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Abstract
We prove that two polygons A and B have a reversible hinged dissection (a chain hinged

dissection that reverses inside and outside boundaries when folding between A and B) if and
only if A and B are two noncrossing nets of a common polyhedron. Furthermore, monotone
reversible hinged dissections (where all hinges rotate in the same direction when changing
from A to B) correspond exactly to noncrossing nets of a common convex polyhedron. By
envelope/parcel magic, it becomes easy to design many hinged dissections.

1 Introduction

Given two polygons A and B of equal area, a dissection [9] is a decomposition of A into pieces
that can be re-assembled (by translation and rotation) to form B. In a (chain) hinged dissection
[10], the pieces are hinged together at their corners to form a chain, which can fold into both
A and B, while maintaining connectivity between pieces at the hinge points. Figure 1 shows
a famous example by Dudeney [8]. Many known hinged dissections (including Figure 1) are
reversible (originally called Dudeney dissection [3]), meaning that the outside boundary of A goes
inside of B after the reconfiguration, while the portion of the boundaries of the dissection inside
of A become the exterior boundary of B. In particular, the hinges must all be on the boundary of
both A and B, in the opposite counterclockwise order. We thus view reversible hinged dissections
as a cyclic chain of pieces and hinges, because the choice of the hinge to cut to perform the
reconfiguration is irrelevant: the two endpoints of the chain meet in both configurations. Other
papers [4, 2] call the pair A,B of polygons (instead of the hinged dissection) reversible.

↔

Figure 1: Dudeney’s reversible hinged dissection of a square to an equilateral triangle [8].

Without the reversibility restriction, Abbott et al. [1] showed that any two polygons of same
area have a hinged dissection. Properties of reversible pairs of polygons were studied by Akiyama
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1

ar
X

iv
:1

80
3.

01
17

2v
2 

 [
cs

.C
G

] 
 2

1 
D

ec
 2

02
0



et al. [3, 4]. A recent paper [2] described the parcel magic method to generate reversible hinged
dissections. This method works by cutting open, unfolding, and flattening a polyhedron in two
different ways such that the cut trees of the two unfoldings do not intersect. The special case
when the polyhedron is a dihedron (flat doubly covered polygon) is called envelope magic. The
purpose of this paper is to formalize this method and show that this characterization is in some
sense complete, that is, that every reversible hinged dissection can be constructed this way.

More precisely, we show the following three results:

1. Two polygons A,B have a reversible hinged dissection if and only if A and B are two
noncrossing nets of a common polyhedron (Theorem 3.1).

2. Two polygons A,B have a monotone reversible hinged dissection (where all the turn angles
of all hinges increase from A to B) if and only if A and B are two noncrossing nets of a
common convex polyhedron (Theorem 4.1).

3. Two polygons A,B have a nondegenerate reversible hinged dissection (where each hinge
touches just its two incident pieces), if and only if A and B are two noncrossing nets of
a common convex polyhedron that have only one cut incident to each polyhedron vertex
(Theorem 5.2).

2 Noncrossing Nets

The heart of our results is a lemma about circumnavigating a polyhedron between two noncross-
ing cut trees of unfoldings.

First we need some terminology. In this paper, a polyhedron is always homeomorphic to a
sphere. An unfolding of a polyhedron P cuts the surface of P using a cut tree T ,1 spanning all
vertices of P , such that the cut surface P \T can be unfolded into the plane without overlap by
opening all dihedral angles between the (possibly cut) faces. The planar polygon that results
from this unfolding is called a net of P . Two trees T1 and T2 drawn on a surface are noncrossing
if pairs of edges of T1 and T2 intersect only at common endpoints and, for any vertex v of both
T1 and T2, the edges of T1 (respectively, T2) incident to v are contiguous in clockwise order
around v. Two nets of a common polyhedron are noncrossing if their cut trees are noncrossing.

Lemma 2.1. Let T1, T2 be noncrossing trees drawn on a polyhedron P , each of which spans all
vertices of P . Then there is a cycle C passing through all vertices of P such that C separates
the edges of T1 from edges of T2, i.e., the (closed) interior (yellow region, see Figure 2) of C
includes all edges of T1 and the (closed) exterior of C includes all edges of T2. Furthermore, all
such cycles visit the vertices of P in the same order.

Proof. Refer to Figure 3. Let G be the union of T1 and T2. Because T1 and T2 are noncrossing,
G is a planar graph. Let α > 0 be a third of the smallest angle between any two incident edges
in G, or 90◦, whichever is smaller. Let ε > 0 be a third of the smallest distance2 between any
edge of G and a vertex not incident to that edge. View each edge of G as the union of two
directed half-edges. For every half-edge u, v in G, its sidewalk is a polygonal path u, puv, quv, v
composed of three segments such that

1. the counterclockwise angles ∠puv, u, v and u, v,∠quv are both α (placing puv and quv on
the left of the directed line u, v); and

2. both puv and quv are at distance ε from the segment u, v.
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Figure 2: Example of Lemma 2.1. The edges of T1, T2 are colored blue, red, respectively.

(a) Tree T1 (purple) and its local
interaction with tree T2 (red)

(b) Sidewalks (c) Crosswalks

Figure 3: Proof of Lemma 2.1.

By construction, u, v is the unique closest edge of G from any point on its sidewalk. Thus,
no two distinct sidewalks intersect and sidewalks do not intersect edges of G.

Construct an Euler tour of T1 (Figure 3a) that is noncrossing and traverses clockwise around
T1, and replace each step from u to v in the tour by the sidewalk of u, v. The concatenation of all
these sidewalks forms a clockwise cycle that visits each vertex v as many times as the degree of v
(Figure 3b). For any two consecutive sidewalks u, puv, quv, v, pvw, qvw, w where the wedge u, v, w
does not contain an edge of T2 incident to v, shorten the walk by using the crosswalk quv, pvw
to obtain . . . , puv, quv, pvw, qvw, . . ., thereby avoiding a duplicate visit of v. Because T1 and T2
are noncrossing, all but one of the visits of each vertex v will be removed by using crosswalks
(Figure 3c).

The resulting walk is a simple closed Jordan curve C that visits each vertex of G exactly
once. Because C does not intersect T1 and T2, and locally separates the edges of T1 and T2 at
each vertex, and because T1 and T2 are connected, the curve C separates P into two regions,
one containing T1 and the other containing T2.

Finally, we show that the order of vertices of P visited by any such cycle C is determined
by P , T1, and T2. Consider the planar graph T1 ∪ T2 drawn on P . We claim that every face of

1For simplicity, we assume that the edges of T are drawn using segments along the surface of P , and that
vertices of degree 2 can be used in T to draw any polygonal path.

2We here refer to the geodesic distance on the surface of P .
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this graph consists of at most one path of edges from T1 and at most one path of edges from T2.
Otherwise, we would have at least two components of T1 and at least two components of T2,
neither of which could be connected interior to the face (because the face is empty), and at most
one of which could be connected exterior to the face (by planarity and the noncrossing property),
contradicting that T1 and T2 are both trees. Therefore, every face with at least one edge from
T1 and at least one edge from T2 locally forces where C must go, connecting the two vertices
with incident face edges from both T1 and T2. Every vertex of P has at least one incident edge
from each of the spanning trees T1 and T2, so has two incident such faces. In this way, we obtain
the forced vertex ordering of C.

3 Reversible Hinged Dissections

We can now give our first characterization.

Theorem 3.1. Two polygons A and B have a reversible hinged dissection if and only if A and
B are two noncrossing nets of a common polyhedron.

Proof. To prove one direction (“only if”), it suffices to glue both sides of the pieces of the
dissection as they are glued in both A and B to obtain a polyhedral metric homeomorphic to
a sphere. A result of Burago and Zalgaller [14, 15]3 shows that any such metric corresponds to
the surface of some (not necessarily unique, possibly nonconvex) polyhedron [12]. In the other
direction (“if”), we use Lemma 2.1 to define the sequence of hinges. Now the cut tree TB of net
B is completely contained in the net A and determines the hinged dissection.

4 Monotone Reversible Hinged Dissections

Often times, reversible hinged dissections are also monotone meaning that, if we order the
hinges in the dissection counterclockwise around the boundary of A, then the turn angle at
every hinge decreases (i.e., turns to the right) when transforming from A to B. (This definition
is symmetric in A and B because B’s counterclockwise order of the hinges is the reverse of A’s
counterclockwise order of the hinges.) Recall that we view reversible hinged dissections as a
cyclic chain, so the monotonicity definition also measures the change in angle of the hinge that
is cut open in order to perform the reconfiguration but which recombines into a vertex in both
the A and B configurations. Figure 1 is monotone, while Figure 4 shows a hinged dissection
that is reversible but not monotone.

↔

Figure 4: Reversible hinged dissection that is not monotone (nor is it nondegenerate), because
of the highlighted vertex.

3Burago and Zalgaller first proved the result for any orientable surface [14] but later noted and fixed a flaw
in their construction [15]. At the same time, they generalized their result to a stronger statement about possibly
non-orientable surfaces.
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Our second characterization shows that monotonicity in the hinged dissection is equivalent
to convexity of the polyhedron:

Theorem 4.1. Two polygons A and B have a monotone reversible hinged dissection if and only
if A and B are two noncrossing nets of a common convex polyhedron.

Proof. Let v be a hinge of the monotone reversible hinged dissection. Pick two reference points
v− and v+ in the neighborhood of v and in the pieces before and after hinge v, respectively,
in counterclockwise order around the boundary of A. Let αv be the counterclockwise angle
∠v−, v, v+ when the dissection forms polygon A, and let α′v be the same angle when the dissection
forms polygon B. Because the dissection is monotone, α′v ≥ αv for all v.

Just as in Theorem 3.1, glue both sides of the dissection as they are glued in both A and
B to obtain a polyhedral metric homeomorphic to a sphere. Observe now that the total angle
glued at vertex v is exactly αv +(2π−α′v) ≤ 2π. By Alexandrov’s Theorem [5, 7, Section 23.3],
there exists a unique convex polyhedron (up to rigid transformations) whose surface has this
intrinsic metric.

In the other direction, suppose we have two noncrossing nets of a convex polyhedron P .
Use Lemma 2.1 to find a cycle C separating TA and TB on the surface of P and to define the
sequence of hinges, and cut both trees to obtain the dissection. Pick points v− and v+ before
and after v on C and in the neighborhood of v. Let αv be the angle ∠v−, v, v+ in net A and
on the surface of P , and βv be the angle ∠v+, v, v− in net B and on the surface of P . Because
P is convex, αv + βv ≤ 2π. The angle α′v = ∠v−, v, v+ when the dissection forms polygon B is
exactly 2π − βv ≥ αv for every hinge v, and so the dissection is monotone.

Two unfoldings of a common convex polyhedron is in some sense the dual notion of two
convex polyhedra with a common unfolding, a topic that has been studied extensively; see
[13, 7, Section 25.8.3].

5 Nondegenerate Reversible Hinged Dissections

An interesting special case of a monotone reversible hinged dissection is when every hinge touches
only its two incident pieces in both its A and B configurations, and thus A and B are the
only possible such configurations. We call these nondegenerate reversible hinged dissections.
(For example, Figure 1 is nondegenerate, while Figure 4 is degenerate and not monotone, and
Figure 5 is degenerate and monotone.)

↔

Figure 5: Reversible hinged dissection that is monotone but degenerate, because of the high-
lighted vertex.

Lemma 5.1. Every nondegenerate reversible hinged dissection is strictly monotone, i.e., mono-
tone and all turn angles change between A and B.
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Proof. Pick the reference points v− and v+ and define angle αv and α′v as in Theorem 4.1.
Because the dissection is nondegenerate, the two pieces attached to hinge v touch on the inside
of A. Therefore, for any hinge angle ∠v−, v, v+ less than αv, those two pieces would intersect.
Because no two piece intersect when the dissection forms polygon B, α′v ≥ αv for all v and the
dissection is monotone. Furthermore, we cannot have α′v = αv, because then the two pieces
would touch on both sides of the hinge, meaning that it is not a hinge at all.

The distinguishing feature of nondegenerate reversible hinged dissections is that their corre-
sponding unfoldings are nondegenerate in the sense that every vertex of the polyhedron has just
a single incident cut (degree 1) in the cut tree.

Theorem 5.2. Two polygons A and B have a nondegenerate reversible hinged dissection if and
only if A and B are two nondegenerate noncrossing nets of a common convex polyhedron.

Proof. By Lemma 5.1, a nondegenerate reversible hinged dissection between A and B is strictly
monotone, so by Theorem 4.1, A andB are two noncrossing nets of a common convex polyhedron.
When gluing the pieces along both dissection boundaries to form the convex polyhedral metric,
we form vertices exactly at the hinges (by strict monotonicity). By nondegeneracy, no other
piece touches a hinge, so the resulting polyhedron vertex has only one cut in each of the two
unfoldings (corresponding to the opened edge in each hinged dissection).

In the other direction, if A and B are two nondegenerate noncrossing nets of a common
convex polyhedron, then by Theorem 4.1, they have a monotone reversible hinged dissection
between A and B. Each of the two states of the hinged dissection is formed by cutting the cut
tree of one unfolding (e.g., A) while leaving attached the cut tree of the other unfolding (e.g.,
B). Because both unfoldings are nondegenerate, at each hinge, the pieces share one side (e.g.,
B) while leaving an empty sector angle on the other side (e.g., A), so no other piece can be
incident to the hinge. Therefore the unfolding is nondegenerate.

Figure 6 shows two examples of hinged dissections resulting from these techniques. Histor-
ically, many hinged dissections (e.g., in [9, 10]) have been designed by overlaying tessellations
of the plane by shapes A and B. This connection to tiling is formalized by the results of this
paper, combined with the characterization of shapes that tile the plane isohedrally as unfoldings
of certain convex polyhedra [11].
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nets of a doubly covered rectangle.

Figure 6: Two nondegenerate reversible hinged dissections found by parcel and envelope magic.
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