arXiv:1708.06691v1 [math.CO] 22 Aug 2017

BERGE’S CONJECTURE AND AHARONI-HARTMAN-HOFFMAN’S
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ABSTRACT. Let k be a positive integer and let D be a digraph. A path partition P of D is a set
of vertex-disjoint paths which covers V(D). Its k-norm is defined as ) ., min{|V(P)|, k}. A
path partition is k-optimal if its k-norm is minimum among all path partitions of D. A partial
k-coloring is a collection of k disjoint stable sets. A partial k-coloring C is orthogonal to a path
partition P if each path P € P meets min{|P|, k} distinct sets of C. Berge (1982) conjectured
that every k-optimal path partition of D has a partial k-coloring orthogonal to it. A (path) k-pack
of D is a collection of at most k vertex-disjoint paths in D. Its weight is the number of vertices
it covers. A k-pack is optimal if its weight is maximum among all k-packs of D. A coloring of D
is a partition of V(D) into stable sets. A k-pack P is orthogonal to a coloring C if each set C € C
meets min{|C|, k} paths of P. Aharoni, Hartman and Hoffman (1985) conjectured that every
optimal k-pack of D has a coloring orthogonal to it. A digraph D is semicomplete if every pair
of distinct vertices of D is adjacent. A digraph D is locally in-semicomplete if, for every vertex
v € V(D), the in-neighborhood of v induces a semicomplete digraph. Locally out-semicomplete
digraphs are defined similarly. In this paper, we prove Berge’s and Aharoni-Hartman-Hoffman’s

Conjectures for locally in/out-semicomplete digraphs.

§1. INTRODUCTION

The digraphs considered in this text do not contain loops or parallel arcs, but may contain
cycles of length two. Let D be a digraph. We denote the vertex set of D by V(D) and its arc set
by A(D). If u and v are vertices of D, then we denote the arc with tail in u and head in v by uv.
Vertices u and v are adjacent in D if uv € A(D) or vu € A(D); otherwise they are nonadjacent.
The neighborhood, in-neighborhood, and out-neighborhood of a vertex v € V(D) are the sets
{ueV(D): ww e A(D) or vu € A(D)}, {u e V(D): uv € A(D)}, and {u € V(D): vu € A(D)},

respectively.

A path in D is a nonempty sequence of distinct vertices P = v1vs . .. vp such that v;v;41 € A(D)
for 1 <i < ¢. We define V(P) = {v1,v2,...,v} and e(P) = vp. The order of P, denoted by |P|,
is equal to £ and a path is trivial if its order is one. We denote the order of a longest path in D
by A(D). For a set P of vertex-disjoint paths of D, we define V(P) = UpepV (P).
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A set S of vertices of D is stable if all of its vertices are pairwise nonadjacent. The stability
number of D, denoted by a(D), is equal to the cardinality of a maximum stable set of D. A
path partition of D is a set of vertex-disjoint paths of D which covers V(D). A path partition
P of D is optimal if |P| is minimum among all possible path partitions of D. The cardinality of
an optimal path partition of D is denoted by 7(D). In 1950, Dilworth [8] proved the following

result.

Theorem 1.1 (Dilworth [8]). For every transitive acyclic digraph D, we have (D) = «(D).

Note that this equality is not valid for digraphs in general; for example, if D is a directed
cycle with 5 vertices, then (D) = 1 and a(D) = 2. However, Gallai and Milgram [11] proved
that the following inequality holds for arbitrary digraphs.

Theorem 1.2 (Gallai-Milgram [11]). For every digraph D, we have w(D) < a(D).

Let k be a positive integer and let D be a digraph. The k-norm of a path partition P of
D is defined as ) p.p min{|P|,k} and denoted by |P|;. A path partition P of D is k-optimal
if |P|x is minimum among all possible path partitions of D. The k-norm of a k-optimal path
partition of D is denoted by mi(D). A partial k-coloring C of D is a collection of k disjoint
stable sets of D called color classes (empty color classes are allowed). The weight of a partial
k-coloring C, denoted by ||C|[, is defined as > ¢ |C|. A partial k-coloring C of D is optimal if
[|C]| is maximum among all possible partial k-colorings of D. The weight of an optimal partial
k-coloring of D is denoted by ay(D). In 1976, Greene and Kleitman [13] proved the following

result.

Theorem 1.3 (Greene-Kleitman [13]). For every transitive acyclic digraph D and every positive

integer k, we have (D) = ag(D).

Since w(D) = m(D) and «a(D) = a;(D), Theorem 1.1 is the particular case of Theorem 1.3
in which & = 1. In 1981, Linial [17] conjectured that Theorem 1.3 can be extended to arbitrary
digraphs in the same way that Theorem 1.2 extends Theorem 1.1.

Conjecture 1.1 (Linial [17]). For every digraph D and every positive integer k, we have m(D) <
ag(D).

In an attempt to unify Theorem 1.2 and a result proved independently by Gallai [10] and
Roy [19] (Theorem 1.5), Berge proposed the following conjecture, which is a strengthening of
Conjecture 1.1. A path partition P and a partial k-coloring C are orthogonal if each path P € P

meets min{|P|, k} distinct color classes of C (we also say that P is orthogonal to C and vice-versa).

Berge’s Conjecture [5]. Let D be a digraph and let k be a positive integer. If P is a k-optimal
path partition of D, then there exists a partial k-coloring of D orthogonal to P.
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Berge’s Conjecture remains open, but we know it holds for k¥ = 1 [16], k¥ = 2 [6], when
A(D) = 3 [5], when the k-optimal path partition has only paths of order at most & [5] or if it has
only paths of order at least k [1], acyclic digraphs [2,7], digraphs where all directed cycles are

=

pairwise vertex-disjoint [20], bipartite digraphs [5], digraphs containing a Hamiltonian path [5],
and k > A\(D) — 3 [15].

Now we exchange the roles of paths and stable sets in the concepts discussed so far and present
some similar results. Let D be a digraph. A coloring of D is a partition of V(D) into stable sets
called color classes. A coloring C of D is optimal if |C| is minimum among all possible colorings
of D. The chromatic number of D, denoted by x(D), is the cardinality of an optimal coloring of
D. Mirsky [18] proved the following dual of Theorem 1.1.

Theorem 1.4 (Mirsky [18]). For every transitive acyclic digraph D, we have x(D) = A(D).

Similarly to Theorem 1.2, Gallai [10] and Roy [19], independently, proved the following result.

Theorem 1.5 (Gallai-Roy [10,19]). For every digraph D, we have x(D) < A(D).

Let k be a positive integer. The k-norm of a coloring C, denoted by |C|, is Y ce min{|C|, £k}
A coloring C of a digraph D is k-optimal if |C|j is minimum among all possible path partitions
of D. The k-norm of a k-optimal coloring of a digraph D is denoted by xx(D). A (path) k-pack
P is a set of at most k vertex-disjoint paths of a digraph D. The weight of a k-pack P, denoted
by ||P]], is defined as |V (P)| (i.e., the number of vertices P covers). A k-pack P of a digraph D
is optimal if |[P|| is maximum among all possible k-packs of D. The weight of an optimal k-pack
of a digraph D is denoted by A\i(D). Note that x(D) = x1(D) and A(D) = A\ (D). Greene [12]

proved the following theorem for transitive acyclic digraphs.

Theorem 1.6 (Greene [12]). For every transitive acyclic digraph D and every positive integer
k, we have xi(D) = A\ (D).

Linial [17] proposed Conjecture 1.2 for arbitrary digraphs.

Conjecture 1.2 (Linial [17]). For every digraph D and every positive integer k, we have xy(D) <
Ak(D).

Note that Theorems 1.4, 1.5, 1.6, and Conjecture 1.2 can be seen as dual versions of The-
orems 1.1, 1.2, 1.3, and Conjecture 1.1, respectively, where the roles of paths and stable sets
are exchanged. Therefore, it is natural to ask if there exists a dual version of Berge’s Conjec-
ture. By exchanging the roles of paths and stable sets, we end up with the following definition
of orthogonality. A coloring C and a k-pack P are orthogonal if each color class C' € C meets
min{|C|, k} distinct paths of P (we also say that C is orthogonal to P and vice-versa). The

natural dual version of Berge’s Conjecture states that a k-optimal coloring of a digraph D, for
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some positive integer k, has a k-pack of D orthogonal to it. This statement is a strengthening
of Conjecture 1.2, however it is false. For example, take D defined as V(D) = {v1, ve, v3,v4,v5}
and A(D) = {viva, v105,V3V2, V304, V504 }, and take C = {{v1,v4}, {v2,v5},{vs}}. As an alter-
native strengthening of Conjecture 1.2, Aharoni, Hartman, and Hoffman [2] gave the following

conjecture.

Aharoni-Hartman-Hoffman’s Conjecture [2|. Let D be a digraph and let k be a positive
integer. If P is an optimal k-pack of D, then there exists a coloring of D orthogonal to P.

This conjecture remains open, but we know it holds for k£ =1 [10,19], k > 7(D) [14], when the
optimal k-pack has at least one trivial path [14], bipartite digraphs [14], and acyclic digraphs [2].

A digraph is semicomplete if all its vertices are pairwise adjacent. A digraph D is (locally) in-
semicomplete (respectively, out-semicomplete) if, for every vertex v € V (D), the in-neighborhood
(respectively, out-neighborhood) of v induces a semicomplete digraph. One important charac-

terization of in-semicomplete digraphs which we use throughout the text is the following.

Theorem 1.7 ([3]). A digraph D is in-semicomplete if, and only if, for every vertez v and every
pair of internally vertex-disjoint paths P and Q such that v = e(P) = e(Q), there exists a path
R such that V(R) = V(P)UV(Q) and e(R) = v.

In-semicomplete digraphs generalize semicomplete digraphs, which in turn generalize tourna-
ments. We refer the reader to the book by Bang-Jensen and Gutin [3] for further information on
this class of digraphs. We just would like to remark that there are a few results and problems
in literature considering in-semicomplete digraphs, such as Bondy’s Conjecture and Laborde,
Payan, and Xuong’s Conjecture, presented next. The former states that for every digraph D and
every choice of positive integers A1, Ay such that \(D) = A1 + \g, there exists a partition of D
into two digraphs Dy and D9 such that A(D;) = \;, for i = 1,2. The latter states that in every
digraph there exists a maximal stable set that intersects every longest path. These conjectures,
still open for arbitrary digraphs, were proved for in-semicomplete digraphs by Bang-Jensen et
al. [4] and Galeana-Sanchez and Gémez [9], respectively. In this paper, we prove Berge’s Con-
jecture and Aharoni-Hartman-Hoffman’s Conjecture for in-semicomplete and out-semicomplete

digraphs.

§2. RESULTS FOR BERGE’S CONJECTURE

Given a path P and a positive integer k, if |P| > k then we say P is k-long, otherwise we
say it is k-short. For a set P of vertex-disjoint paths of a digraph D and a positive integer k,
we define e(P) = {e(P): P € P}, P> ={P € P: |P| > k}, and P<k = {P € P: |P| < k}. To
simplify notation, given a set S and an element x, we denote by S + x the union S U {z} and by
S — z the difference S\{z}.
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Next lemma shows that it is possible to convert one path partition P into another path
partition @ whose k-norm is either smaller than P’s or it is the same as P’s but e(Q) is a stable

set.

Lemma 2.1. Let P be a path partition of an in-semicomplete digraph D and let k be a positive
integer. Then there exists a path partition Q of D such that one of the following conditions holds:

(i) 1Qlk < |Plx and e(Q) C e(P);
(ii) |Q|x = |Plk, e(Q) C e(P), e(Q) is stable, and every partial k-coloring of D orthogonal to
Q is also orthogonal to P.

Proof. If e(P) is stable, then Q = P satisfies case (ii) and the result follows. Thus, we may
assume that e(P) is not stable and, therefore, there exists a pair of vertices u and v in e(P)
such that uv € A(D). Let P, and P; be the paths in P such that e(P;) = v and e(P;) = v. By
Theorem 1.7, there exists a path @ in D such that V(Q) = V(P1) UV (P) and e(Q) = v. Let Q
be the path partition of D defined as P — P, — P, + Q. Note that ¢(Q) C e(P).

Suppose first that at least one of P; and P is a k-long path. Hence, @ is k-long and

Qe = > min{|P|,k} = > min{|P|,k} + min{|Q|,k} = > min{|P|,k} +k

PeQ PeQ-Q PeQ—-Q
< > min{|P|,k} + min{|P[,k} + min{| Py, k} = > min{|P|,k} = |P] ,
PEP—P1—P; PeP

where the inequality follows because min{|P;|, k} + min{|P»|, k} is at least k + 1, since at least
one of P, or P, is k-long. Therefore, case (i) holds and we may assume that there is no arc in
A(D) for which one of its endpoints is in e(P>*) and the other is in e(P). Hence, we have that
P, and P, are k-short paths.

Note that [Pl = > pcp_p,_p, min{[P|,k} + min{|P1[,k} + min{[P2[,k} and [Q[; =
> pep_p,—p, Min{|P|,k} + min{|Q[, k}. If |Q] > K, that is, if Q is k-long, then |Q[; < |P|; and

so Q satisfies case (i) of the lemma.

Thus, we may assume @ is k-short and, therefore, |Q|r = |P|x. The previous argument shows
that if there exists an arc of D connecting two vertices of e(P), then both of them must be ends
of k-short paths of P. From O we show how to find a new path partition of D which satisfies
either (i) or (ii).

First suppose that there exists a partial k-coloring C orthogonal to Q@ and let P be a path in
Q—Q = P— P, — P,. Hence, P meets min{|P|, k} color classes of C, since C is orthogonal to Q. In
order to prove that C is also orthogonal to P, it remains to show that P; meets min{|P;|, k} = | P}
color classes for i € {1,2}. Since @ is k-short, we know that each of its vertices meets a different
color class of C. Therefore, every vertex in P;, for i € {1,2}, also meets a distinct color class of
C, after all V(Q) = V(P1) UV(P2), and so C is indeed orthogonal to P. So, we assume there

exists no partial k-coloring orthogonal to Q.
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If e(Q=F) is stable, then e(Q) is stable and case (ii) holds. Thus, we may assume that e(Q<F)

is not stable and the remaining proof is by induction on the number ¢ of k-short paths in P.

Since e(P=F) is not stable, we have £ > 2. If £ = 2, then P<F = {P;, P,}. Therefore,
e(QF) = e(Q) and so Q satisfies case (ii). Now suppose £ > 2. By the induction hypothesis
applied to Q, there exists a path partition Q' of D such that case (i) or (ii) holds. If (i) holds, then
e(Q) C e(Q) and |Q'|r < |Q|x. By construction of Q, this also means that e(Q') C e(P) and
|Q'|i < |P|k, and so case (i) holds for P. Otherwise (ii) holds for @', that is, |Q'|x = |Q|x = |Plk,
e(Q) C e(Q) C e(P), e(Q') is stable, and every partial k-coloring orthogonal to Q' is also
orthogonal to Q and, therefore, to P. Thus, (ii) holds for P. [ |

Given a path P = vivy...vs, we write v;P = Vi1 ...vp, Pvj = viva...v;, and v;Pv; =
V;Vi41 ... v; to denote the appropriate subpath of P. Also, using the definitions of P>k and
P=Fk given above, note that the k-norm of a path partition P can equivalently be defined as
k|P>F| 4 |V (PSF)|.

Next theorem is the first main result of this paper. It shows that any path partition of an
in-semicomplete digraph either has a partial k-coloring orthogonal to it or can be turned into a
new path partition with smaller k-norm. Corollaries 2.1 and 2.2 state the meaning of such result

for Berge’s Conjecture.

Theorem 2.1. Let D be an in-semicomplete digraph, let k be a positive integer, and let P be a

path partition of D. Then there exists

(i) a partial k-coloring of D orthogonal to P; or
(ii) a path partition Q of D such that |Q|i < |P|r and e(Q) C e(P).

Proof. By Lemma 2.1, there exists a path partition Q of D such that either (a) |Qlx < |P|k
and e(Q) C e(P) or (b) |Qlx = |Plk, e(Q) C e(P), e(Q) is stable, and every partial k-coloring
orthogonal to Q is also orthogonal to P. If (a) holds, then case (ii) holds directly. Therefore, we
may assume that (b) holds. Note that this reduces the problem of proving the result for P to

the problem of proving it for @ and, thus, from now on we can only consider Q.

The remaining proof follows by induction on k. If £ = 1, then e(Q) is a partial 1-coloring
orthogonal to @ and (i) holds. Otherwise, & > 1 and let D’ = D[V(D)\e(Q)] and Q' =
{Qus_1: Q@ = uqug...up € Q}. Note that Q' is a path partition for D’. By the induction
hypothesis applied to D', @', and k — 1, we have that there exists (a) a partial (k — 1)-coloring
C of D' orthogonal to Q" or (b) a path partition R’ or D’ such that |R'|x_1 < |Q'|x—1 and
e(R') C e(Q'). If (a) holds, then C + e(Q) is a partial k-coloring orthogonal to Q and case (i)
holds.

So we assume that case (b) holds. Let e(Q') = {v1,v2,...,v;} and u; € e(Q) be the sucessor
of v; in its path in Q. Note that each path of R’ ends at some v;, so name such path as R;. Let
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R = {Rlvu;: R, € RZF1FURSF1U (e(Q)\{ui: R: € R">F~1}). In other words, R is built by
the extensions of all (k — 1)-long paths of R’, plus all (k — 1)-short paths of R’, plus all single
vertices of e(Q) which were not used to extend the (k — 1)-long paths of R’. It is easy to see
that R is a path partition for D.

We know that [R|y—y = (k—1)|R™>*F |+ [V(RSFY)| = k[RZFH 4 [V(R/SF1) — [RZEL
by definition. By construction of R, |R|x = k|RZ*71 + [V(R'SFY)| + |e(Q)] — [R™*L| =
|R'|—1 + |Q|. Also, by construction of @', |Q|s_1 = (k — 1)|Q>*| + [V(Q=F)| — |Q=F| =
k|Q7F| + |[V(QSF)| — |Q>*| — |Q=F| = |Q|i — |Q|. Putting everything together, we have |R|, =
IR k-1 + 19| < |Q|k=1+ Q| = |9l — |Q| + |Q] = |Q|r and, therefore, case (ii) holds for Q. W

Corollary 2.1. If P is a k-optimal path partition of an in-semicomplete digraph D, then there

exists a partial k-coloring of D orthogonal to P.

Corollary 2.2. If P is a k-optimal path partition of an out-semicomplete digraph D, then there

exists a partial k-coloring of D orthogonal to P.

Proof. The inverse of a digraph (path partition) B, denoted by B~, is the digraph (path parti-
tion) built from B by inverting its arcs, that is, if uv € A(B), then vu € A(B7). If Q is a path
partition of D, then Q~ is a path partition of D~ with |Q|x = |Q~ |k, and vice-versa. Thus, we
have that P~ is k-optimal in D™, and since D~ is an in-semicomplete digraph, by Corollary 2.1
there exists a partial k-coloring C orthogonal to P~. Clearly, C is also orthogonal to P. [ |

§3. RESULTS FOR AHARONI-HARTMAN-HOFFMAN’S CONJECTURE

Recall that, given a k-pack P, we define e(P) = {e(P): P € P}. Similarly to the result of
Lemma 2.1, the next lemma shows that it is possible to convert one k-pack P into another k-pack
Q with the same weight such that e(Q) is a stable set.

Lemma 3.1. Let P be a k-pack of an in-semicomplete digraph D. Then there exists a k-pack Q
of D such that || Q|| = ||P||, e(Q) C e(P), and e(Q) is stable.

Proof. The proof is by induction on ¢ = |P|. If e(P) is stable, then Q = P satisfies the lemma’s
conclusion and the result follows. Thus, we may assume e(P) is not stable. Let u and v in e(P)
such that wv € A(D). Let P; and P, be the paths in P which end in u and v, respectively. By
Theorem 1.7, there exists a path @ in D such that V(Q) = V(P1) UV (P;) and e(Q) = e(Fz).
Let O be the k-pack of D defined as P — P — P> + ). By the induction hypothesis, there exists
a k-pack R such that [|R]| = [|Q||, e(R) C e(Q), and e(R) is a stable set. By construction,
[|1Q]| = ||P|| and e(Q) C e(P), so the result follows directly. [ |

Next theorem is another main result of this paper. It shows that any k-pack of an in-

semicomplete digraph either has a coloring orthogonal to it or can be turned into a k-pack with
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larger weight. Corollaries 3.1 and 3.2 state the meaning of such result for Aharoni-Hartman-
Hoffman’s Conjecture. To simplify the notation, given a k-pack P of D, we denote by P the
vertex set V(D)\V (P). Recall that, given a path P = vjvy... v, we write v;P = v;v;41 ... vy,

Pvj = vivy...vj, and v; Pvj = v;v;41 ...v; to denote the appropriate subpaths.

Theorem 3.1. Let D be an in-semicomplete digraph, let k be a positive integer, and let P be a
k-pack of D. Then there exists

(i) a coloring of D orthogonal to P; or
(ii) a k-pack Q of D such that ||Q|| = ||P|| + 1 and e(Q) C e(P) UP.

Proof. The proof is by induction on |P|. If P = &, then the coloring {{v}: v € V(D)} is
orthogonal to P and case (i) holds. Thus, we may assume P # &. Let v be a vertex in P and
let @ =P +wv. If |Q <k, then Q satisfies case (ii) and the result follows. Thus, we have
|Q| = k+ 1, since |P| < k. If e(Q) is not stable, then there exist two paths P, and P; in Q
such that e(P;) and e(P,) are adjacent and, by Theorem 1.7, there exists a path @ such that
V(Q) =V(P)UV(P,) and e(Q) € {e(P1),e(P2)}. Therefore, @ — P, — P+ Q is a k-pack which
satisfies case (ii). Since v was chosen arbitrarily from P, we have that for any v € P, e(P) + v

is stable. In particular, e(P) is stable.

Let S C P be a maximum stable set in D[P], let D’ be the digraph D[V (D)\(e(P) U S)], and
let R be the k-pack of D" defined as {Puy_1: P = ujus...uy € P}. Note that ||R|| = ||P|| — k
and R C P. By the induction hypothesis applied to D’ and R, we have that there exists (a)
a coloring C of D’ orthogonal to R or (b) a k-pack B of D’ such that ||B|| = ||R|| + 1 and
e(B) C e(R) UR. If (a) holds, then C + (e(P) U S) is a coloring orthogonal to P and case (i)
holds. So we may assume that (b) holds. We will show that (ii) holds. By Lemma 3.1, we may
assume that e(B) is stable. Let B = By U By, where e(B1) C e(R) and e(B2) C R.

Let e(R) = {v1,v9,...,v} and let u; € e(P) be the successor of v; in a path of P. Note that
every path of B; ends at some v;, so name such path as B;. Let Q1 = {B;v;u;: B; € By}, that
is, we built Q; by extending all paths of B;. Note that ||Q:|| = ||Bi|| + |Bi], |Q1| = |Bi|, and
that e(Q1) C e(P).

Now we will show that there exists a collection of paths in P with weight ||Ba||+|Bz|. Let G be
the bipartite graph with vertex-set V(G) = e(B2) U S and edge-set E(G) = {uv: u € e(Ba),v €
S, and u and v are adjacent in D}. We claim that there exists a matching in G which covers
e(B2). Suppose by contradiction that such matching does not exist. By Hall’s Theorem, there
exists W C e(Bs) such that |W| > N(W), where N(W) ={u € V(G): wv € E(G) and v € W}.
Note that W is stable in D[P], since W C e(B), and no vertex in W is adjacent to a vertex in
S\N (W) in D. Therefore, we have that (S\N(W))UW is stable in D[P] greater than S, which
contradicts the choice of S. Hence, there exists a matching M in G which covers e(B3). For

each u € e(By), let M(u) be the vertex of S matched to u by M. Let By = {B1,Bs,...,B,}
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and let B; = wiwy...wy be a path in By. By Theorem 1.7, there exists a path @; such that
V(Qi) = V(B;) + M(wy) and e(Q;) € {wq, M(wy)}. Let Qo = {Q;: B; € Bz}. Note that
1Qz] = ||Bal| + B, | Q2| = |Ba|, and that e(Q2) C P.

Let T = (e(P)US)\(e(Q1)Ue(Q2)), that is, the set of vertices in e(P)UP that are not ends of
a path in Q1UQs. Thus, |T| = |e(P)|+|S]|—|Q1|—|Q2| = k+|S|—|Q1]|— Q2| > k+1—|Q1|—| Q2.

Let U be a set of k — Q1| — |Qa| vertices in T. We can see U as a set of trivial paths. Finally,
let Q be the k-pack of D defined as Q1 U Qs UU. By the previous remarks it is easy to see that
e(Q) C e(P) UP. At last, we have

1R = 11Qull + [[Qall + U] = [1Bull + Bu| + [|B2ll + [B2| + [[U]] = |IB]| + |B] + [|U]]
= 1B+ |B| + k — Q1] — [Qa| = ||B|| + [B| + k — |B1| — |B2| = ||B|| + |B| + k — |B]
=|[RIl+1+ k=P —k+1+k=]|P| +1

Hence, we conclude that (ii) holds and the result follows. [ ]

Corollary 3.1. If P is an optimal k-pack of an in-semicomplete digraph D, then there exists a
coloring of D orthogonal to P.

Corollary 3.2. If P is an optimal k-pack of an out-semicomplete digraph D, then there exists
a coloring of D orthogonal to P.
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