
ar
X

iv
:1

70
8.

06
69

1v
1 

 [
m

at
h.

C
O

] 
 2

2 
A

ug
 2

01
7

BERGE’S CONJECTURE AND AHARONI-HARTMAN-HOFFMAN’S

CONJECTURE FOR LOCALLY IN-SEMICOMPLETE DIGRAPHS

MAYCON SAMBINELLI, CARLA NEGRI LINTZMAYER, CÂNDIDA NUNES DA SILVA,

AND ORLANDO LEE

Abstract. Let k be a positive integer and let D be a digraph. A path partition P of D is a set

of vertex-disjoint paths which covers V (D). Its k-norm is defined as
∑

P∈P
min{|V (P )|, k}. A

path partition is k-optimal if its k-norm is minimum among all path partitions of D. A partial

k-coloring is a collection of k disjoint stable sets. A partial k-coloring C is orthogonal to a path

partition P if each path P ∈ P meets min{|P |, k} distinct sets of C. Berge (1982) conjectured

that every k-optimal path partition ofD has a partial k-coloring orthogonal to it. A (path) k-pack

of D is a collection of at most k vertex-disjoint paths in D. Its weight is the number of vertices

it covers. A k-pack is optimal if its weight is maximum among all k-packs of D. A coloring of D

is a partition of V (D) into stable sets. A k-pack P is orthogonal to a coloring C if each set C ∈ C

meets min{|C|, k} paths of P . Aharoni, Hartman and Hoffman (1985) conjectured that every

optimal k-pack of D has a coloring orthogonal to it. A digraph D is semicomplete if every pair

of distinct vertices of D is adjacent. A digraph D is locally in-semicomplete if, for every vertex

v ∈ V (D), the in-neighborhood of v induces a semicomplete digraph. Locally out-semicomplete

digraphs are defined similarly. In this paper, we prove Berge’s and Aharoni-Hartman-Hoffman’s

Conjectures for locally in/out-semicomplete digraphs.

§1. Introduction

The digraphs considered in this text do not contain loops or parallel arcs, but may contain

cycles of length two. Let D be a digraph. We denote the vertex set of D by V (D) and its arc set

by A(D). If u and v are vertices of D, then we denote the arc with tail in u and head in v by uv.

Vertices u and v are adjacent in D if uv ∈ A(D) or vu ∈ A(D); otherwise they are nonadjacent.

The neighborhood, in-neighborhood, and out-neighborhood of a vertex v ∈ V (D) are the sets

{u ∈ V (D) : uv ∈ A(D) or vu ∈ A(D)}, {u ∈ V (D) : uv ∈ A(D)}, and {u ∈ V (D) : vu ∈ A(D)},

respectively.

A path inD is a nonempty sequence of distinct vertices P = v1v2 . . . vℓ such that vivi+1 ∈ A(D)

for 1 ≤ i < ℓ. We define V (P ) = {v1, v2, . . . , vℓ} and e(P ) = vℓ. The order of P , denoted by |P |,

is equal to ℓ and a path is trivial if its order is one. We denote the order of a longest path in D

by λ(D). For a set P of vertex-disjoint paths of D, we define V (P) = ∪P∈PV (P ).
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A set S of vertices of D is stable if all of its vertices are pairwise nonadjacent. The stability

number of D, denoted by α(D), is equal to the cardinality of a maximum stable set of D. A

path partition of D is a set of vertex-disjoint paths of D which covers V (D). A path partition

P of D is optimal if |P| is minimum among all possible path partitions of D. The cardinality of

an optimal path partition of D is denoted by π(D). In 1950, Dilworth [8] proved the following

result.

Theorem 1.1 (Dilworth [8]). For every transitive acyclic digraph D, we have π(D) = α(D).

Note that this equality is not valid for digraphs in general; for example, if D is a directed

cycle with 5 vertices, then π(D) = 1 and α(D) = 2. However, Gallai and Milgram [11] proved

that the following inequality holds for arbitrary digraphs.

Theorem 1.2 (Gallai-Milgram [11]). For every digraph D, we have π(D) ≤ α(D).

Let k be a positive integer and let D be a digraph. The k-norm of a path partition P of

D is defined as
∑

P∈P min{|P |, k} and denoted by |P|k. A path partition P of D is k-optimal

if |P|k is minimum among all possible path partitions of D. The k-norm of a k-optimal path

partition of D is denoted by πk(D). A partial k-coloring C of D is a collection of k disjoint

stable sets of D called color classes (empty color classes are allowed). The weight of a partial

k-coloring C, denoted by ||C||, is defined as
∑

C∈C |C|. A partial k-coloring C of D is optimal if

||C|| is maximum among all possible partial k-colorings of D. The weight of an optimal partial

k-coloring of D is denoted by αk(D). In 1976, Greene and Kleitman [13] proved the following

result.

Theorem 1.3 (Greene-Kleitman [13]). For every transitive acyclic digraph D and every positive

integer k, we have πk(D) = αk(D).

Since π(D) = π1(D) and α(D) = α1(D), Theorem 1.1 is the particular case of Theorem 1.3

in which k = 1. In 1981, Linial [17] conjectured that Theorem 1.3 can be extended to arbitrary

digraphs in the same way that Theorem 1.2 extends Theorem 1.1.

Conjecture 1.1 (Linial [17]). For every digraph D and every positive integer k, we have πk(D) ≤

αk(D).

In an attempt to unify Theorem 1.2 and a result proved independently by Gallai [10] and

Roy [19] (Theorem 1.5), Berge proposed the following conjecture, which is a strengthening of

Conjecture 1.1. A path partition P and a partial k-coloring C are orthogonal if each path P ∈ P

meets min{|P |, k} distinct color classes of C (we also say that P is orthogonal to C and vice-versa).

Berge’s Conjecture [5]. Let D be a digraph and let k be a positive integer. If P is a k-optimal

path partition of D, then there exists a partial k-coloring of D orthogonal to P.
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Berge’s Conjecture remains open, but we know it holds for k = 1 [16], k = 2 [6], when

λ(D) = 3 [5], when the k-optimal path partition has only paths of order at most k [5] or if it has

only paths of order at least k [1], acyclic digraphs [2, 7], digraphs where all directed cycles are

pairwise vertex-disjoint [20], bipartite digraphs [5], digraphs containing a Hamiltonian path [5],

and k ≥ λ(D)− 3 [15].

Now we exchange the roles of paths and stable sets in the concepts discussed so far and present

some similar results. Let D be a digraph. A coloring of D is a partition of V (D) into stable sets

called color classes. A coloring C of D is optimal if |C| is minimum among all possible colorings

of D. The chromatic number of D, denoted by χ(D), is the cardinality of an optimal coloring of

D. Mirsky [18] proved the following dual of Theorem 1.1.

Theorem 1.4 (Mirsky [18]). For every transitive acyclic digraph D, we have χ(D) = λ(D).

Similarly to Theorem 1.2, Gallai [10] and Roy [19], independently, proved the following result.

Theorem 1.5 (Gallai-Roy [10,19]). For every digraph D, we have χ(D) ≤ λ(D).

Let k be a positive integer. The k-norm of a coloring C, denoted by |C|k, is
∑

C∈C min{|C|, k}.

A coloring C of a digraph D is k-optimal if |C|k is minimum among all possible path partitions

of D. The k-norm of a k-optimal coloring of a digraph D is denoted by χk(D). A (path) k-pack

P is a set of at most k vertex-disjoint paths of a digraph D. The weight of a k-pack P, denoted

by ||P||, is defined as |V (P)| (i.e., the number of vertices P covers). A k-pack P of a digraph D

is optimal if ||P|| is maximum among all possible k-packs of D. The weight of an optimal k-pack

of a digraph D is denoted by λk(D). Note that χ(D) = χ1(D) and λ(D) = λ1(D). Greene [12]

proved the following theorem for transitive acyclic digraphs.

Theorem 1.6 (Greene [12]). For every transitive acyclic digraph D and every positive integer

k, we have χk(D) = λk(D).

Linial [17] proposed Conjecture 1.2 for arbitrary digraphs.

Conjecture 1.2 (Linial [17]). For every digraph D and every positive integer k, we have χk(D) ≤

λk(D).

Note that Theorems 1.4, 1.5, 1.6, and Conjecture 1.2 can be seen as dual versions of The-

orems 1.1, 1.2, 1.3, and Conjecture 1.1, respectively, where the roles of paths and stable sets

are exchanged. Therefore, it is natural to ask if there exists a dual version of Berge’s Conjec-

ture. By exchanging the roles of paths and stable sets, we end up with the following definition

of orthogonality. A coloring C and a k-pack P are orthogonal if each color class C ∈ C meets

min{|C|, k} distinct paths of P (we also say that C is orthogonal to P and vice-versa). The

natural dual version of Berge’s Conjecture states that a k-optimal coloring of a digraph D, for
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some positive integer k, has a k-pack of D orthogonal to it. This statement is a strengthening

of Conjecture 1.2, however it is false. For example, take D defined as V (D) = {v1, v2, v3, v4, v5}

and A(D) = {v1v2, v1v5, v3v2, v3v4, v5v4}, and take C = {{v1, v4}, {v2, v5}, {v3}}. As an alter-

native strengthening of Conjecture 1.2, Aharoni, Hartman, and Hoffman [2] gave the following

conjecture.

Aharoni-Hartman-Hoffman’s Conjecture [2]. Let D be a digraph and let k be a positive

integer. If P is an optimal k-pack of D, then there exists a coloring of D orthogonal to P.

This conjecture remains open, but we know it holds for k = 1 [10,19], k ≥ π(D) [14], when the

optimal k-pack has at least one trivial path [14], bipartite digraphs [14], and acyclic digraphs [2].

A digraph is semicomplete if all its vertices are pairwise adjacent. A digraph D is (locally) in-

semicomplete (respectively, out-semicomplete) if, for every vertex v ∈ V (D), the in-neighborhood

(respectively, out-neighborhood) of v induces a semicomplete digraph. One important charac-

terization of in-semicomplete digraphs which we use throughout the text is the following.

Theorem 1.7 ([3]). A digraph D is in-semicomplete if, and only if, for every vertex v and every

pair of internally vertex-disjoint paths P and Q such that v = e(P ) = e(Q), there exists a path

R such that V (R) = V (P ) ∪ V (Q) and e(R) = v.

In-semicomplete digraphs generalize semicomplete digraphs, which in turn generalize tourna-

ments. We refer the reader to the book by Bang-Jensen and Gutin [3] for further information on

this class of digraphs. We just would like to remark that there are a few results and problems

in literature considering in-semicomplete digraphs, such as Bondy’s Conjecture and Laborde,

Payan, and Xuong’s Conjecture, presented next. The former states that for every digraph D and

every choice of positive integers λ1, λ2 such that λ(D) = λ1 + λ2, there exists a partition of D

into two digraphs D1 and D2 such that λ(Di) = λi, for i = 1, 2. The latter states that in every

digraph there exists a maximal stable set that intersects every longest path. These conjectures,

still open for arbitrary digraphs, were proved for in-semicomplete digraphs by Bang-Jensen et

al. [4] and Galeana-Sánchez and Gómez [9], respectively. In this paper, we prove Berge’s Con-

jecture and Aharoni-Hartman-Hoffman’s Conjecture for in-semicomplete and out-semicomplete

digraphs.

§2. Results for Berge’s Conjecture

Given a path P and a positive integer k, if |P | > k then we say P is k-long, otherwise we

say it is k-short. For a set P of vertex-disjoint paths of a digraph D and a positive integer k,

we define e(P) = {e(P ) : P ∈ P}, P>k = {P ∈ P : |P | > k}, and P≤k = {P ∈ P : |P | ≤ k}. To

simplify notation, given a set S and an element x, we denote by S + x the union S ∪ {x} and by

S − x the difference S\{x}.
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Next lemma shows that it is possible to convert one path partition P into another path

partition Q whose k-norm is either smaller than P’s or it is the same as P’s but e(Q) is a stable

set.

Lemma 2.1. Let P be a path partition of an in-semicomplete digraph D and let k be a positive

integer. Then there exists a path partition Q of D such that one of the following conditions holds:

(i) |Q|k < |P|k and e(Q) ⊂ e(P);

(ii) |Q|k = |P|k, e(Q) ⊆ e(P), e(Q) is stable, and every partial k-coloring of D orthogonal to

Q is also orthogonal to P.

Proof. If e(P) is stable, then Q = P satisfies case (ii) and the result follows. Thus, we may

assume that e(P) is not stable and, therefore, there exists a pair of vertices u and v in e(P)

such that uv ∈ A(D). Let P1 and P2 be the paths in P such that e(P1) = u and e(P2) = v. By

Theorem 1.7, there exists a path Q in D such that V (Q) = V (P1)∪ V (P2) and e(Q) = v. Let Q

be the path partition of D defined as P − P1 − P2 +Q. Note that e(Q) ⊂ e(P).

Suppose first that at least one of P1 and P2 is a k-long path. Hence, Q is k-long and

|Q|k =
∑

P∈Q

min{|P |, k} =
∑

P∈Q−Q

min{|P |, k} +min{|Q|, k} =
∑

P∈Q−Q

min{|P |, k} + k

<
∑

P∈P−P1−P2

min{|P |, k} +min{|P1|, k}+min{|P2|, k} =
∑

P∈P

min{|P |, k} = |P|k ,

where the inequality follows because min{|P1|, k} + min{|P2|, k} is at least k + 1, since at least

one of P1 or P2 is k-long. Therefore, case (i) holds and we may assume that there is no arc in

A(D) for which one of its endpoints is in e(P>k) and the other is in e(P). Hence, we have that

P1 and P2 are k-short paths.

Note that |P|k =
∑

P∈P−P1−P2
min{|P |, k} + min{|P1|, k} + min{|P2|, k} and |Q|k =

∑
P∈P−P1−P2

min{|P |, k} + min{|Q|, k}. If |Q| > k, that is, if Q is k-long, then |Q|k < |P|k and

so Q satisfies case (i) of the lemma.

Thus, we may assume Q is k-short and, therefore, |Q|k = |P|k. The previous argument shows

that if there exists an arc of D connecting two vertices of e(P), then both of them must be ends

of k-short paths of P. From Q we show how to find a new path partition of D which satisfies

either (i) or (ii).

First suppose that there exists a partial k-coloring C orthogonal to Q and let P be a path in

Q−Q = P−P1−P2. Hence, P meets min{|P |, k} color classes of C, since C is orthogonal to Q. In

order to prove that C is also orthogonal to P, it remains to show that Pi meets min{|Pi|, k} = |Pi|

color classes for i ∈ {1, 2}. Since Q is k-short, we know that each of its vertices meets a different

color class of C. Therefore, every vertex in Pi, for i ∈ {1, 2}, also meets a distinct color class of

C, after all V (Q) = V (P1) ∪ V (P2), and so C is indeed orthogonal to P. So, we assume there

exists no partial k-coloring orthogonal to Q.
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If e(Q≤k) is stable, then e(Q) is stable and case (ii) holds. Thus, we may assume that e(Q≤k)

is not stable and the remaining proof is by induction on the number ℓ of k-short paths in P.

Since e(P≤k) is not stable, we have ℓ ≥ 2. If ℓ = 2, then P≤k = {P1, P2}. Therefore,

e(Q≤k) = e(Q) and so Q satisfies case (ii). Now suppose ℓ > 2. By the induction hypothesis

applied to Q, there exists a path partition Q′ of D such that case (i) or (ii) holds. If (i) holds, then

e(Q′) ⊂ e(Q) and |Q′|k < |Q|k. By construction of Q, this also means that e(Q′) ⊂ e(P) and

|Q′|k < |P|k, and so case (i) holds for P. Otherwise (ii) holds for Q′, that is, |Q′|k = |Q|k = |P|k,

e(Q′) ⊆ e(Q) ⊂ e(P), e(Q′) is stable, and every partial k-coloring orthogonal to Q′ is also

orthogonal to Q and, therefore, to P. Thus, (ii) holds for P.

Given a path P = v1v2 . . . vℓ, we write viP = vivi+1 . . . vℓ, Pvj = v1v2 . . . vj , and viPvj =

vivi+1 . . . vj to denote the appropriate subpath of P . Also, using the definitions of P>k and

P≤k given above, note that the k-norm of a path partition P can equivalently be defined as

k|P>k|+ |V (P≤k)|.

Next theorem is the first main result of this paper. It shows that any path partition of an

in-semicomplete digraph either has a partial k-coloring orthogonal to it or can be turned into a

new path partition with smaller k-norm. Corollaries 2.1 and 2.2 state the meaning of such result

for Berge’s Conjecture.

Theorem 2.1. Let D be an in-semicomplete digraph, let k be a positive integer, and let P be a

path partition of D. Then there exists

(i) a partial k-coloring of D orthogonal to P; or

(ii) a path partition Q of D such that |Q|k < |P|k and e(Q) ⊂ e(P).

Proof. By Lemma 2.1, there exists a path partition Q of D such that either (a) |Q|k < |P|k

and e(Q) ⊂ e(P) or (b) |Q|k = |P|k, e(Q) ⊆ e(P), e(Q) is stable, and every partial k-coloring

orthogonal to Q is also orthogonal to P. If (a) holds, then case (ii) holds directly. Therefore, we

may assume that (b) holds. Note that this reduces the problem of proving the result for P to

the problem of proving it for Q and, thus, from now on we can only consider Q.

The remaining proof follows by induction on k. If k = 1, then e(Q) is a partial 1-coloring

orthogonal to Q and (i) holds. Otherwise, k > 1 and let D′ = D[V (D)\e(Q)] and Q′ =

{Quℓ−1 : Q = u1u2 . . . uℓ ∈ Q}. Note that Q′ is a path partition for D′. By the induction

hypothesis applied to D′, Q′, and k − 1, we have that there exists (a) a partial (k − 1)-coloring

C of D′ orthogonal to Q′ or (b) a path partition R′ or D′ such that |R′|k−1 < |Q′|k−1 and

e(R′) ⊂ e(Q′). If (a) holds, then C + e(Q) is a partial k-coloring orthogonal to Q and case (i)

holds.

So we assume that case (b) holds. Let e(Q′) = {v1, v2, . . . , vℓ} and ui ∈ e(Q) be the sucessor

of vi in its path in Q. Note that each path of R′ ends at some vi, so name such path as R′
i. Let
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R = {R′
iviui : R

′
i ∈ R′>k−1}∪R′≤k−1 ∪ (e(Q)\{ui : R

′
i ∈ R′>k−1}). In other words, R is built by

the extensions of all (k − 1)-long paths of R′, plus all (k − 1)-short paths of R′, plus all single

vertices of e(Q) which were not used to extend the (k − 1)-long paths of R′. It is easy to see

that R is a path partition for D.

We know that |R′|k−1 = (k−1)|R′>k−1|+ |V (R′≤k−1)| = k|R′>k−1|+ |V (R′≤k−1)|− |R′>k−1|,

by definition. By construction of R, |R|k = k|R′>k−1| + |V (R′≤k−1)| + |e(Q)| − |R′>k−1| =

|R′|k−1 + |Q|. Also, by construction of Q′, |Q′|k−1 = (k − 1)|Q>k| + |V (Q≤k)| − |Q≤k| =

k|Q>k|+ |V (Q≤k)| − |Q>k| − |Q≤k| = |Q|k − |Q|. Putting everything together, we have |R|k =

|R′|k−1 + |Q| < |Q′|k−1 + |Q| = |Q|k − |Q|+ |Q| = |Q|k and, therefore, case (ii) holds for Q.

Corollary 2.1. If P is a k-optimal path partition of an in-semicomplete digraph D, then there

exists a partial k-coloring of D orthogonal to P.

Corollary 2.2. If P is a k-optimal path partition of an out-semicomplete digraph D, then there

exists a partial k-coloring of D orthogonal to P.

Proof. The inverse of a digraph (path partition) B, denoted by B−, is the digraph (path parti-

tion) built from B by inverting its arcs, that is, if uv ∈ A(B), then vu ∈ A(B−). If Q is a path

partition of D, then Q− is a path partition of D− with |Q|k = |Q−|k, and vice-versa. Thus, we

have that P− is k-optimal in D−, and since D− is an in-semicomplete digraph, by Corollary 2.1

there exists a partial k-coloring C orthogonal to P−. Clearly, C is also orthogonal to P.

§3. Results for Aharoni-Hartman-Hoffman’s Conjecture

Recall that, given a k-pack P, we define e(P) = {e(P ) : P ∈ P}. Similarly to the result of

Lemma 2.1, the next lemma shows that it is possible to convert one k-pack P into another k-pack

Q with the same weight such that e(Q) is a stable set.

Lemma 3.1. Let P be a k-pack of an in-semicomplete digraph D. Then there exists a k-pack Q

of D such that ||Q|| = ||P||, e(Q) ⊆ e(P), and e(Q) is stable.

Proof. The proof is by induction on ℓ = |P|. If e(P) is stable, then Q = P satisfies the lemma’s

conclusion and the result follows. Thus, we may assume e(P) is not stable. Let u and v in e(P)

such that uv ∈ A(D). Let P1 and P2 be the paths in P which end in u and v, respectively. By

Theorem 1.7, there exists a path Q in D such that V (Q) = V (P1) ∪ V (P2) and e(Q) = e(P2).

Let Q be the k-pack of D defined as P −P1 −P2 +Q. By the induction hypothesis, there exists

a k-pack R such that ||R|| = ||Q||, e(R) ⊆ e(Q), and e(R) is a stable set. By construction,

||Q|| = ||P|| and e(Q) ⊂ e(P), so the result follows directly.

Next theorem is another main result of this paper. It shows that any k-pack of an in-

semicomplete digraph either has a coloring orthogonal to it or can be turned into a k-pack with
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larger weight. Corollaries 3.1 and 3.2 state the meaning of such result for Aharoni-Hartman-

Hoffman’s Conjecture. To simplify the notation, given a k-pack P of D, we denote by P the

vertex set V (D)\V (P). Recall that, given a path P = v1v2 . . . vℓ, we write viP = vivi+1 . . . vℓ,

Pvj = v1v2 . . . vj, and viPvj = vivi+1 . . . vj to denote the appropriate subpaths.

Theorem 3.1. Let D be an in-semicomplete digraph, let k be a positive integer, and let P be a

k-pack of D. Then there exists

(i) a coloring of D orthogonal to P; or

(ii) a k-pack Q of D such that ||Q|| = ||P|| + 1 and e(Q) ⊆ e(P) ∪ P.

Proof. The proof is by induction on |P|. If P = ∅, then the coloring {{v} : v ∈ V (D)} is

orthogonal to P and case (i) holds. Thus, we may assume P 6= ∅. Let v be a vertex in P and

let Q = P + v. If |Q| ≤ k, then Q satisfies case (ii) and the result follows. Thus, we have

|Q| = k + 1, since |P| ≤ k. If e(Q) is not stable, then there exist two paths P1 and P2 in Q

such that e(P1) and e(P2) are adjacent and, by Theorem 1.7, there exists a path Q such that

V (Q) = V (P1)∪V (P2) and e(Q) ∈ {e(P1), e(P2)}. Therefore, Q−P1−P2+Q is a k-pack which

satisfies case (ii). Since v was chosen arbitrarily from P , we have that for any v ∈ P , e(P) + v

is stable. In particular, e(P) is stable.

Let S ⊆ P be a maximum stable set in D[P], let D′ be the digraph D[V (D)\(e(P)∪S)], and

let R be the k-pack of D′ defined as {Puℓ−1 : P = u1u2 . . . uℓ ∈ P}. Note that ||R|| = ||P|| − k

and R ⊂ P . By the induction hypothesis applied to D′ and R, we have that there exists (a)

a coloring C of D′ orthogonal to R or (b) a k-pack B of D′ such that ||B|| = ||R|| + 1 and

e(B) ⊆ e(R) ∪ R. If (a) holds, then C + (e(P) ∪ S) is a coloring orthogonal to P and case (i)

holds. So we may assume that (b) holds. We will show that (ii) holds. By Lemma 3.1, we may

assume that e(B) is stable. Let B = B1 ∪ B2, where e(B1) ⊆ e(R) and e(B2) ⊆ R.

Let e(R) = {v1, v2, . . . , vℓ} and let ui ∈ e(P) be the successor of vi in a path of P. Note that

every path of B1 ends at some vi, so name such path as Bi. Let Q1 = {Biviui : Bi ∈ B1}, that

is, we built Q1 by extending all paths of B1. Note that ||Q1|| = ||B1|| + |B1|, |Q1| = |B1|, and

that e(Q1) ⊆ e(P).

Now we will show that there exists a collection of paths in P with weight ||B2||+|B2|. Let G be

the bipartite graph with vertex-set V (G) = e(B2) ∪ S and edge-set E(G) = {uv : u ∈ e(B2), v ∈

S, and u and v are adjacent in D}. We claim that there exists a matching in G which covers

e(B2). Suppose by contradiction that such matching does not exist. By Hall’s Theorem, there

exists W ⊆ e(B2) such that |W | > N(W ), where N(W ) = {u ∈ V (G) : uv ∈ E(G) and v ∈ W}.

Note that W is stable in D[P ], since W ⊆ e(B), and no vertex in W is adjacent to a vertex in

S\N(W ) in D. Therefore, we have that (S\N(W ))∪W is stable in D[P] greater than S, which

contradicts the choice of S. Hence, there exists a matching M in G which covers e(B2). For

each u ∈ e(B2), let M(u) be the vertex of S matched to u by M . Let B2 = {B1, B2, . . . , Bp}
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and let Bi = w1w2 . . . wq be a path in B2. By Theorem 1.7, there exists a path Qi such that

V (Qi) = V (Bi) + M(wq) and e(Qi) ∈ {wq,M(wq)}. Let Q2 = {Qi : Bi ∈ B2}. Note that

||Q2|| = ||B2||+ |B2|, |Q2| = |B2|, and that e(Q2) ⊆ P .

Let T = (e(P)∪S)\(e(Q1)∪e(Q2)), that is, the set of vertices in e(P)∪P that are not ends of

a path in Q1∪Q2. Thus, |T | = |e(P)|+|S|−|Q1|−|Q2| = k+|S|−|Q1|−|Q2| ≥ k+1−|Q1|−|Q2|.

Let U be a set of k−|Q1|− |Q2| vertices in T . We can see U as a set of trivial paths. Finally,

let Q be the k-pack of D defined as Q1 ∪Q2 ∪U . By the previous remarks it is easy to see that

e(Q) ⊆ e(P) ∪ P . At last, we have

||Q|| = ||Q1||+ ||Q2||+ ||U || = ||B1||+ |B1|+ ||B2||+ |B2|+ ||U || = ||B||+ |B|+ ||U ||

= ||B||+ |B|+ k − |Q1| − |Q2| = ||B||+ |B|+ k − |B1| − |B2| = ||B||+ |B|+ k − |B|

= ||R||+ 1 + k = ||P|| − k + 1 + k = ||P|| + 1.

Hence, we conclude that (ii) holds and the result follows.

Corollary 3.1. If P is an optimal k-pack of an in-semicomplete digraph D, then there exists a

coloring of D orthogonal to P.

Corollary 3.2. If P is an optimal k-pack of an out-semicomplete digraph D, then there exists

a coloring of D orthogonal to P.
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