Packing chromatic number of subdivisions of cubic graphs József Balogh * Alexandr Kostochka † Xujun Liu[‡] October 9, 2018 #### **Abstract** A packing k-coloring of a graph G is a partition of V(G) into sets V_1, \ldots, V_k such that for each $1 \leq i \leq k$ the distance between any two distinct $x, y \in V_i$ is at least i+1. The packing chromatic number, $\chi_p(G)$, of a graph G is the minimum k such that G has a packing k-coloring. For a graph G, let D(G) denote the graph obtained from G by subdividing every edge. The questions on the value of the maximum of $\chi_p(G)$ and of $\chi_p(D(G))$ over the class of subcubic graphs G appear in several papers. Gastineau and Togni asked whether $\chi_p(D(G)) \leq 5$ for any subcubic G, and later Brešar, Klavžar, Rall and Wash conjectured this, but no upper bound was proved. Recently the authors proved that $\chi_p(G)$ is not bounded in the class of subcubic graphs G. In contrast, in this paper we show that $\chi_p(D(G))$ is bounded in this class, and does not exceed 8. Mathematics Subject Classification: 05C15, 05C35. Key words and phrases: packing coloring, cubic graphs, independent sets. ### 1 Introduction For a positive integer i, a set S of vertices in a graph G is i-independent if the distance in G between any two distinct vertices of S is at least i+1. In particular, a 1-independent set is simply an independent set. A packing k-coloring of a graph G is a partition of V(G) into sets V_1, \ldots, V_k such that for each $1 \leq i \leq k$, the set V_i is i-independent. The packing chromatic number, $\chi_p(G)$, of a graph G, is the minimum k such that G has a packing k-coloring. The notion of packing k-coloring was introduced in 2008 by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [16] (under the name broadcast coloring) motivated by frequency assignment problems in broadcast networks. The concept has attracted a considerable attention recently: there are around 30 papers on the topic (see e.g. [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22] and references in them). In particular, Fiala and Golovach [10] proved that finding the packing chromatic number of a graph is NP-hard even in the ^{*}Department of Mathematics, University of Illinois at Urbana–Champaign, IL, USA and Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprodny, Moscow Region, 141701, Russian Federation, jobal@illinois.edu. Research of this author is partially supported by NSF Grant DMS-1500121 and by the Langan Scholar Fund (UIUC). [†]Department of Mathematics, University of Illinois at Urbana–Champaign, IL, USA and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia, kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-1600592 and by grants 18-01-00353A and 16-01-00499 of the Russian Foundation for Basic Research. [‡]Department of Mathematics, University of Illinois at Urbana-Champaign, IL, USA, xliu150@illinois.edu. class of trees. Sloper [22] showed that there are graphs with maximum degree 4 and arbitrarily large packing chromatic number. In particular, coloring of $graph \ subdivisions$ were considered. For a graph G, let D(G) denote the graph obtained from G by subdividing every edge. The questions on how large can $\chi_p(G)$ and $\chi_p(D(G))$ be if G is a subcubic graph (i.e., a graph with maximum degree at most 3) were discussed in several papers (see [6, 7, 13, 21, 22]). In particular, Gastineau and Togni [13] asked whether $\chi_p(D(G)) \leq 5$ for every subcubic graph G. Brešar, Klavžar, Rall, and Wash [7] later conjectured this and proved the validity of their conjecture for some special classes of subcubic graphs (e.g., the class of generalized Petersen graph). However, no upper bounds for the whole class of (sub)cubic graphs were proved in either case. Recently, the authors [2] showed that $\chi_p(G)$ is not bounded in the class of cubic graphs and that 'many' cubic graphs have 'high' packing chromatic number. In contrast, in this paper we give the first upper bound on $\chi_p(D(G))$ for subcubic G: we show that $\chi_p(D(G))$ is bounded by 8 in this class. We will prove the following slightly stronger result. **Theorem 1.** For every connected subcubic graph G, the graph D(G) has a packing 8-coloring such that color 8 is used at most once. The theorem will be proved in the language of S-colorings introduced in [17] and used in [13, 18]. **Definition 2.** For a non-decreasing sequence $S = (s_1, s_2, \ldots, s_k)$ of positive integers, an S-coloring of a graph G is a partition of V(G) into sets V_1, \ldots, V_k such that for each $1 \le i \le k$ the distance between any two distinct $x, y \in V_i$ is at least $s_i + 1$. In particular, a (1, ..., 1)-coloring is an ordinary coloring, and a (1, 2, ..., k)-coloring is a packing k-coloring. For subcubic graphs, Gastineau and Togni [13] proved that they are (1, 1, 2, 2, 2)-colorable and (1, 2, 2, 2, 2, 2, 2)-colorable. We will use the following observation of Gastineau and Togni [13]. **Proposition 3** ([13] Proposition 1). Let G be a graph and $S = (s_1, \ldots, s_k)$ be a non-decreasing sequence of integers. If G is S-colorable then D(G) is $(1, 2s_1 + 1, \ldots, 2s_k + 1)$ -colorable. In particular, if G is (1,1,2,2,3,3)-colorable, then D(G) has a packing 7-coloring. In view of this, by a *feasible* coloring of G we call a coloring of G with colors $1_a, 1_b, 2_a, 2_b, 3_a, 3_b$ such that the distance between any two distinct vertices of color i_x is at least i+1 for all $1 \le i \le 3$ and $x \in \{a,b\}$. **Definition 4.** A k-degenerate graph is a graph in which every subgraph has a vertex of degree at most k. In the next two sections we discuss feasible coloring of 2-degenerate subcubic graphs. In Section 2, we will show that if a 2-degenerate subcubic graph G has a feasible coloring f and v, u are vertices of G with degree at most 2, then we can change f to another feasible coloring with some control on the colors of v and u. The long proof of one of the lemmas, Lemma 9, is postponed till the last section. Based on the lemmas of Section 2, in Section 3 we prove the following theorem (that gives a better bound than Theorem 1 but for a more restricted class of graphs). **Theorem 5.** Every 2-degenerate subcubic graph G has a feasible coloring. In particular, D(G) has a packing 7-coloring. In Section 4 we use Theorem 5 and the lemmas in Section 2 to derive Theorem 1. In the final section we present a proof of Lemma 9. ## 2 Lemmas on feasible coloring **Definition 6.** For a positive integer s and a vertex a in a graph G, the ball $B_G(a, s)$ in G of radius s with center a is $\{v \in V(G) : d_G(v, a) \leq s\}$, where $d_G(v, a)$ denotes the distance in G between v and a. We abbreviate $B_G(a, s)$ to B(a, s) when the graph G is clear from the context. **Definition 7.** For a positive integer k, a k-vertex is a vertex of degree exactly k. For $$A = \{a_1, \ldots, a_n\} \subseteq V(G)$$ and a coloring f , by $f(A)$ we mean $\{f(a_1), \ldots, f(a_n)\}$. **Lemma 8.** Let G be a subcubic graph and f be a feasible coloring of G. Suppose there are 2-vertices $u, v \in V(G)$ with $f(u) = f(v) = 2_a$. Let $N(u) = \{u_1, u_2\}$ and $N(v) = \{v_1, v_2\}$. Then G has a feasible coloring g satisfying one of the following: - (a) $g(u) = 2_a$ and $g(v) \in \{1_a, 1_b\}$ or $g(v) = 2_a$ and $g(u) \in \{1_a, 1_b\}$; - (b) $\{g(u), g(v)\} = \{2_a, 2_b\};$ - (c) $\{g(u_1), g(u_2)\} = \{g(v_1), g(v_2)\} = \{1_a, 1_b\}$, and exactly one of u, v has color 2_a . **Proof.** If $\{f(u_1), f(u_2)\} \neq \{1_a, 1_b\}$, then we recolor u with a color $\alpha \in \{1_a, 1_b\} - \{f(u_1), f(u_2)\}$, and (a) holds. Thus by the symmetry between u and v we may assume $$f(u_1) = f(v_1) = 1_a$$ and $f(u_2) = f(v_2) = 1_b$. (1) Since $f(u) = f(v) = 2_a$, $N(u) \cap N(v) = \emptyset$. In other words, all vertices $$u_1, u_2, v_1$$ and v_2 are distinct. (2) Let G_1 denote the subgraph of G induced by the vertices of colors 1_a and 1_b . If u_1 and u_2 are in distinct components of G_1 , then after switching the colors in the component of G_1 containing u_2 , we obtain a coloring contradicting (1). Thus we may assume G has a $$1_a$$, 1_b -colored u_1 , u_2 -path P_u and a 1_a , 1_b -colored v_1 , v_2 -path P_v . (3) Case 1: $u_1u_2 \in E(G)$. If $|N(u_1)| = 3$, then let $u_3 \in N(u_1) - \{u, u_2\}$. Similarly, if $|N(u_2)| = 3$, then let $u_4 \in N(u_2) - \{u, u_1\}$. If $2_b \notin f(N(u_1) \cup N(u_2))$, then after recoloring u with 2_b we get a coloring satisfying (b). Thus we may assume $$|N(u_1)| = 3 \text{ and } f(u_3) = 2_b.$$ (4) Let $N(u_3) \subseteq \{u_1, u_5, u_6\}$. If $2_a \notin f(N(u_3))$, then since $f(u_4) \neq 2_a$ (because $d(u, u_4) = 2$) after switching the colors of u and u_1 we obtain a coloring satisfying (a). So we may assume $f(u_5) = 2_a$. Case 1.1: $|N(u_2)| < 3$ or $f(u_4) \neq 2_b$. If $1_b \notin f(N(u_3))$, then we can recolor u_3 with 1_b . By the case, we can recolor u with 2_b to obtain a coloring satisfying (b). So we may assume $f(u_6) = 1_b$ (See Figure 1). Then the coloring g obtained from f by recoloring g and g with g and g with g satisfies g. Case 1.2: $|N(u_2)| = 3$ and $f(u_4) = 2_b$. If $u_4 = u_3$, then $N(u_3) = \{u_1, u_2, u_5\}$. Then u has no vertices of color 3_a at distance at most 3, so after recoloring u with 3_a , we obtain a coloring g satisfying (c). Thus, $u_4 \neq u_3$. Case 1.2.1: $1_b \notin f(N(u_3))$. We recolor u_3 with 1_b . If $2_a \notin f(N(u_4) - u_2)$, then we recolor u_2 with 2_a and u with 1_b to obtain a coloring satisfying (a). If $1_a \notin f(N(u_4) - u_2)$, then we recolor u_4 with 1_a , u_2 with 2_b , and u with 1_b to obtain a coloring satisfying (a). Thus, we may assume Figure 1: Case 1.1. Figure 2: Case 2.1. $$f(N(u_4) - u_2) = \{1_a, 2_a\}.$$ Then recoloring u_4 with 1_b , u_2 with 2_b , and u
with 1_b , we obtain a coloring satisfying (a). Case 1.2.2: $1_b \in f(N(u_3))$. Since $f(u_5) = 2_a$, this means u_6 exists and $f(u_6) = 1_b$. Then we recolor u_3 and u_2 with 1_a and u_1 with 1_b . If $2_a \notin f(N(u_4) - u_2)$, then we recolor u_2 with 2_a and u with 1_a to obtain a coloring satisfying (a). If $1_b \notin f(N(u_4) - u_2)$, then we recolor u_4 with 1_b and u with 2_b to obtain a coloring satisfying (b). Thus, we may assume $$f(N(u_4) - u_2) = \{1_b, 2_a\}.$$ Then we recolor u_4 with 1_a , u_2 with 2_b , and u with 1_a to obtain a coloring satisfying (a). Case 2: $u_1u_2 \notin E(G)$. Then we may assume that $N(u_1) \subseteq \{u, u_3, u_5\}$, $N(u_2) \subseteq \{u, u_4, u_6\}$ and by (3), $f(u_3) = 1_b$ and $f(u_4) = 1_a$. Furthermore, since by the case, $u_3 \neq u_2$, we may assume that $N(u_3) \subseteq \{u_1, u_7, u_9\}$ and $f(u_7) = 1_a$. It is possible that $u_7 = u_4$, but this will not affect the proof below. Similarly, we will assume that $N(u_4) \subseteq \{u_2, u_8, u_{10}\}$ and $f(u_8) = 1_b$. As in Case 1, $2_b \in f(N(u_1) \cup N(u_2))$, since otherwise we can recolor u with 2_b and (b) will hold. In our notation, this means $2_b \in \{f(u_5), f(u_6)\}$. By symmetry, we will assume $f(u_5) = 2_b$. We also will assume $N(u_5) \subseteq \{u_1, u_{11}, u_{13}\}$ and $N(u_6) \subseteq \{u_2, u_{12}, u_{14}\}$, where some vertices can coincide. Case 2.1: $|N(u_2)| < 3$ or $f(u_6) \neq 2_b$. If $1_b \notin f(N(u_5))$, then we can recolor u_5 with 1_b , and then u with 2_b . The resulting coloring satisfies (b). So we may assume $f(u_{11}) = 1_b$. If $2_a \notin \{f(u_9), f(u_{13})\}$, then by switching the colors of u and u_1 , we obtain a coloring satisfying (a). Thus $2_a \in \{f(u_9), f(u_{13})\}$. If $f(u_9) = 2_a$ and $f(u_{13}) \neq 1_a$ or if $f(u_{13}) = 2_a$ and $f(u_9) \neq 2_b$, then after switching the colors of u_1 and u_5 and recoloring u with 1_a , we again get a coloring satisfying (a). So, either $$f(u_9) = 2_a$$ and $f(u_{13}) = 1_a$ or $f(u_{13}) = 2_a$ and $f(u_9) = 2_b$. (5) If u_6 does not exist, then by (5), the only vertex in $B(u,3) - (N(u) \cup \{u\})$ that can be colored with 3_a or 3_b is u_{10} . Thus after recoloring u with a color in $\{3_a, 3_b\} - f(u_{10})$ we obtain a coloring satisfying (c). So suppose u_6 exists. Let $A = \{u_6, u_{10}, u_{12}, u_{14}\}$. If $1_a \notin \{f(u_{12}), f(u_{14})\}$, then we can recolor u_6 with 1_a without changing color of any other vertex. Thus we may assume $$1_a \in f(A). \tag{6}$$ If a color $x \in \{2_a, 2_b\}$ is not in f(A), then after recoloring u_2 with x and u with 1_b , we get a coloring satisfying (a). Thus $$2_a, 2_b \in f(A). \tag{7}$$ By the argument above, in particular, by (5), colors 3_a and 3_b are not used on vertices in $B = \{u_1, u_2, u_3, u_4, u_5, u_7, u_8, u_9, u_{11}, u_{13}\}$. If at least one of them, say 3_a , is also not used on A, then after recoloring u with 3_a , we obtain a coloring satisfying (c). Thus $$3_a, 3_b \in f(A)$$ (See Figure 2). (8) Since $|f(A)| \leq 4$, relations (6), (7) and (8) cannot hold at the same time, a contradiction. Case 2.2: $|N(u_2)| = 3$ and $f(u_6) = 2_b$. Suppose first that $u_6 = u_5$ and that $N(u_5) = \{u_1, u_2, u_{11}\}$. If $f(u_9) \neq 2_b$ and $f(u_{11}) \neq 1_a$, then after switching the colors of u_1 and u_5 and recoloring u with 1_a , we get a coloring satisfying (a). So, $f(u_9) = 2_b$ or $f(u_{11}) = 1_a$. Similarly, considering switching colors of u_2 and u_5 , we obtain that $f(u_{10}) = 2_b$ or $f(u_{11}) = 1_b$. Together, this means the colors of at least two vertices in $$\{u_9, u_{10}, u_{11}\}$$ are in $\{1_a, 1_b, 2_b\}$. (9) By (9), some color $y \in \{3_a, 3_b\}$ is not used on B(u, 3). Then after recoloring u with y, we obtain a coloring satisfying (c). Now we assume $u_6 \neq u_5$. If $1_a \notin \{f(u_{12}), f(u_{14})\}$, then after recoloring u_6 with 1_a , we get Case 2.1. Thus below we assume $f(u_{12}) = 1_a$. If $2_a \notin \{f(u_{10}), f(u_{14})\}$, then we obtain a coloring satisfying (a) by switching the colors of u and u_2 . Thus, $2_a \in \{f(u_{10}), f(u_{14})\}$. If $f(u_{14}) \neq 1_b$ and $f(u_{10}) \neq 2_b$, then after switching the colors of u_2 and u_6 and recoloring u with 1_b , we again get a coloring satisfying (a). So, either $$f(u_{10}) = 2_a$$ and $f(u_{14}) = 1_b$ or $f(u_{10}) = 2_b$ and $f(u_{14}) = 2_a$. (10) Let $A = \{u_9, u_{11}, u_{13}\}$. If $2_a \notin f(A)$, then we obtain a coloring satisfying (a) by switching the colors of u and u_1 . Thus, $$2_a \in f(A). \tag{11}$$ If $1_a \notin f(\{u_{11}, u_{13}\})$ and $f(u_9) \neq 2_b$, then after switching the colors of u_1 and u_5 and recoloring u with 1_a , we again get a coloring satisfying (a). Therefore, $$1_a \in f(\{u_{11}, u_{13}\}) \text{ or } f(u_9) = 2_b.$$ (12) By the argument above, in particular, by (10), colors 3_a and 3_b are not used on vertices in $B = \{u_1, u_2, u_3, u_4, u_5, u_7, u_8, u_{10}, u_{12}, u_{14}\}$. If at least one of them, say 3_a , is also not used on A, then after recoloring u with 3_a , we obtain a coloring satisfying (c). Thus, $$3_a, 3_b \in f(A). \tag{13}$$ Since $|f(A)| \leq 3$, relations (11), (12), and (13) cannot hold at the same time, a contradiction. \Box Our second lemma is: **Lemma 9.** Let G be a subcubic graph and f be a feasible coloring of G. Suppose there is a 2-vertex $u \in V(G)$ with $N(u) = \{u_1, u_2\}$. If $f(u) \in \{3_a, 3_b\}$, then we can recolor some vertices of G so that the resulting coloring g is feasible and satisfies the following: - (a) $g(u) \notin \{3_a, 3_b\}$, and - (b) at most one vertex is recolored into 3_a or 3_b , and this vertex (if there is such a vertex) is at distance at most 3 from u and has degree 3 in G, and at most one vertex of f-color 3_a or 3_b apart from u is recolored into some other color, and this vertex (if there is such a vertex) has new color in $\{1_a, 1_b\}$. The proof of this lemma is a long case analysis, so we postpone it to the last section. ## 3 Proof of Theorem 5 We prove the theorem by induction on the number n of vertices. When $n \leq 6$, the claim holds obviously, since we have 6 colors. When n > 6, we assume the argument holds for every graph with fewer than n vertices. Let G be any 2-degenerate subcubic graph with n vertices. We may assume G is connected. Since G is 2-degenerate, it has a vertex, say w, with degree at most 2. Case 1: d(w) = 1. Let N(w) = w'. Since G - w is an (n-1)-vertex connected subcubic graph with $d_{G-w}(w') \leq 2$, by the induction hypothesis, G - w has a (1, 1, 2, 2, 3, 3)-coloring f. We color w with a color $x \in \{1_a, 1_b\} - f(w')$ to extend f to G. Case 2: d(w) = 2. Let $N(w) = \{w_1, w_2\}$. Note that G - w has at most two connected components and each connected component is a connected 2-degenerate subcubic graph with less than n vertices. By the induction hypothesis, G - w has a feasible coloring f. We may assume that $|N_{G-w}(w_1)| = |N_{G-w}(w_2)| = 2$. Otherwise we can first apply the induction hypothesis to obtain a (1, 1, 2, 2, 3, 3)-coloring f on G - w, then add leaves (vertices of degree one) to w_1 and w_2 to obtain a new graph G' with $|N_{G'-w}(w_1)| = |N_{G'-w}(w_2)| = 2$, then assign proper colors to those leaves we just added to obtain a (1, 1, 2, 2, 3, 3)-coloring f' on G' - w, then prove that G' has a (1, 1, 2, 2, 3, 3)-coloring, which can be used to get our desired coloring on G. So below we assume $N(w_1) = \{w, w_3, w_4\}$ and $N(w_2) = \{w, w_5, w_6\}$. By Lemma 9, G-w has a feasible coloring f_1 such that $f_1(w_1) \notin \{3_a, 3_b\}$. Then by Lemma 9 again, G-w also has a feasible coloring f_2 such that $f_2(w_2) \notin \{3_a, 3_b\}$ and no vertex of degree 2 in G-w changed its color to 3_a or 3_b . Thus we also have $f_2(w_1) \notin \{3_a, 3_b\}$. Therefore, G-w has a feasible coloring f_2 such that $f_2(w_1) \notin \{3_a, 3_b\}$ and $f_2(w_2) \notin \{3_a, 3_b\}$. Case 2.1: Either $f_2(w_1) \neq f_2(w_2)$ or $f_2(w_1) = f_2(w_2) \in \{1_a, 1_b\}$. If $\{f_2(w_1), f_2(w_2)\} \neq \{1_a, 1_b\}$, then we extend f_2 to G by assigning $f_2(w) = \alpha \in \{1_a, 1_b\} - \{f_2(w_1), f_2(w_2)\}$. By the case, if $f_2(w_1) = f_2(w_2)$, then $f_2(w_1) = f_2(w_2) \in \{1_a, 1_b\}$. Therefore, the extension of f_2 to G is feasible since we do not introduce new conflicts between w_1 and w_2 by adding w. Thus, we may assume $$f_2(w_1) = 1_a$$ and $f_2(w_2) = 1_b$. (14) If w_1 and w_2 are in distinct components of the subgraph G_2 of G - w induced by the vertices of colors 1_a and 1_b in f_2 , then after switching the colors 1_a and 1_b with each other in the component of G_2 containing w_2 , we obtain a coloring contradicting (14). Thus we may assume $$G - w \text{ has a } 1_a, 1_b \text{-colored } w_1, w_2 \text{-path } P_w.$$ (15) In particular, we may assume $f_2(w_3) = 1_b$ and $f_2(w_5) = 1_a$ (possibly, $w_3 = w_2$ and then $w_5 = w_1$). If $\{2_a, 2_b\} \nsubseteq f_2(N(w_1) \cup N(w_2) - \{w\})$, then we can extend f_2 to G by assigning $f_2(w) = \beta \in \{2_a, 2_b\} - f_2(N(w_1) \cup N(w_2) - \{w\})$. Thus, we may assume $$|N(w_1)| = |N(w_2)| = 3, \{2_a, 2_b\} \subseteq f_2(N(w_1) \cup N(w_2) - \{w\}), \text{ and by symmetry}$$ (16) $$f_2(w_4) = 2_a$$ and $f_2(w_6) = 2_b$. (17) If $1_b \notin f_2(N(w_4) - w_2)$, then we can extend f_2 to a feasible coloring of G by recoloring w_4 with 1_b and letting $f_2(w) = 2_a$. By this and the symmetric statement for w_6 we can assume that $$w_4$$ has a neighbor w_7 with $f_2(w_7) = 1_b$ and w_6 has a neighbor w_8 with $f_2(w_8) = 1_a$. (18) Case 2.1.1: $w_1w_2 \in E(G)$ (i.e., $w_3 = w_2$ and $w_5 = w_1$). If $1_a \notin f_2(N(w_4) - w_1)$, then we obtain a feasible coloring on G by
switching colors of w_1 and w_4 , assigning 1_a to w, and using f_2 on other vertices. Therefore, by (18), we may assume $f_2(N(w_4) - w_1) = \{1_a, 1_b\}$. Similarly, by (18), we may assume $f_2(N(w_6) - w_2) = \{1_a, 1_b\}$ (See Figure 3). With (14), (17), and the case, $3_a \notin f_2(B(w,3) - \{w\})$ and we can extend f_2 to G by assigning $f_2(w) = 3_a$. Case 2.1.2: $w_1w_2 \notin E(G)$. If $N(w_3) \cup N(w_4)$ does not contain a vertex w_9 of color 2_b , then we can recolor w_1 with 2_b and color w with 1_a . So we may assume that $N(w_3) \cup N(w_4)$ contains a vertex w_9 of color 2_b and symmetrically $N(w_5) \cup N(w_6)$ contains a vertex w_{10} of color 2_a . Furthermore, if $1_a \notin f_2(N(w_4) - w_1)$ and $2_a \notin f_2(N(w_3) - w_1)$, then we can recolor w_1 with 2_a and color w and w_4 with 1_a . With (15) and (18), all vertices in $B(w_1, 2) - w$ have colors in $\{1_a, 1_b, 2_a, 2_b\}$. Symmetrically, we can assume all vertices in $B(w_2, 2) - w$ have colors in $\{1_a, 1_b, 2_a, 2_b\}$ (See Figure 4). Then we can color w with 3_a . Figure 3: Case 2.1.1. Figure 4: Case 2.1.2. By the choice of f_2 and the symmetry of 2_a and 2_b , the remaining case is: Case 2.2: $f_2(w_1) = f_2(w_2) = 2_a$. In particular, this means $w_1w_2 \notin E(G)$. By Lemma 8, G - w has a coloring g satisfying one of the following: - (a) $g(w_1) = 2_a$ and $g(w_2) \in \{1_a, 1_b\}$ or $g(w_2) = 2_a$ and $g(w_1) \in \{1_a, 1_b\}$; - (b) $\{g(w_1), g(w_2)\} = \{2_a, 2_b\};$ - (c) $\{g(w_3), g(w_4)\} = \{g(w_5), g(w_6)\} = \{1_a, 1_b\}$, and exactly one of w_1, w_2 has color 2_a . If (a) or (b) occurs, then we again get Case 1. We do not get Case 1 only if (c) occurs and one of w_1, w_2 has g-color in $\{3_a, 3_b\}$. But then 2_b is not present in B(w, 2) and we can color w with 2_b . \square # 4 Cubic graphs A good coloring is a (1,1,2,2,3,3,4)-coloring with color 4 used at most once. By Proposition 3, Theorem 1 follows from the following fact. **Theorem 10.** Every connected cubic graph has a good coloring. **Proof.** Let G be a connected cubic graph with $n \geq 2$ vertices. Since G is connected, it has a non-cut vertex w (simply take a leaf vertex of a spanning tree of G). Let $N(w) = \{w_1, w_2, w_3\}$. Case 1: $0 \le |E(G[\{w_1, w_2, w_3\}])| \le 1$. If $|E(G[\{w_1, w_2, w_3\}])| = 0$, then let $G' = G - w + w_2 w_3$. If $|E(G[\{w_1, w_2, w_3\}])| = 1$, then by symmetry we may assume $w_2 w_3 \in E(G)$. Let G' = G - w. Note that G' is a connected subcubic graph with vertex w_1 of degree at most two. By Theorem 5, G' has a feasible coloring. Hence by Lemma 9, G' has a feasible coloring f with $$f(w_1) \notin \{3_a, 3_b\}. \tag{19}$$ Let $N_{G'}(w_1) = \{w_4, w_5\}$, $N_{G'}(w_2) = \{w_3, w_6, w_7\}$, and $N_{G'}(w_3) = \{w_2, w_8, w_9\}$. It is possible that $|\{w_4, w_5, w_6, w_7, w_8, w_9\}| < 6$, but this will not affect the proof below. For $j \in \{1, 2, 3\}$ and $x, y \in V(G) - w$, a (j, x, y)-conflict in (G, f) is the situation that $f(x) = f(y) \in \{j_a, j_b\}$ and $d_G(x, y) \leq j$. If (G, f) has no (j, x, y)-conflicts for any $j \in \{1, 2, 3\}$ and $x, y \in V(G) - w$, then we can extend f to a good coloring of G by letting f(w) = 4. Suppose now that (G, f) has a (j, x, y)-conflict for some $j \in \{1, 2, 3\}$ and $x, y \in V(G) - w$ (there could be more than one conflict). Then $$d_G(x,y) \le j < d_{G'}(x,y)$$. This means $\{x,y\} \cap \{w_1, w_2, w_3\} \ne \emptyset$ and $j \ge 2$. (20) Since $w_2w_3 \in E(G')$, (20) yields that in each (j, x, y)-conflict, one of x and y is in $\{w_1, w_4, w_5\}$ and the other is in $\{w_2, w_3, w_6, w_7, w_8, w_9\}$. By (19), we have the following two cases. Case 1.1: $f(w_1) \in \{1_a, 1_b\}$, say $f(w_1) = 1_a$. Then each conflict is a (3, x, y)-conflict. Case 1.1.1: There is only one conflict. We may assume it is a $(3, w_4, w_2)$ -conflict, where $f(w_4) = f(w_2) = 3_a$. If $f(N_G(w_2) - w) \neq \{1_a, 1_b\}$, then we can recolor w_2 with one of 1_a and 1_b and eliminate the conflict. If $f(w_3) \neq 1_b$, then we can recolor w_4 with 4 and color w with 1_b . So we may assume $$f(N_G(w_2) - w) = \{1_a, 1_b\}$$ and $f(w_3) = 1_b$. (21) Furthermore, if $f(w_5) \neq 1_b$ or $1_a \notin f(N_G(w_3) - w)$, then we can recolor w_1 and w_3 with the same color $\alpha \in \{1_a, 1_b\}$, recolor w_4 with 4 and color w with $\beta \in \{1_a, 1_b\} - \alpha$. Otherwise, some $\gamma \in \{2_a, 2_b\}$ is not present on $N(w_3) \cup \{w_5\}$, and by (21) we can recolor w_4 with 4 and color w with γ (See Figure 5). Case 1.1.2: There are two conflicts. By the case and symmetry, we may assume $f(w_4) = f(w_2) = 3_a$ and $f(w_5) = f(w_3) = 3_b$. Applying Lemma 9 to vertex w_2 and coloring f of G - w, we obtain a feasible coloring g of G - w such that $g(w_2) = \gamma \notin \{3_a, 3_b\}$ and at most one of w_3, w_4, w_5 changed its color. Case 1.1.2.1: Neither w_4 nor w_5 changed its color. Then we color w_3 with color 4, w with a color $\beta \in \{1_a, 1_b\} - \gamma$, w_1 with a color $\alpha \in \{1_a, 1_b\} - \beta$, and use g on other vertices. Case 1.1.2.2: One vertex of $\{w_4, w_5\}$ changed its color. We prove the case when w_4 changed its color, say $g(w_4) = \beta \in \{1_a, 1_b\}$, the case w_5 changed its color is similar. We may assume that $$g(w_2) = \gamma \in \{1_a, 1_b\} \quad \text{and} \quad \gamma = \beta, \tag{22}$$ since otherwise we color w_1 with a color $\alpha \in \{1_a, 1_b\} - \beta$, w with a color $\mu \in \{1_a, 1_b\} - \alpha$, w_3 with color 4, and use g on other vertices. We may also assume that some vertex, say $w_6 \in N(w_2) - w$, have color $\delta \in \{1_a, 1_b\} - \gamma$, since otherwise we recolor w_2 with δ and it contradicts (22). We may also assume that $g(\{w_8, w_9\}) = \{1_a, 1_b\}$, since otherwise we color w_3 with a color $\mu \in \{1_a, 1_b\} - g(\{w_8, w_9\})$, w with color 4, and use f on other vertices (See Figure 6). Note that $|g(N(w) \cup N(N(w))) \cap \{2_a, 2_b\}| \le 1$. Then we color w_1 with a color $\alpha \in \{1_a, 1_b\} - \beta$, w_3 with color 4, w with a color $\lambda \in \{2_a, 2_b\} - g(N(w) \cup N(N(w)))$, and use g on other vertices to obtain a good coloring. Figure 5: Case 1.1.1. Figure 6: Case 1.1.2.2. Case 1.2: $f(w_1) \in \{2_a, 2_b\}$, say $f(w_1) = 2_a$. Since we cannot switch to Case 1.1, we need $\{f(w_4), f(w_5)\} = \{1_a, 1_b\}$. So the only possible conflict is a $(2, w_1, y)$ -conflict, where $y \in \{w_2, w_3\}$. We may assume $f(w_2) = 2_a$. Then we recolor w_1 with 4 and color w with $\alpha \in \{1_a, 1_b\} - f(w_3)$. Case 2: $|E(G[\{w_1, w_2, w_3\}])| = 2$, say $w_1w_2 \in E(G)$ and $w_2w_3 \in E(G)$. We obtain a good coloring g of G by using f on G - w and assigning color 4 to w. Note that adding w back will not create conflicts because the distance between any two vertices in G - w remains the same. Case 3: $$G[\{w_1, w_2, w_3\}] = K_3$$. Then $G = K_4$, and K_4 has a good coloring. #### 5 Proof of Lemma 9 Recall the claim of the lemma: **Lemma 9.** Let G be a subcubic graph and f be a feasible coloring of G. Suppose there is a 2-vertex $u \in V(G)$ with $N(u) = \{u_1, u_2\}$. If $f(u) \in \{3_a, 3_b\}$, then we can recolor some vertices of G so that the resulting coloring g is feasible and satisfies the following: - (a) $g(u) \notin \{3_a, 3_b\}$, and - (b) at most one vertex is recolored into 3_a or 3_b , and this vertex (if there is such a vertex) is at distance at most 3 from u and has degree 3 in G, and at most one vertex of f-color 3_a or 3_b apart from u is recolored into some other color, and this vertex (if there is such a vertex) has new color in $\{1_a, 1_b\}$. **Proof.** Without loss of generality, we assume that $f(u) = 3_a$. If $\{f(u_1), f(u_2)\} \neq \{1_a, 1_b\}$, then we recolor u with a color $x \in \{1_a, 1_b\} - \{f(u_1), f(u_2)\}$ to obtain a coloring satisfying (a) and (b). Thus we may assume $$f(u_1) = 1_a$$ and $f(u_2) = 1_b$. (23) Let G_1 denote the subgraph of G induced by the vertices of colors 1_a and 1_b . If u_1 and u_2 are in distinct components of G_1 , then after switching the colors in the component of G_1 containing u_2 , we obtain a coloring contradicting (23). Thus we may assume $$G \text{ has a } 1_a, 1_b\text{-colored } u_1, u_2\text{-path } P_u.$$ (24) Case 1: $u_1u_2 \in E(G)$. If $|N(u_1)| = 3$, then let $u_3 \in N(u_1) - \{u, u_2\}$. Similarly, if $|N(u_2)| = 3$, then let $u_4 \in N(u_2) - \{u, u_1\}$. If $\{2_a, 2_b\} \nsubseteq f(N(u_1) \cup N(u_2))$, then after recoloring u with a color $x \in \{2_a, 2_b\} - f(N(u_1) \cup N(u_2))$ we obtain a coloring satisfying (a) and (b). By symmetry, we may assume $$|N(u_1)| = |N(u_2)| = 3, \quad f(u_3) = 2_a \quad and \quad f(u_4) = 2_b.$$ (25) If $1_b \notin f(N(u_3))$, then we can recolor u_3 with 1_b and u with 2_a to obtain a coloring satisfying (a) and (b). So we may assume $1_b \in f(N(u_3))$. Similarly, we may assume $1_a \in f(N(u_4))$. If $|N(u_3)| = 2$ or $1_a \notin f(N(u_3) - \{u_1\})$, then we can recolor u_3 with 1_a , u_1 with 2_a , and u with 1_a to obtain a coloring satisfying (a) and (b). So we may assume $$|N(u_3)| = 3$$ and let $u_5, u_6 \in N(u_3) - \{u_1\}$ with $f(u_5) = 1_a, f(u_6) = 1_b.$ (26) Similarly, we may assume $$|N(u_4)| = 3$$ and let $u_7, u_8 \in N(u_4) - \{u_2\}$ with $f(u_7) = 1_a, f(u_8) = 1_b.$ (27) Case 1.1: $u_5 = u_7$ and $u_6 = u_8$. If $1_b \notin f(N(u_5))$, then we can recolor u_5 with 1_b , u_3 with 1_a , u_1 with 2_a , and u with 1_a to obtain a coloring satisfying (a) and (b). So we may assume $1_b \in f(N(u_5))$. Similarly, we may assume $1_a \in f(N(u_6))$. Then we can recolor u_1 with 3_a and u with 1_a to obtain a coloring satisfying (a) and (b). Case 1.2: $u_5 = u_7$ or $u_6 = u_8$, but not
both. By symmetry, we may assume $u_6 = u_8$ and $u_5 \neq u_7$. It is possible that $u_5u_6 \in E(G)$ or $u_6u_7 \in E(G)$, but this will not affect the proof below. Similarly to Case 1.1, we may assume $$1_b \in f(N(u_5)), \quad 1_a \in f(N(u_6)) \quad \text{and} \quad 1_b \in f(N(u_7)).$$ (28) Since $3_a \notin f(N(u_6))$, we can also assume $3_a \in f(N(u_5))$, because otherwise we recolor u_1 with 3_a and u with 1_a to obtain a coloring satisfying (a) and (b). With (25) and (28), we have $f(N(u_5)) = \{1_b, 2_a, 3_a\}$. However, we can recolor u_1 with 3_b and u with 1_a to obtain a coloring satisfying (a) and (b). Case 1.3: $u_5 \neq u_7$ and $u_6 \neq u_8$. Then $N(u_3) \cap N(u_4) = \emptyset$ and $d(u_3, u_4) \geq 3$. Similarly to Case 1.2, $\{1_a, 1_b, 3_a, 3_b\} \subseteq f(N(u_5) \cup N(u_6) - \{u_3\})$ (See Figure 7). Therefore, we can recolor u_3 with 2_b and u with 2_a to obtain a coloring satisfying (a) and (b). Figure 7: Case 1.3. Figure 8: Case 2.1. Case 2: $u_1u_2 \notin E(G)$. If $\{2_a, 2_b\} \nsubseteq f(N(u_1) \cup N(u_2))$, then after recoloring u with a color $x \in \{2_a, 2_b\} - f(N(u_1) \cup N(u_2))$ we obtain a coloring satisfying (a) and (b). With (24), we may assume that $$N(u_1) = \{u, u_3, u_4\}, \quad f(u_3) = 2_a, \quad f(u_4) = 1_b,$$ (29) $$N(u_2) = \{u, u_5, u_6\}, \quad f(u_5) = 1_a \quad \text{and} \quad f(u_6) = 2_b.$$ (30) If $u_3u_4 \in E(G)$, then $1_a \in f(N(u_4) - \{u_1, u_3\})$ because of (24). We also have $2_b \in f(N(u_3) - \{u_1, u_4\})$ because otherwise we can recolor u_1 with 2_b and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $|N(u_3)| = |N(u_4)| = 3$ and let $u_7 \in N(u_3) - \{u_1, u_4\}, u_8 \in N(u_4) - \{u_1, u_3\}, f(u_7) = 2_b$, and $f(u_8) = 1_a$. Then, we can recolor u_1 with $u_3 = 1_a$ with $u_3 = 1_a$ with $u_3 = 1_a$ and $u_3 = 1_a$ with $u_3 = 1_a$ to obtain a coloring satisfying (a) and (b). Because of symmetry, we may assume $$u_3u_4 \notin E(G)$$ and $u_5u_6 \notin E(G)$. (31) If $1_b \notin f(N(u_3))$, then we recolor u_3 with 1_b and u with 2_a to obtain a coloring satisfying (a) and (b). With (24), we may assume that $$1_b \in f(N(u_3)) \quad \text{and} \quad 1_a \in f(N(u_4)).$$ (32) If $2_b \notin f(B(u_1, 2))$, then we can recolor u_1 with 2_b and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$2_b \in f(N(u_3)) \cup f(N(u_4)). \tag{33}$$ If $1_a \notin f(N(u_3) - \{u_1\})$ and $2_a \notin f(N(u_4))$, then we can recolor u_3 with 1_a , u_1 with 2_a , and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$|N(u_3)| = |N(u_4)| = 3 (34)$$ and $$1_a \in f(N(u_3) - \{u_1\}) \text{ or } 2_a \in f(N(u_4)).$$ (35) Let $\{u_7, u_8\} \in N(u_3), \{u_9, u_{10}\} \in N(u_4)$. By (32), we may assume $$f(u_8) = 1_b$$ and $f(u_9) = 1_a$. (36) By (33) and (35), we have either $$f(u_7) = 2_b$$ and $f(u_{10}) = 2_a$ or $f(u_7) = 1_a$ and $f(u_{10}) = 2_b$. (37) If $3_a \notin f(B(u_1,3) - \{u\})$, then we can recolor u_1 with 3_a and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$3_a \in f(B(u_1, 3) - \{u\}). \tag{38}$$ Similarly, we may assume $$3_b \in f(B(u_1, 3) - \{u\}). \tag{39}$$ Case 2.1: $f(u_7) = 2_b$ and $f(u_{10}) = 2_a$. By (31) and $|N(u_2)| = 3$, we have $$\{u_8, u_{10}\} \cap (\{u_i : i \in [6]\} \cup \{u\}) = \emptyset.$$ It is possible that $u_9 = u_5$ or $u_7 = u_6$, but this will not affect the proof below. If $2_b \notin f(B(u_4, 2))$, then we can recolor u_4 with 2_b , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$2_b \in f(B(u_4, 2)). \tag{40}$$ If $1_a \notin f(N(u_{10}))$, then we can recolor u_{10} with 1_a and it contradicts (35). Thus, we may assume $$1_a \in f(N(u_{10})). \tag{41}$$ We may also assume $$f(N(u_7) - \{u_3\}) = \{1_a, 1_b\},\tag{42}$$ because otherwise we can recolor u_7 with a color $x \in \{1_a, 1_b\} - f(N(u_7) - \{u_1\})$ and it contradicts (37). By (38) and (39), we know that $$\{3_a, 3_b\} \subseteq f(N(u_7) \cup N(u_8) \cup N(u_9) \cup N(u_{10})).$$ (43) If $\{3_a, 3_b\} \subseteq f(N(u_7) \cup N(u_8))$, then by (42) we have $f(N(u_8)) = \{2_a, 3_a, 3_b\}$. Then, we can recolor u_8 with 1_a , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). By symmetry, we may assume $$3_b \notin f(N(u_7) \cup N(u_8)). \tag{44}$$ By (43) and (44), we know that $3_b \in f(N(u_9) \cup N(u_{10}))$. By (24), $1_b \in f(N(u_9) - \{u_4\})$. With (40), (41), and $2_b \notin f(\{u, u_1, u_3, u_9, u_{10}\})$ we know that $$f(N(u_9) \cup N(u_{10}) - \{u_4\}) = \{1_a, 1_b, 2_b, 3_b\}, \text{ hence } 1_b \notin f(N(u_{10}) - \{u_4\}) \text{ (See Figure 8)}.$$ Therefore, we can recolor u_{10} with 1_b , u_4 with 2_a , u_3 with 1_a , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). Case 2.2: $f(u_7) = 1_a$ and $f(u_{10}) = 2_b$. If $1_a \notin f(N(u_6))$, then we can recolor u_6 with 1_a and u with 2_b to obtain a coloring satisfying (a) and (b). Thus, we may assume $$1_a \in f(N(u_6) - \{u_2\}). \tag{45}$$ Since some u_i and u_j may coincide, several cases are considered below. Case 2.2.1: $u_3u_5 \in E(G)$, i.e., $u_7 = u_5$. It is possible that $u_4u_6 \in E(G)$, or $u_4u_5 \in E(G)$, or $\{u_4u_5, u_4u_6\} \subseteq E(G)$, but this will not affect the proof below. By (24), $$1_b \in f(N(u_9) - \{u_4\}), \tag{46}$$ and $$1_b \in f(N(u_5) - \{u_2\}). \tag{47}$$ If $1_a \notin f(N(u_{10}) - \{u_4\})$, then we can recolor u_{10} with 1_a and it contradicts (37). Thus, we may assume $$1_a \in f(N(u_{10}) - \{u_4\}). \tag{48}$$ If $1_a \notin f(N(u_8))$, then we can recolor u_8 with 1_a , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). If $2_b \notin f(N(u_8))$, then we can recolor u_3 with 2_b and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$f(N(u_8)) = \{1_a, 2_a, 2_b\}. \tag{49}$$ By (38), (39), (46), (47), (48), and (49), we have $$\{1_a, 1_b, 3_a, 3_b\} \subseteq f(N(u_9) \cup N(u_{10}) - \{u_4\}).$$ (50) By (50), $1_b \notin f(N(u_{10}) - \{u_4\})$, and $2_b \notin f(B(u_4, 2) - \{u_{10}\})$ (See Figure 9). Then, we can recolor u_{10} with 1_b , u_4 with 2_b , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). With Case 2.2.1 handled, from now on by symmetry we may assume $$u_3u_5 \notin E(G)$$ and $u_4u_6 \notin E(G)$. (51) Figure 9: Case 2.2.1. Figure 10: Case 2.2.2. Case 2.2.2: $\{u_3u_5, u_4u_6\} \cap E(G) = \emptyset$ and $u_4u_5 \in E(G)$, i.e., $u_9 = u_5$. If $2_a \notin f(N(u_5) \cup N(u_6))$, then we can recolor u_2 with 2_a and u with 1_b to obtain a coloring satisfying (a) and (b). If $1_b \notin f(N(u_6) - \{u_2\})$ and $2_b \notin f(N(u_5) - \{u_2, u_4\})$, then we can recolor u_6 with 1_b , u_2 with 2_b , and u with 1_b to obtain a coloring satisfying (a) and (b). With (45), we know $$f(N(u_5) - \{u_2, u_4\}) = \{2_a\}$$ and $f(N(u_6) - \{u_2\}) = \{1_a, 1_b\}$ or $$f(N(u_5) - \{u_2, u_4\}) = \{2_b\}$$ and $f(N(u_6) - \{u_2\}) = \{1_a, 2_a\}.$ If $f(N(u_5) - \{u_2, u_4\}) = \{2_b\}$ and $f(N(u_6) - \{u_2\}) = \{1_a, 2_a\}$, then we recolor u_5 with 2_a , u_2 with 1_a , and u with 1_b to obtain a coloring satisfying (a) and (b). Thus, we can assume that $$f(N(u_5) - \{u_2, u_4\}) = \{2_a\} \text{ and } f(N(u_6) - \{u_2\}) = \{1_a, 1_b\}.$$ (52) If $1_b \notin f(N(u_7) - \{u_3\})$, then we can recolor u_7 with 1_b and it contradicts (37). Thus, we may assume $$1_b \in f(N(u_7) - \{u_3\}). \tag{53}$$ If $1_a \notin f(N(u_8) - \{u_3\})$, then we can recolor u_8 with 1_a and it contradicts (36). If $1_a \notin f(N(u_{10}) - \{u_4\})$, then we can recolor u_{10} with 1_a and it contradicts (37). Therefore, we may assume $$1_a \in f(N(u_{10}) - \{u_4\}) \quad \text{and} \quad 1_a \in f(N(u_8) - \{u_3\}).$$ (54) If $2_b \notin f(N(u_7) \cup N(u_8) - \{u_3\})$, then we can recolor u_3 with 2_b and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$2_b \in f(N(u_7) \cup N(u_8) - \{u_3\}). \tag{55}$$ By previous arguments, we know that $\{3_a, 3_b\} \cap f(\{u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_{10}\}) = \emptyset$. With (38), (39), and (52), we know that $\{3_a, 3_b\} \subseteq f(N(u_7) \cup N(u_8) \cup N(u_{10}) - \{u_3, u_4\})$. Moreover, by (53), (54), (55), and symmetry, we may assume that $$f(N(u_{10}) - \{u_4\}) = \{1_a, 3_b\}$$ (See Figure 10). But we can recolor u_{10} with 1_b , u_4 with 2_b , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). Case 2.2.3: $\{u_3u_5, u_4u_6, u_4u_5\} \cap E(G) = \emptyset$ and $u_4u_7 \in E(G)$, i.e., $u_7 = u_9$. If $1_a \notin f(N(u_8) - u_3)$, then we recolor u_8 with 1_a , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $1_a \in f(N(u_8) - u_3)$. If $1_a \notin f(N(u_{10}) - u_4)$, then we recolor u_{10} with 1_a , u_1 with 2_b , and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may also assume $1_a \in f(N(u_{10}) - u_4)$. If $2_b \notin f(N(u_7) \cup N(u_8) - \{u_3, u_4\})$, then we recolor u_3 with 2_b and u with 2_a to obtain a coloring satisfying (a) and (b). With (38), (39), and symmetry, we may assume $f(N(u_7) \cup N(u_8) - \{u_3, u_4\}) = \{1_a, 2_b, 3_a\}$ and $f(N(u_{10}) - u_4) = \{1_a, 3_b\}$ (See Figure 11). We recolor u_7 with 1_b , u_4 with 1_a , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may also assume $u_4u_7 \notin E(G)$. Below we have $\{u_3u_5, u_4u_6, u_4u_5, u_4u_7\} \cap E(G) = \emptyset$. Moreover, by the case (Case 2.2), $$\{u_3u_6, u_4u_8, u_3u_9, u_3u_{10}\} \cap E(G) = \emptyset.$$ Therefore, we
also have $|\{u_i : i \in [10]\}| = 10$. Figure 11: Case 2.2.3. Figure 12: Case 2.2.4. Case 2.2.4: $u_7u_8 \in E(G)$. By (24), $1_b \in f(N(u_9) - \{u_4\})$. If $1_a \notin f(N(u_{10}) - \{u_4\})$, then we recolor u_{10} with 1_a , u_1 with 2_b , and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $1_a \notin f(N(u_{10}) - \{u_4\})$. By (38) and (39), $\{3_a, 3_b\} \subseteq f(N(u_7) \cup N(u_8) \cup N(u_9) \cup N(u_{10})$. If $\{3_a, 3_b\} \subseteq f(N(u_9) \cup N(u_{10}))$, then $f(N(u_9) \cup N(u_{10}) - \{u_4\}) = \{1_a, 1_b, 3_a, 3_b\}$, $1_b \notin f(N(u_{10}) - \{u_4\})$ and $2_b \notin f(N(u_9) - \{u_4\})$. Then, we can recolor u_{10} with 1_b , u_4 with 2_b , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, by symmetry, we can assume $$3_a \in f(N(u_7) \cup N(u_8) - \{u_3\})$$ and $3_a \notin f(N(u_9) \cup N(u_{10}) - u_4)$. (56) If $2_b \notin f(N(u_7) \cup N(u_8) - \{u_3\})$, then we recolor u_3 with 2_b and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $2_b \in f(N(u_7) \cup N(u_8) - \{u_3\})$. Let $u_{11} \in N(u_7) - \{u_3, u_8\}$ and $u_{12} \in N(u_8) - \{u_3, u_7\}$. We may assume $$f(u_{11}) = 2_b$$ and $f(u_{12}) = 3_a$, (57) since, by symmetry, the proof for the case $f(u_{11}) = 3_a$ and $f(u_{12}) = 2_b$ is similar. Note that $3_a \notin f(B(u_1,3) - u_{12})$. If $1_a \notin f(N(u_{12}) - \{u_8\})$, then we recolor u_{12} with 1_a , u_1 with 3_a , and u with 1_a to obtain a coloring satisfying (a) and (b). If $1_b \notin f(N(u_{12}) - \{u_8\})$, then we recolor u_{12} with 1_b , u_8 with 1_a , u_7 with 1_b , u_1 with 3_a , and u with 1_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$f(N(u_{12}) - \{u_8\}) = \{1_a, 1_b\}. \tag{58}$$ If $1_b \notin f(N(u_{11}) - \{u_7\})$, then we can recolor u_{11} with 1_b , u_3 with 2_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$1_b \in f(N(u_{11}) - \{u_7\})$$ (See Figure 12). (59) Then, we can recolor u_8 with 2_a , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Case 2.2.5: $u_7u_8 \notin E(G)$, $u_8u_9 \in E(G)$. Similarly to (48) and (53), we may assume $$1_a \in f(N(u_{10}) - \{u_4\}) \quad \text{and} \quad 1_b \in f(N(u_7) - \{u_3\}).$$ (60) If $2_b \notin f(N(u_7) \cup N(u_8) - \{u_3\})$, then we recolor u_3 with 2_b and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $2_b \in f(N(u_7) \cup N(u_8) - \{u_3\})$. If $1_b \notin f(N(u_{10}) - \{u_4\})$ and $2_b \notin f(N(u_9) - \{u_4\})$, then we can recolor u_{10} with 1_b , u_4 with 2_b , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). From (38) and (39), we know that $f(N(u_8) \cup N(u_9) - \{u_3, u_4\}) \subseteq \{2_b, 3_a, 3_b\}$ (See Figure 13). But it contradicts (24). Therefore, we may assume $u_8u_9 \notin E(G)$. Figure 13: Case 2.2.5. Case 2.2.6: $u_7u_8 \notin E(G)$, $u_8u_9 \notin E(G)$. If $|N(u_7)| = |N(u_8)| = |N(u_9)| = |N(u_{10})| = 3$, then we let $$\{u_{11}, u_{12}\} \subseteq N(u_7) - \{u_3\}, \{u_{13}, u_{14}\} \subseteq N(u_8) - \{u_3\}, \{u_{15}, u_{16}\} \subseteq N(u_9) - \{u_4\},$$ and $$\{u_{17}, u_{18}\} \subseteq N(u_{10}) - \{u_4\}.$$ It is possible that $|\{u_i : i \in [18] - [10]\}| \neq 8$ or $\{u_5, u_6\} \cap \{u_i : i \in [18] - [10]\} \neq \emptyset$, but this will not affect the proof below. Similarly to (46), (47), (48), (49), we may assume $$f(u_{12}) = f(u_{16}) = 1_b$$ and $f(u_{13}) = f(u_{17}) = 1_a$. (61) Similarly to (55) and (56), we may assume $$\{2_b, 3_a\} \subseteq f(N(u_7) \cup N(u_8) - \{u_3\}).$$ (62) If $1_b \notin f(N(u_{10}) - \{u_4\})$ and $2_b \notin f(N(u_9) - \{u_4\})$, then we can recolor u_{10} with 1_b , u_4 with 2_b , u_1 with 1_b , and u with 1_a to obtain a coloring satisfying (a) and (b). With (39), we may assume either $$f(u_{15}) = 3_b$$ and $f(u_{18}) = 1_b$ or $f(u_{15}) = 2_b$ and $f(u_{18}) = 3_b$. (63) If $|N(u_{11})| = |N(u_{12})| = |N(u_{13})| = |N(u_{14})| = 3$, then we let $\{u_{19}, u_{20}\} \subseteq N(u_{11}), \{u_{21}, u_{22}\} \subseteq N(u_{12}), \{u_{23}, u_{24}\} \subseteq N(u_{13}), \{u_{25}, u_{26}\} \subseteq N(u_{14}).$ By (62), we have either $$f(u_{11}) = 2_b$$ and $f(u_{14}) = 3_a$ or $f(u_{11}) = 3_a$ and $f(u_{14}) = 2_b$. (64) Figure 14: Case 2.2.6.1. Case 2.2.6.1: $f(u_{11}) = 2_b$ and $f(u_{14}) = 3_a$. If $1_b \notin f(N(u_{13}) - \{u_8\})$, then we can recolor u_{13} with 1_b , u_8 with 1_a , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). If $2_b \notin f(N(u_{13}) \cup N(u_{14}) - \{u_8\})$, then we can recolor u_8 with 2_b , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$2_b \in f(N(u_{13}) \cup N(u_{14}) - \{u_8\}). \tag{65}$$ If $2_a \notin f(N(u_{13}) \cup N(u_{14}) - \{u_8\})$, then we can recolor u_8 with 2_a , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may also assume $$2_a \in f(N(u_{13}) \cup N(u_{14}) - \{u_8\}). \tag{66}$$ If $1_b \notin f(N(u_{11}) - \{u_7\})$, then we can recolor u_{11} with 1_b and it contradicts (64). Similarly, $1_a \in f(N(u_{14}) - \{u_8\})$. If $1_a \notin f(N(u_{12}) - \{u_7\})$, then we can recolor u_{12} with 1_a , u_7 with 1_b , and it contradicts (37). Similarly, $1_b \in f(N(u_{13}) - \{u_8\})$. Thus, we may assume $$|N(u_{13})| = |N(u_{14})| = 3, f(u_{20}) = f(u_{24}) = 1_b, \text{ and } f(u_{21}) = f(u_{25}) = 1_a.$$ (67) Furthermore, by (65) and (66), we assume $$f(u_{23}) = 2_a$$ and $f(u_{26}) = 2_b$, (68) since the argument for $f(u_{23}) = 2_b$ and $f(u_{26}) = 2_a$ is similar. If $\{1_a, 1_b\} \neq f(N(u_{26}) - \{u_{14}\})$, then we can recolor u_{26} with a color $x \in f(N(u_{26}) - \{u_{14}\}) - \{1_a, 1_b\}$, u_8 with 2_b , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$f(N(u_{26}) - \{u_{14}\}) = \{1_a, 1_b\}. \tag{69}$$ If $1_b \notin f(N(u_{25}) - \{u_{14}\})$, then we can recolor u_{25} with 1_b , u_{14} with 1_a , and it contradicts (64). Thus, we may assume $$1_b \in f(N(u_{25}) - \{u_{14}\}). \tag{70}$$ If $f(u_{19}) \neq 1_a$ and $f(u_{22}) \neq 2_b$, then we can recolor u_{11} with 1_a , u_7 with 2_b , u_3 with 1_a , u_1 with 2_a , and u with 1_a to obtain a coloring satisfying (a) and (b). If $3_b \notin f(N(u_{11}) \cup N(u_{12}) - \{u_7\})$, then we can recolor u_3 with 3_b and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we can assume either $$f(u_{19}) = 1_a$$ and $f(u_{22}) = 3_b$ or $f(u_{19}) = 3_b$ and $f(u_{22}) = 2_b$. (71) If $2_a \notin f(N(u_{25}) \cup N(u_{26}) - \{u_{14}\})$, then by (71), we can recolor u_{14} with 2_a , u_3 with 3_a , and u with 2_a to obtain a coloring satisfying (a) and (b). With (69), we may assume $$2_a \in f(N(u_{25}) - \{u_{14}\}). \tag{72}$$ Similarly to (67), we may assume $$1_a \in f(N(u_{24}) - \{u_{13}\}) \quad \text{and} \quad 1_b \in f(N(u_{23}) - \{u_{13}\}).$$ (73) If $\{3_a, 3_b\} \nsubseteq f(N(u_{23}) \cup N(u_{24}))$, then we can recolor u_8 with a color $x \in f(N(u_{23}) \cup N(u_{24})) - \{3_a, 3_b\}$, u_{14} with 1_b , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Therefore, $$f(N(u_{23}) \cup N(u_{24}) - \{u_{13}\}) = \{1_a, 1_b, 3_a, 3_b\}$$ and $2_b \notin f(B(u_{13}))$ (See Figure 14). We recolor u_{13} with 2_b , u_8 with 1_a , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Case 2.2.6.2: $f(u_{11}) = 3_a$ and $f(u_{14}) = 2_b$. Similarly to (67), we may assume $$f(u_{20}) = f(u_{24}) = 1_b$$ and $f(u_{21}) = f(u_{25}) = 1_a$. (74) Figure 15: Case 2.2.6.2. Similarly to (66), we may assume $$2_a \in f(N(u_{13}) \cup N(u_{14}) - \{u_8\}). \tag{75}$$ If $1_b \notin f(N(u_{14}) - \{u_8\})$ and $2_b \notin f(N(u_{13}))$, then we can recolor u_8 with 2_b , u_{14} with 1_b , u_3 with 1_b , and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$f(N(u_{13}) - \{u_8\}) = \{1_b, 2_a\} \quad \text{and} \quad f(N(u_{14}) - \{u_8\}) = \{1_a, 1_b\}$$ or $$f(N(u_{13}) - \{u_8\}) = \{1_b, 2_b\} \quad \text{and} \quad f(N(u_{14}) - \{u_8\}) = \{1_a, 2_a\}. \tag{76}$$ If $2_b \notin f(N(u_{11}) \cup N(u_{12}))$, then we can recolor u_7 with 2_b and it contradicts (37). If $3_b \notin f(N(u_{11}) \cup N(u_{12}))$, then we can recolor u_3 with 3_b and u with 2_a to obtain a coloring satisfying (a) and (b). Thus, we may assume $$f(N(u_{11}) \cup N(u_{12}) - \{u_7\}) = \{1_a, 1_b, 2_b, 3_b\}.$$ $$(77)$$ Specifically, we know that $1_a \notin f(N(u_{11}) - \{u_7\})$ and $2_a \notin f(B(u_7, 2) - \{u_3\})$ (See Figure 15). Therefore, we recolor u_{11} with 1_a , u_7 with 2_a , u_3 with 3_a , and u with 2_a to obtain a coloring satisfying (a) and (b). **Acknowledgment.** We thank Sandi Klavžar, Douglas West, and the referees for their helpful comments. #### References - [1] G. Argiroffo, G. Nasini and P. Torres, The packing coloring problem for lobsters and partner limited graphs, *Discrete Appl. Math.* 164 (2014), 373–382. - [2] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of cubic graphs, *Discrete Math.* 341 (2018), 474–483. - [3] B. Brešar and J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, *Discrete Math.* 341 (2018), 2337–2342. - [4] B. Brešar, S. Klavžar and D.F. Rall, On the packing chromatic number of Cartesian products, hexagonal lattice, and trees, *Discrete Appl. Math.* 155 (2007), 2302–2311. - [5] B. Brešar, S. Klavžar and D.F. Rall, Packing chromatic number of base-3 Sierpiński graphs, *Graphs Combin.* 32
(2016), 1313–1327. - [6] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number under local changes in a graph, *Discrete Math.* 340 (2017), 1110–1115. - [7] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph, *Aequationes Math.* 91 (2017), 169–184. - [8] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number versus chromatic and clique number, Aequationes Math. 92 (2018), 497–513. - [9] J. Czap and S. Jendrol', Facial packing edge-coloring of plane graphs, *Discrete Appl. Math.* 213 (2016), 71–75. - [10] J. Fiala and P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010), 771–778. - [11] J. Fiala, S. Klavžar and B. Lidický, The packing chromatic number of infinite product graphs, European J. Combin. 30 (2009), 1101–1113. - [12] N. Gastineau, Dichotomies properties on computational complexity of S-packing coloring problems, *Discrete Math.* 338 (2015), 1029–1041. - [13] N. Gastineau and O. Togni, S-packing colorings of cubic graphs, *Discrete Math.* 339 (2016), 2461–2470. - [14] N. Gastineau, P. Holub and O. Togni, On packing chromatic number of subcubic outerplanar graphs, https://arxiv.org/abs/1703.05023. - [15] N. Gastineau, H. Kheddouci and O. Togni, Subdivision into *i*-packing and *S*-packing chromatic number of some lattices, *Ars Math. Contemp.* 9 (2015), 331–354. - [16] W. Goddard, S.M. Hedetniemi, S.T.Hedetniemi, J.M. Harris and D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008), 33–49. - [17] W. Goddard and H. Xu, The S-packing chromatic number of a graph, *Discuss. Math. Graph Theory* 32 (2012), 795–806. - [18] W. Goddard and H. Xu, A note on S-packing colorings of lattices, *Discrete Appl. Math.* 166 (2014), 255–262. - [19] D. Korže and A. Vesel, On the packing chromatic number of square and hexagonal lattice, Ars Math. Contemp. 7 (2014), 13–22. - [20] D. Laiche, I. Bouchemakh and É. Sopena, On the packing coloring of undirected and oriented generalized theta graphs, *Australas. J. Combin.* 66 (2016), 310–329. - [21] D. Laiche, I. Bouchemakh and É. Sopena, Packing coloring of some undirected and oriented coronae graphs, *Discuss. Math. Graph Theory* 37 (2017), 665–690. - [22] C. Sloper, An eccentric coloring of trees, Austral. J. Combin. 29 (2004), 309–321. [23] P. Torres and M. Valencia-Pabon, The packing chromatic number of hypercubes, $Discrete\ Appl.\ Math.\ 190–191\ (2015),\ 127–140.$