, u11, u13}. If at least one of them, say 3a, is also not used on A,
then after recoloring u with 3a, we obtain a coloring satisfying (c). Thus

3a, 3b ∈ f(A) (See Figure 2). (8)

Since |f(A)| ≤ 4, relations (6), (7) and (8) cannot hold at the same time, a contradiction.
Case 2.2: |N(u2)| = 3 and f(u6) = 2b. Suppose first that u6 = u5 and that N(u5) =

{u1, u2, u11}. If f(u9) 6= 2b and f(u11) 6= 1a, then after switching the colors of u1 and u5 and
recoloring u with 1a, we get a coloring satisfying (a). So, f(u9) = 2b or f(u11) = 1a. Similarly,
considering switching colors of u2 and u5, we obtain that f(u10) = 2b or f(u11) = 1b. Together,
this means

the colors of at least two vertices in {u9, u10, u11} are in {1a, 1b, 2b}. (9)

By (9), some color y ∈ {3a, 3b} is not used on B(u, 3). Then after recoloring u with y, we obtain a
coloring satisfying (c).

Now we assume u6 6= u5. If 1a /∈ {f(u12), f(u14)}, then after recoloring u6 with 1a, we get
Case 2.1. Thus below we assume f(u12) = 1a. If 2a /∈ {f(u10), f(u14)}, then we obtain a coloring
satisfying (a) by switching the colors of u and u2. Thus, 2a ∈ {f(u10), f(u14)}. If f(u14) 6= 1b and
f(u10) 6= 2b, then after switching the colors of u2 and u6 and recoloring u with 1b, we again get a
coloring satisfying (a). So,

either f(u10) = 2a and f(u14) = 1b or f(u10) = 2b and f(u14) = 2a. (10)

Let A = {u9, u11, u13}. If 2a /∈ f(A), then we obtain a coloring satisfying (a) by switching the
colors of u and u1. Thus,

2a ∈ f(A). (11)

If 1a /∈ f({u11, u13}) and f(u9) 6= 2b, then after switching the colors of u1 and u5 and recoloring u
with 1a, we again get a coloring satisfying (a). Therefore,

1a ∈ f({u11, u13}) or f(u9) = 2b. (12)

By the argument above, in particular, by (10), colors 3a and 3b are not used on vertices in
B = {u1, u2, u3, u4, u5, u7, u8, u10, u12, u14}. If at least one of them, say 3a, is also not used on A,
then after recoloring u with 3a, we obtain a coloring satisfying (c). Thus,

3a, 3b ∈ f(A). (13)

Since |f(A)| ≤ 3, relations (11), (12), and (13) cannot hold at the same time, a contradiction. ✷

Our second lemma is:

Lemma 9. Let G be a subcubic graph and f be a feasible coloring of G. Suppose there is a 2-vertex
u ∈ V (G) with N(u) = {u1, u2}. If f(u) ∈ {3a, 3b}, then we can recolor some vertices of G so that
the resulting coloring g is feasible and satisfies the following:
(a) g(u) /∈ {3a, 3b}, and
(b) at most one vertex is recolored into 3a or 3b, and this vertex (if there is such a vertex) is at
distance at most 3 from u and has degree 3 in G, and at most one vertex of f -color 3a or 3b apart
from u is recolored into some other color, and this vertex (if there is such a vertex) has new color
in {1a, 1b}.

The proof of this lemma is a long case analysis, so we postpone it to the last section.
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3 Proof of Theorem 5

We prove the theorem by induction on the number n of vertices. When n ≤ 6, the claim holds
obviously, since we have 6 colors. When n > 6, we assume the argument holds for every graph with
fewer than n vertices. Let G be any 2-degenerate subcubic graph with n vertices. We may assume
G is connected. Since G is 2-degenerate, it has a vertex, say w, with degree at most 2.

Case 1: d(w) = 1. Let N(w) = w′. Since G−w is an (n− 1)-vertex connected subcubic graph
with dG−w(w

′) ≤ 2, by the induction hypothesis, G− w has a (1, 1, 2, 2, 3, 3)-coloring f . We color
w with a color x ∈ {1a, 1b} − f(w′) to extend f to G.

Case 2: d(w) = 2. Let N(w) = {w1, w2}. Note that G − w has at most two connected
components and each connected component is a connected 2-degenerate subcubic graph with less
than n vertices. By the induction hypothesis, G − w has a feasible coloring f . We may assume
that |NG−w(w1)| = |NG−w(w2)| = 2. Otherwise we can first apply the induction hypothesis to
obtain a (1, 1, 2, 2, 3, 3)-coloring f on G−w, then add leaves (vertices of degree one) to w1 and w2

to obtain a new graph G′ with |NG′−w(w1)| = |NG′−w(w2)| = 2, then assign proper colors to those
leaves we just added to obtain a (1, 1, 2, 2, 3, 3)-coloring f ′ on G′ − w, then prove that G′ has a
(1, 1, 2, 2, 3, 3)-coloring, which can be used to get our desired coloring on G. So below we assume
N(w1) = {w,w3, w4} and N(w2) = {w,w5, w6}.

By Lemma 9, G− w has a feasible coloring f1 such that f1(w1) /∈ {3a, 3b}. Then by Lemma 9
again, G − w also has a feasible coloring f2 such that f2(w2) /∈ {3a, 3b} and no vertex of degree 2
in G−w changed its color to 3a or 3b. Thus we also have f2(w1) /∈ {3a, 3b}. Therefore, G−w has
a feasible coloring f2 such that f2(w1) /∈ {3a, 3b} and f2(w2) /∈ {3a, 3b}.

Case 2.1: Either f2(w1) 6= f2(w2) or f2(w1) = f2(w2) ∈ {1a, 1b}. If {f2(w1), f2(w2)} 6= {1a, 1b},
then we extend f2 to G by assigning f2(w) = α ∈ {1a, 1b} − {f2(w1), f2(w2)}. By the case, if
f2(w1) = f2(w2), then f2(w1) = f2(w2) ∈ {1a, 1b}. Therefore, the extension of f2 to G is feasible
since we do not introduce new conflicts between w1 and w2 by adding w. Thus, we may assume

f2(w1) = 1a and f2(w2) = 1b. (14)

If w1 and w2 are in distinct components of the subgraph G2 of G − w induced by the vertices of
colors 1a and 1b in f2, then after switching the colors 1a and 1b with each other in the component
of G2 containing w2, we obtain a coloring contradicting (14). Thus we may assume

G− w has a 1a, 1b-colored w1, w2-path Pw. (15)

In particular, we may assume f2(w3) = 1b and f2(w5) = 1a (possibly, w3 = w2 and then w5 = w1).
If {2a, 2b} * f2(N(w1) ∪N(w2)− {w}), then we can extend f2 to G by assigning f2(w) = β ∈

{2a, 2b} − f2(N(w1) ∪N(w2)− {w}). Thus, we may assume

|N(w1)| = |N(w2)| = 3, {2a, 2b} ⊆ f2(N(w1) ∪N(w2)− {w}), and by symmetry (16)

f2(w4) = 2a and f2(w6) = 2b. (17)

If 1b /∈ f2(N(w4)− w2), then we can extend f2 to a feasible coloring of G by recoloring w4 with 1b
and letting f2(w) = 2a. By this and the symmetric statement for w6 we can assume that

w4 has a neighbor w7 with f2(w7) = 1b and w6 has a neighbor w8 with f2(w8) = 1a. (18)

6



Case 2.1.1: w1w2 ∈ E(G) (i.e., w3 = w2 and w5 = w1). If 1a /∈ f2(N(w4) − w1), then we
obtain a feasible coloring on G by switching colors of w1 and w4, assigning 1a to w, and using f2
on other vertices. Therefore, by (18), we may assume f2(N(w4) − w1) = {1a, 1b}. Similarly, by
(18), we may assume f2(N(w6) − w2) = {1a, 1b} (See Figure 3). With (14), (17), and the case,
3a /∈ f2(B(w, 3) − {w}) and we can extend f2 to G by assigning f2(w) = 3a.

Case 2.1.2: w1w2 /∈ E(G). If N(w3)∪N(w4) does not contain a vertex w9 of color 2b, then we
can recolor w1 with 2b and color w with 1a. So we may assume that N(w3)∪N(w4) contains a vertex
w9 of color 2b and symmetrically N(w5)∪N(w6) contains a vertex w10 of color 2a. Furthermore, if
1a /∈ f2(N(w4)−w1) and 2a /∈ f2(N(w3)−w1), then we can recolor w1 with 2a and color w and w4

with 1a. With (15) and (18), all vertices inB(w1, 2)−w have colors in {1a, 1b, 2a, 2b}. Symmetrically,
we can assume all vertices in B(w2, 2) − w have colors in {1a, 1b, 2a, 2b} (See Figure 4). Then we
can color w with 3a.

3a

1a 1b

1b

2b

1b

2a

1a1a

w

w1 w2

w4 w6

Figure 3: Case 2.1.1.

3a

1a 1b

2b

1a 2a 2b

2a

2b

1a

1b 1a

2b 2a

1b

1a

2a

1b

1b

w

w1 w2

w3 w5w4 w6

Figure 4: Case 2.1.2.

By the choice of f2 and the symmetry of 2a and 2b, the remaining case is:
Case 2.2: f2(w1) = f2(w2) = 2a. In particular, this means w1w2 /∈ E(G). By Lemma 8, G−w

has a coloring g satisfying one of the following:
(a) g(w1) = 2a and g(w2) ∈ {1a, 1b} or g(w2) = 2a and g(w1) ∈ {1a, 1b};
(b) {g(w1), g(w2)} = {2a, 2b};
(c) {g(w3), g(w4)} = {g(w5), g(w6)} = {1a, 1b}, and exactly one of w1, w2 has color 2a.

If (a) or (b) occurs, then we again get Case 1. We do not get Case 1 only if (c) occurs and one of
w1, w2 has g-color in {3a, 3b}. But then 2b is not present in B(w, 2) and we can color w with 2b. ✷

4 Cubic graphs

A good coloring is a (1, 1, 2, 2, 3, 3, 4)-coloring with color 4 used at most once. By Proposition 3,
Theorem 1 follows from the following fact.

Theorem 10. Every connected cubic graph has a good coloring.

Proof. Let G be a connected cubic graph with n ≥ 2 vertices. Since G is connected, it has a
non-cut vertex w (simply take a leaf vertex of a spanning tree of G). Let N(w) = {w1, w2, w3}.

Case 1: 0 ≤ |E(G[{w1, w2, w3}])| ≤ 1. If |E(G[{w1, w2, w3}])| = 0, then let G′ = G−w+w2w3.
If |E(G[{w1, w2, w3}])| = 1, then by symmetry we may assume w2w3 ∈ E(G). Let G′ = G − w.

7



Note that G′ is a connected subcubic graph with vertex w1 of degree at most two. By Theorem 5,
G′ has a feasible coloring. Hence by Lemma 9, G′ has a feasible coloring f with

f(w1) /∈ {3a, 3b}. (19)

Let NG′(w1) = {w4, w5}, NG′(w2) = {w3, w6, w7}, and NG′(w3) = {w2, w8, w9}. It is possible that
|{w4, w5, w6, w7, w8, w9}| < 6, but this will not affect the proof below.

For j ∈ {1, 2, 3} and x, y ∈ V (G) − w, a (j, x, y)-conflict in (G, f) is the situation that f(x) =
f(y) ∈ {ja, jb} and dG(x, y) ≤ j. If (G, f) has no (j, x, y)-conflicts for any j ∈ {1, 2, 3} and
x, y ∈ V (G)− w, then we can extend f to a good coloring of G by letting f(w) = 4.

Suppose now that (G, f) has a (j, x, y)-conflict for some j ∈ {1, 2, 3} and x, y ∈ V (G)−w (there
could be more than one conflict). Then

dG(x, y) ≤ j < dG′(x, y). This means {x, y} ∩ {w1, w2, w3} 6= ∅ and j ≥ 2. (20)

Since w2w3 ∈ E(G′), (20) yields that in each (j, x, y)-conflict, one of x and y is in {w1, w4, w5}
and the other is in {w2, w3, w6, w7, w8, w9}. By (19), we have the following two cases.

Case 1.1: f(w1) ∈ {1a, 1b}, say f(w1) = 1a. Then each conflict is a (3, x, y)-conflict.
Case 1.1.1: There is only one conflict. We may assume it is a (3, w4, w2)-conflict, where

f(w4) = f(w2) = 3a. If f(NG(w2) − w) 6= {1a, 1b}, then we can recolor w2 with one of 1a and 1b
and eliminate the conflict. If f(w3) 6= 1b, then we can recolor w4 with 4 and color w with 1b. So
we may assume

f(NG(w2)− w) = {1a, 1b} and f(w3) = 1b. (21)

Furthermore, if f(w5) 6= 1b or 1a /∈ f(NG(w3)− w), then we can recolor w1 and w3 with the same
color α ∈ {1a, 1b}, recolor w4 with 4 and color w with β ∈ {1a, 1b}−α. Otherwise, some γ ∈ {2a, 2b}
is not present on N(w3) ∪ {w5}, and by (21) we can recolor w4 with 4 and color w with γ (See
Figure 5).

Case 1.1.2: There are two conflicts. By the case and symmetry, we may assume f(w4) =
f(w2) = 3a and f(w5) = f(w3) = 3b. Applying Lemma 9 to vertex w2 and coloring f of G−w, we
obtain a feasible coloring g of G− w such that g(w2) = γ /∈ {3a, 3b} and at most one of w3, w4, w5

changed its color.
Case 1.1.2.1: Neither w4 nor w5 changed its color. Then we color w3 with color 4, w with a

color β ∈ {1a, 1b} − γ, w1 with a color α ∈ {1a, 1b} − β, and use g on other vertices.
Case 1.1.2.2: One vertex of {w4, w5} changed its color. We prove the case when w4 changed

its color, say g(w4) = β ∈ {1a, 1b}, the case w5 changed its color is similar. We may assume that

g(w2) = γ ∈ {1a, 1b} and γ = β, (22)

since otherwise we color w1 with a color α ∈ {1a, 1b} − β, w with a color µ ∈ {1a, 1b} − α,
w3 with color 4, and use g on other vertices. We may also assume that some vertex, say w6 ∈
N(w2) − w, have color δ ∈ {1a, 1b} − γ, since otherwise we recolor w2 with δ and it contradicts
(22). We may also assume that g({w8, w9}) = {1a, 1b}, since otherwise we color w3 with a color
µ ∈ {1a, 1b} − g({w8, w9}), w with color 4, and use f on other vertices (See Figure 6). Note that
|g(N(w)∪N(N(w)))∩{2a, 2b}| ≤ 1. Then we color w1 with a color α ∈ {1a, 1b}−β, w3 with color
4, w with a color λ ∈ {2a, 2b} − g(N(w) ∪N(N(w))), and use g on other vertices to obtain a good
coloring.
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Figure 5: Case 1.1.1.
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Figure 6: Case 1.1.2.2.

Case 1.2: f(w1) ∈ {2a, 2b}, say f(w1) = 2a. Since we cannot switch to Case 1.1, we need
{f(w4), f(w5)} = {1a, 1b}. So the only possible conflict is a (2, w1, y)-conflict, where y ∈ {w2, w3}.
We may assume f(w2) = 2a. Then we recolor w1 with 4 and color w with α ∈ {1a, 1b} − f(w3).

Case 2: |E(G[{w1, w2, w3}])| = 2, say w1w2 ∈ E(G) and w2w3 ∈ E(G). We obtain a good
coloring g of G by using f on G−w and assigning color 4 to w. Note that adding w back will not
create conflicts because the distance between any two vertices in G− w remains the same.

Case 3: G[{w1, w2, w3}] = K3. Then G = K4, and K4 has a good coloring. ✷

5 Proof of Lemma 9

Recall the claim of the lemma:

Lemma 9. Let G be a subcubic graph and f be a feasible coloring of G. Suppose there is a 2-vertex
u ∈ V (G) with N(u) = {u1, u2}. If f(u) ∈ {3a, 3b}, then we can recolor some vertices of G so that
the resulting coloring g is feasible and satisfies the following:
(a) g(u) /∈ {3a, 3b}, and
(b) at most one vertex is recolored into 3a or 3b, and this vertex (if there is such a vertex) is at
distance at most 3 from u and has degree 3 in G, and at most one vertex of f -color 3a or 3b apart
from u is recolored into some other color, and this vertex (if there is such a vertex) has new color
in {1a, 1b}.

Proof. Without loss of generality, we assume that f(u) = 3a. If {f(u1), f(u2)} 6= {1a, 1b}, then
we recolor u with a color x ∈ {1a, 1b} − {f(u1), f(u2)} to obtain a coloring satisfying (a) and (b).
Thus we may assume

f(u1) = 1a and f(u2) = 1b. (23)

Let G1 denote the subgraph of G induced by the vertices of colors 1a and 1b. If u1 and u2 are in
distinct components of G1, then after switching the colors in the component of G1 containing u2,
we obtain a coloring contradicting (23). Thus we may assume

G has a 1a, 1b-colored u1, u2-path Pu. (24)

Case 1: u1u2 ∈ E(G). If |N(u1)| = 3, then let u3 ∈ N(u1)− {u, u2}. Similarly, if |N(u2)| = 3,
then let u4 ∈ N(u2)− {u, u1}. If {2a, 2b} * f(N(u1)∪N(u2)), then after recoloring u with a color
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x ∈ {2a, 2b}− f(N(u1)∪N(u2)) we obtain a coloring satisfying (a) and (b). By symmetry, we may
assume

|N(u1)| = |N(u2)| = 3, f(u3) = 2a and f(u4) = 2b. (25)

If 1b /∈ f(N(u3)), then we can recolor u3 with 1b and u with 2a to obtain a coloring satisfying
(a) and (b). So we may assume 1b ∈ f(N(u3)). Similarly, we may assume 1a ∈ f(N(u4)). If
|N(u3)| = 2 or 1a /∈ f(N(u3)−{u1}), then we can recolor u3 with 1a, u1 with 2a, and u with 1a to
obtain a coloring satisfying (a) and (b). So we may assume

|N(u3)| = 3 and let u5, u6 ∈ N(u3)− {u1} with f(u5) = 1a, f(u6) = 1b. (26)

Similarly, we may assume

|N(u4)| = 3 and let u7, u8 ∈ N(u4)− {u2} with f(u7) = 1a, f(u8) = 1b. (27)

Case 1.1: u5 = u7 and u6 = u8. If 1b /∈ f(N(u5)), then we can recolor u5 with 1b, u3 with
1a, u1 with 2a, and u with 1a to obtain a coloring satisfying (a) and (b). So we may assume
1b ∈ f(N(u5)). Similarly, we may assume 1a ∈ f(N(u6)). Then we can recolor u1 with 3a and u
with 1a to obtain a coloring satisfying (a) and (b).

Case 1.2: u5 = u7 or u6 = u8, but not both. By symmetry, we may assume u6 = u8 and
u5 6= u7. It is possible that u5u6 ∈ E(G) or u6u7 ∈ E(G), but this will not affect the proof below.

Similarly to Case 1.1, we may assume

1b ∈ f(N(u5)), 1a ∈ f(N(u6)) and 1b ∈ f(N(u7)). (28)

Since 3a /∈ f(N(u6)), we can also assume 3a ∈ f(N(u5)), because otherwise we recolor u1 with 3a
and u with 1a to obtain a coloring satisfying (a) and (b). With (25) and (28), we have f(N(u5)) =
{1b, 2a, 3a}. However, we can recolor u1 with 3b and u with 1a to obtain a coloring satisfying
(a) and (b).

Case 1.3: u5 6= u7 and u6 6= u8. Then N(u3)∩N(u4) = ∅ and d(u3, u4) ≥ 3. Similarly to Case
1.2, {1a, 1b, 3a, 3b} ⊆ f(N(u5) ∪N(u6) − {u3}) (See Figure 7). Therefore, we can recolor u3 with
2b and u with 2a to obtain a coloring satisfying (a) and (b).

3a

1a 1b

2a

1b1a

2b

1b1a

3a 1b 1a 3b

u

u1 u2

u3

u5 u6

u4

u7 u8

Figure 7: Case 1.3.

3a

1a 1b

2a 1b

1a 2a

2b

2b 1b

1a

3a1b1a 3b1a 1b 1a2b

2b3b

u

u1 u2

u3

u7 u8

u5u4 u6

u9 u10

Figure 8: Case 2.1.

Case 2: u1u2 /∈ E(G). If {2a, 2b} * f(N(u1) ∪ N(u2)), then after recoloring u with a color
x ∈ {2a, 2b} − f(N(u1) ∪ N(u2)) we obtain a coloring satisfying (a) and (b). With (24), we may
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assume that
N(u1) = {u, u3, u4}, f(u3) = 2a, f(u4) = 1b, (29)

N(u2) = {u, u5, u6}, f(u5) = 1a and f(u6) = 2b. (30)

If u3u4 ∈ E(G), then 1a ∈ f(N(u4)− {u1, u3}) because of (24). We also have 2b ∈ f(N(u3)−
{u1, u4}) because otherwise we can recolor u1 with 2b and u with 1a to obtain a coloring satisfying
(a) and (b). Thus, we may assume |N(u3)| = |N(u4)| = 3 and let u7 ∈ N(u3) − {u1, u4}, u8 ∈
N(u4)− {u1, u3}, f(u7) = 2b, and f(u8) = 1a. Then, we can recolor u1 with 2a, u3 with 1a, and u
with 1a to obtain a coloring satisfying (a) and (b). Because of symmetry, we may assume

u3u4 /∈ E(G) and u5u6 /∈ E(G). (31)

If 1b /∈ f(N(u3)), then we recolor u3 with 1b and u with 2a to obtain a coloring satisfying (a) and (b).
With (24), we may assume that

1b ∈ f(N(u3)) and 1a ∈ f(N(u4)). (32)

If 2b /∈ f(B(u1, 2)), then we can recolor u1 with 2b and u with 1a to obtain a coloring satisfying
(a) and (b). Thus, we may assume

2b ∈ f(N(u3)) ∪ f(N(u4)). (33)

If 1a /∈ f(N(u3)−{u1}) and 2a /∈ f(N(u4)), then we can recolor u3 with 1a, u1 with 2a, and u with
1a to obtain a coloring satisfying (a) and (b). Thus, we may assume

|N(u3)| = |N(u4)| = 3 (34)

and
1a ∈ f(N(u3)− {u1}) or 2a ∈ f(N(u4)). (35)

Let {u7, u8} ∈ N(u3), {u9, u10} ∈ N(u4). By (32), we may assume

f(u8) = 1b and f(u9) = 1a. (36)

By (33) and (35), we have

either f(u7) = 2b and f(u10) = 2a or f(u7) = 1a and f(u10) = 2b. (37)

If 3a /∈ f(B(u1, 3) − {u}), then we can recolor u1 with 3a and u with 1a to obtain a coloring
satisfying (a) and (b). Thus, we may assume

3a ∈ f(B(u1, 3) − {u}). (38)

Similarly, we may assume
3b ∈ f(B(u1, 3)− {u}). (39)

Case 2.1: f(u7) = 2b and f(u10) = 2a. By (31) and |N(u2)| = 3, we have

{u8, u10} ∩ ({ui : i ∈ [6]} ∪ {u}) = ∅.

It is possible that u9 = u5 or u7 = u6, but this will not affect the proof below.
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If 2b /∈ f(B(u4, 2)), then we can recolor u4 with 2b, u1 with 1b, and u with 1a to obtain a
coloring satisfying (a) and (b). Thus, we may assume

2b ∈ f(B(u4, 2)). (40)

If 1a /∈ f(N(u10)), then we can recolor u10 with 1a and it contradicts (35). Thus, we may assume

1a ∈ f(N(u10)). (41)

We may also assume
f(N(u7)− {u3}) = {1a, 1b}, (42)

because otherwise we can recolor u7 with a color x ∈ {1a, 1b}− f(N(u7)−{u1}) and it contradicts
(37). By (38) and (39), we know that

{3a, 3b} ⊆ f(N(u7) ∪N(u8) ∪N(u9) ∪N(u10)). (43)

If {3a, 3b} ⊆ f(N(u7)∪N(u8)), then by (42) we have f(N(u8)) = {2a, 3a, 3b}. Then, we can recolor
u8 with 1a, u3 with 1b, and u with 2a to obtain a coloring satisfying (a) and (b). By symmetry, we
may assume

3b /∈ f(N(u7) ∪N(u8)). (44)

By (43) and (44), we know that 3b ∈ f(N(u9) ∪ N(u10)). By (24), 1b ∈ f(N(u9) − {u4}). With
(40), (41), and 2b /∈ f({u, u1, u3, u9, u10}) we know that

f(N(u9) ∪N(u10)− {u4}) = {1a, 1b, 2b, 3b}, hence 1b /∈ f(N(u10)− {u4}) (See Figure 8).

Therefore, we can recolor u10 with 1b, u4 with 2a, u3 with 1a, u1 with 1b, and u with 1a to obtain
a coloring satisfying (a) and (b).

Case 2.2: f(u7) = 1a and f(u10) = 2b. If 1a /∈ f(N(u6)), then we can recolor u6 with 1a and
u with 2b to obtain a coloring satisfying (a) and (b). Thus, we may assume

1a ∈ f(N(u6)− {u2}). (45)

Since some ui and uj may coincide, several cases are considered below.
Case 2.2.1: u3u5 ∈ E(G), i.e., u7 = u5. It is possible that u4u6 ∈ E(G), or u4u5 ∈ E(G), or

{u4u5, u4u6} ⊆ E(G), but this will not affect the proof below. By (24),

1b ∈ f(N(u9)− {u4}), (46)

and
1b ∈ f(N(u5)− {u2}). (47)

If 1a /∈ f(N(u10) − {u4}), then we can recolor u10 with 1a and it contradicts (37). Thus, we may
assume

1a ∈ f(N(u10)− {u4}). (48)

If 1a /∈ f(N(u8)), then we can recolor u8 with 1a, u3 with 1b, and u with 2a to obtain a coloring
satisfying (a) and (b). If 2b /∈ f(N(u8)), then we can recolor u3 with 2b and u with 2a to obtain a
coloring satisfying (a) and (b). Thus, we may assume

f(N(u8)) = {1a, 2a, 2b}. (49)
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By (38), (39), (46), (47), (48), and (49), we have

{1a, 1b, 3a, 3b} ⊆ f(N(u9) ∪N(u10)− {u4}). (50)

By (50), 1b /∈ f(N(u10)−{u4}), and 2b /∈ f(B(u4, 2)−{u10}) (See Figure 9). Then, we can recolor
u10 with 1b, u4 with 2b, u1 with 1b, and u with 1a to obtain a coloring satisfying (a) and (b).

With Case 2.2.1 handled, from now on by symmetry we may assume

u3u5 /∈ E(G) and u4u6 /∈ E(G). (51)

3a

1a 1b

1b

2b

2b

1a

3a 1b 1a

1b

1a 2b3b

1a 1b

2a

u

u1 u2

u4

u9 u10

u5u3 u6

u8

Figure 9: Case 2.2.1.
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2b

1a
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1a2b 3b

1a 1b

2a

1b1a

u

u1 u2

u3

u7 u8

u5u4 u6

u10

Figure 10: Case 2.2.2.

Case 2.2.2: {u3u5, u4u6}∩E(G) = ∅ and u4u5 ∈ E(G), i.e., u9 = u5. If 2a /∈ f(N(u5)∪N(u6)),
then we can recolor u2 with 2a and u with 1b to obtain a coloring satisfying (a) and (b). If 1b /∈
f(N(u6) − {u2}) and 2b /∈ f(N(u5)− {u2, u4}), then we can recolor u6 with 1b, u2 with 2b, and u
with 1b to obtain a coloring satisfying (a) and (b). With (45), we know

f(N(u5)− {u2, u4}) = {2a} and f(N(u6)− {u2}) = {1a, 1b}

or f(N(u5)− {u2, u4}) = {2b} and f(N(u6)− {u2}) = {1a, 2a}.

If f(N(u5)−{u2, u4}) = {2b} and f(N(u6)−{u2}) = {1a, 2a}, then we recolor u5 with 2a, u2 with
1a, and u with 1b to obtain a coloring satisfying (a) and (b). Thus, we can assume that

f(N(u5)− {u2, u4}) = {2a} and f(N(u6)− {u2}) = {1a, 1b}. (52)

If 1b /∈ f(N(u7) − {u3}), then we can recolor u7 with 1b and it contradicts (37). Thus, we may
assume

1b ∈ f(N(u7)− {u3}). (53)

If 1a /∈ f(N(u8)−{u3}), then we can recolor u8 with 1a and it contradicts (36). If 1a /∈ f(N(u10)−
{u4}), then we can recolor u10 with 1a and it contradicts (37). Therefore, we may assume

1a ∈ f(N(u10)− {u4}) and 1a ∈ f(N(u8)− {u3}). (54)

If 2b /∈ f(N(u7)∪N(u8)−{u3}), then we can recolor u3 with 2b and u with 2a to obtain a coloring
satisfying (a) and (b). Thus, we may assume

2b ∈ f(N(u7) ∪N(u8)− {u3}). (55)
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By previous arguments, we know that {3a, 3b} ∩ f({u2, u3, u4, u5, u6, u7, u8, u10}) = ∅. With (38),
(39), and (52), we know that {3a, 3b} ⊆ f(N(u7)∪N(u8)∪N(u10)−{u3, u4}). Moreover, by (53),
(54), (55), and symmetry, we may assume that

f(N(u10)− {u4}) = {1a, 3b} (See Figure 10).

But we can recolor u10 with 1b, u4 with 2b, u1 with 1b, and u with 1a to obtain a coloring satisfying
(a) and (b).

Case 2.2.3: {u3u5, u4u6, u4u5} ∩E(G) = ∅ and u4u7 ∈ E(G), i.e., u7 = u9. If 1a /∈ f(N(u8)−
u3), then we recolor u8 with 1a, u3 with 1b, and u with 2a to obtain a coloring satisfying (a) and (b).
Thus, we may assume 1a ∈ f(N(u8) − u3). If 1a /∈ f(N(u10) − u4), then we recolor u10 with 1a,
u1 with 2b, and u with 1a to obtain a coloring satisfying (a) and (b). Thus, we may also assume
1a ∈ f(N(u10)− u4). If 2b /∈ f(N(u7) ∪N(u8)− {u3, u4}), then we recolor u3 with 2b and u with
2a to obtain a coloring satisfying (a) and (b). With (38), (39), and symmetry, we may assume
f(N(u7) ∪ N(u8) − {u3, u4}) = {1a, 2b, 3a} and f(N(u10) − u4) = {1a, 3b} (See Figure 11). We
recolor u7 with 1b, u4 with 1a, u1 with 1b, and u with 1a to obtain a coloring satisfying (a) and (b).

Thus, we may also assume u4u7 /∈ E(G).

Below we have {u3u5, u4u6, u4u5, u4u7} ∩E(G) = ∅. Moreover, by the case (Case 2.2),

{u3u6, u4u8, u3u9, u3u10} ∩ E(G) = ∅.

Therefore, we also have |{ui : i ∈ [10]}| = 10.
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1a 1b

2a 1b 2b

1b

1a

3a1a 3b

1a
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u7u8

u5u4 u6
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Figure 11: Case 2.2.3.
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Figure 12: Case 2.2.4.

Case 2.2.4: u7u8 ∈ E(G). By (24), 1b ∈ f(N(u9)− {u4}). If 1a /∈ f(N(u10)− {u4}), then we
recolor u10 with 1a, u1 with 2b, and u with 1a to obtain a coloring satisfying (a) and (b). Thus, we
may assume 1a /∈ f(N(u10)−{u4}). By (38) and (39), {3a, 3b} ⊆ f(N(u7)∪N(u8)∪N(u9)∪N(u10)).
If {3a, 3b} ⊆ f(N(u9)∪N(u10)), then f(N(u9)∪N(u10)−{u4}) = {1a, 1b, 3a, 3b}, 1b /∈ f(N(u10)−
{u4}) and 2b /∈ f(N(u9) − {u4}). Then, we can recolor u10 with 1b, u4 with 2b, u1 with 1b, and u
with 1a to obtain a coloring satisfying (a) and (b). Thus, by symmetry, we can assume

3a ∈ f(N(u7) ∪N(u8)− {u3}) and 3a /∈ f(N(u9) ∪N(u10)− u4). (56)
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If 2b /∈ f(N(u7) ∪ N(u8) − {u3}), then we recolor u3 with 2b and u with 2a to obtain a coloring
satisfying (a) and (b). Thus, we may assume 2b ∈ f(N(u7) ∪ N(u8) − {u3}). Let u11 ∈ N(u7) −
{u3, u8} and u12 ∈ N(u8)− {u3, u7}. We may assume

f(u11) = 2b and f(u12) = 3a, (57)

since, by symmetry, the proof for the case f(u11) = 3a and f(u12) = 2b is similar. Note that
3a /∈ f(B(u1, 3) − u12). If 1a /∈ f(N(u12) − {u8}), then we recolor u12 with 1a, u1 with 3a, and u
with 1a to obtain a coloring satisfying (a) and (b). If 1b /∈ f(N(u12) − {u8}), then we recolor u12
with 1b, u8 with 1a, u7 with 1b, u1 with 3a, and u with 1a to obtain a coloring satisfying (a) and (b).
Thus, we may assume

f(N(u12)− {u8}) = {1a, 1b}. (58)

If 1b /∈ f(N(u11) − {u7}), then we can recolor u11 with 1b, u3 with 2b, and u with 2a to obtain a
coloring satisfying (a) and (b). Thus, we may assume

1b ∈ f(N(u11)− {u7}) (See Figure 12). (59)

Then, we can recolor u8 with 2a, u3 with 1b, and u with 2a to obtain a coloring satisfying (a) and (b).
Case 2.2.5: u7u8 /∈ E(G), u8u9 ∈ E(G). Similarly to (48) and (53), we may assume

1a ∈ f(N(u10)− {u4}) and 1b ∈ f(N(u7)− {u3}). (60)

If 2b /∈ f(N(u7) ∪ N(u8) − {u3}), then we recolor u3 with 2b and u with 2a to obtain a coloring
satisfying (a) and (b). Thus, we may assume 2b ∈ f(N(u7)∪N(u8)−{u3}). If 1b /∈ f(N(u10)−{u4})
and 2b /∈ f(N(u9)− {u4}), then we can recolor u10 with 1b, u4 with 2b, u1 with 1b, and u with 1a
to obtain a coloring satisfying (a) and (b). From (38) and (39), we know that f(N(u8) ∪N(u9)−
{u3, u4}) ⊆ {2b, 3a, 3b} (See Figure 13). But it contradicts (24).

Therefore, we may assume u8u9 /∈ E(G).

3a

1a 1b

2a 1b

1a 2b

2b

1a 1b

1a

3a 2b 3b1b

u

u1 u2

u3

u7 u8

u5u4 u6

u9 u10

Figure 13: Case 2.2.5.

Case 2.2.6: u7u8 /∈ E(G), u8u9 /∈ E(G). If |N(u7)| = |N(u8)| = |N(u9)| = |N(u10)| = 3, then
we let

{u11, u12} ⊆ N(u7)− {u3}, {u13, u14} ⊆ N(u8)− {u3}, {u15, u16} ⊆ N(u9)− {u4},
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and {u17, u18} ⊆ N(u10)− {u4}.

It is possible that |{ui : i ∈ [18]− [10]}| 6= 8 or {u5, u6} ∩ {ui : i ∈ [18]− [10]} 6= ∅, but this will not
affect the proof below.

Similarly to (46), (47), (48), (49), we may assume

f(u12) = f(u16) = 1b and f(u13) = f(u17) = 1a. (61)

Similarly to (55) and (56), we may assume

{2b, 3a} ⊆ f(N(u7) ∪N(u8)− {u3}). (62)

If 1b /∈ f(N(u10) − {u4}) and 2b /∈ f(N(u9) − {u4}), then we can recolor u10 with 1b, u4 with 2b,
u1 with 1b, and u with 1a to obtain a coloring satisfying (a) and (b). With (39), we may assume

either f(u15) = 3b and f(u18) = 1b or f(u15) = 2b and f(u18) = 3b. (63)

If |N(u11)| = |N(u12)| = |N(u13)| = |N(u14)| = 3, then we let {u19, u20} ⊆ N(u11), {u21, u22} ⊆
N(u12), {u23, u24} ⊆ N(u13), {u25, u26} ⊆ N(u14).

By (62), we have

either f(u11) = 2b and f(u14) = 3a or f(u11) = 3a and f(u14) = 2b. (64)
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2a 2b
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1b 1a

3b

3b
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1b
3b

1a

3b
2b

1b

1a
3b

1b

2a

1a

1a

1a

1a

1a

1a

1b

1b1b
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u

u1 u2

u3

u7 u8

u5

u11 u12 u13 u14

u4 u6

u9 u10

u15 u16 u17 u18

u19 u20 u21 u22 u23 u24 u25 u26

Figure 14: Case 2.2.6.1.

Case 2.2.6.1: f(u11) = 2b and f(u14) = 3a. If 1b /∈ f(N(u13) − {u8}), then we can recolor
u13 with 1b, u8 with 1a, u3 with 1b, and u with 2a to obtain a coloring satisfying (a) and (b). If
2b /∈ f(N(u13)∪N(u14)−{u8}), then we can recolor u8 with 2b, u3 with 1b, and u with 2a to obtain
a coloring satisfying (a) and (b). Thus, we may assume

2b ∈ f(N(u13) ∪N(u14)− {u8}). (65)
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If 2a /∈ f(N(u13) ∪N(u14) − {u8}), then we can recolor u8 with 2a, u3 with 1b, and u with 2a to
obtain a coloring satisfying (a) and (b). Thus, we may also assume

2a ∈ f(N(u13) ∪N(u14)− {u8}). (66)

If 1b /∈ f(N(u11) − {u7}), then we can recolor u11 with 1b and it contradicts (64). Similarly,
1a ∈ f(N(u14)−{u8}). If 1a /∈ f(N(u12)−{u7}), then we can recolor u12 with 1a, u7 with 1b, and
it contradicts (37). Similarly, 1b ∈ f(N(u13)− {u8}). Thus, we may assume

|N(u13)| = |N(u14)| = 3, f(u20) = f(u24) = 1b, and f(u21) = f(u25) = 1a. (67)

Furthermore, by (65) and (66), we assume

f(u23) = 2a and f(u26) = 2b, (68)

since the argument for f(u23) = 2b and f(u26) = 2a is similar. If {1a, 1b} 6= f(N(u26) − {u14}),
then we can recolor u26 with a color x ∈ f(N(u26)− {u14})− {1a, 1b}, u8 with 2b, u3 with 1b, and
u with 2a to obtain a coloring satisfying (a) and (b). Thus, we may assume

f(N(u26)− {u14}) = {1a, 1b}. (69)

If 1b /∈ f(N(u25) − {u14}), then we can recolor u25 with 1b, u14 with 1a, and it contradicts (64).
Thus, we may assume

1b ∈ f(N(u25)− {u14}). (70)

If f(u19) 6= 1a and f(u22) 6= 2b, then we can recolor u11 with 1a, u7 with 2b, u3 with 1a, u1 with
2a, and u with 1a to obtain a coloring satisfying (a) and (b). If 3b /∈ f(N(u11) ∪ N(u12) − {u7}),
then we can recolor u3 with 3b and u with 2a to obtain a coloring satisfying (a) and (b). Thus, we
can assume

either f(u19) = 1a and f(u22) = 3b or f(u19) = 3b and f(u22) = 2b. (71)

If 2a /∈ f(N(u25) ∪N(u26)− {u14}), then by (71), we can recolor u14 with 2a, u3 with 3a, and
u with 2a to obtain a coloring satisfying (a) and (b). With (69), we may assume

2a ∈ f(N(u25)− {u14}). (72)

Similarly to (67), we may assume

1a ∈ f(N(u24)− {u13}) and 1b ∈ f(N(u23)− {u13}). (73)

If {3a, 3b} * f(N(u23) ∪ N(u24)), then we can recolor u8 with a color x ∈ f(N(u23) ∪ N(u24)) −
{3a, 3b}, u14 with 1b, u3 with 1b, and u with 2a to obtain a coloring satisfying (a) and (b). Therefore,

f(N(u23) ∪N(u24)− {u13}) = {1a, 1b, 3a, 3b} and 2b /∈ f(B(u13)) (See Figure 14).

We recolor u13 with 2b, u8 with 1a, u3 with 1b, and u with 2a to obtain a coloring satisfying
(a) and (b).

Case 2.2.6.2: f(u11) = 3a and f(u14) = 2b. Similarly to (67), we may assume

f(u20) = f(u24) = 1b and f(u21) = f(u25) = 1a. (74)
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Figure 15: Case 2.2.6.2.

Similarly to (66), we may assume

2a ∈ f(N(u13) ∪N(u14)− {u8}). (75)

If 1b /∈ f(N(u14)− {u8}) and 2b /∈ f(N(u13)), then we can recolor u8 with 2b, u14 with 1b, u3 with
1b, and u with 2a to obtain a coloring satisfying (a) and (b). Thus, we may assume

f(N(u13)− {u8}) = {1b, 2a} and f(N(u14)− {u8}) = {1a, 1b}

or f(N(u13)− {u8}) = {1b, 2b} and f(N(u14)− {u8}) = {1a, 2a}. (76)

If 2b /∈ f(N(u11) ∪ N(u12)), then we can recolor u7 with 2b and it contradicts (37). If 3b /∈
f(N(u11) ∪N(u12)), then we can recolor u3 with 3b and u with 2a to obtain a coloring satisfying
(a) and (b). Thus, we may assume

f(N(u11) ∪N(u12)− {u7}) = {1a, 1b, 2b, 3b}. (77)

Specifically, we know that 1a /∈ f(N(u11) − {u7}) and 2a /∈ f(B(u7, 2) − {u3}) (See Figure 15).
Therefore, we recolor u11 with 1a, u7 with 2a, u3 with 3a, and u with 2a to obtain a coloring
satisfying (a) and (b). ✷
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comments.
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