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Abstract Let H = (V,FE) be a hypergraph, where V is a set of vertices and E is a set
of non-empty subsets of V' called edges. If all edges of H have the same cardinality r, then
H is a r-uniform hypergraph; if E consists of all r-subsets of V, then H is a complete 7-
uniform hypergraph, denoted by K, where n = |[V|. A hypergraph H' = (V'  E’) is called a
subhypergraph of H = (V, E) if V/ C V and E' C E. A r-uniform hypergraph H = (V, E) is
vertex-k-maximal if every subhypergraph of H has vertex-connectivity at most k, but for any
edge e € E(K])\ E(H), H + e contains at least one subhypergraph with vertex-connectivity at
least k4 1. In this paper, we first prove that for given integers n, k,r with k,» > 2 and n > k+1,
every vertex-k-maximal r-uniform hypergraph H of order n satisfies |[E(H)| > () — (»~*), and

T

this lower bound is best possible. Next, we conjecture that for sufficiently large n, every vertex-
n

k-maximal r-uniform hypergraph H on n vertices satisfies |[E(H)| < (%) — (77F) + (2 — 2)(),
where k,r > 2 are integers. And the conjecture is verified for the case r > k.
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1 Introduction

In this paper, we consider finite simple graphs. For graph-theoretical terminologies and notation
not defined here, we follow [4]. For a graph G, we use x(G) to denote the vertex-connectivity
of G. The complement of a graph G is denoted by G¢. For X C FE(G¢), G + X is the graph
with vertex set V(G) and edge set F(G)UX. We will use G+ e for G+ {e}. The floor of a real
number x, denoted by |z, is the greatest integer not larger than x; the ceil of a real number
x, denoted by [z], is the least integer greater than or equal to x. For two integers n and k, we

define () = ﬁlk), when k£ < n and (}) =0 when k > n.

Matula [14] first explicitly studied the quantity ®(G) = max{k(G') : G’ C G}. For a
positive integer k, the graph G is vertez-k-maximal if ®(G) < k but for any edge e € E(G°),
R(G +€) > k. Because k(K,) =n — 1, a vertex-k-maximal graph G with at most k + 1 vertices
must be a complete graph.

The union of two graphs G; and Gs, denoted by G1 U (s, is the graph with vertex set
V(G1) UV(G2) and edge set E(G1) U E(G2). The join of two graphs G and Ga, denoted
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by G1 V Go, is the graph obtained from the union of G; and Gy by adding all the edges that
connect the vertices of Gy with G. Let G, = ((p — 1)K U Ky) V Kf, where n = pk 4+ q > 2k
(1 <q<k)and (p— 1)K} is the union of p — 1 complete graphs on k vertices. Then Gy, is
vertex-k-maximal and |E(Gy ;)| < 2(k— £)(n— k), where the equality holds if n is a multiple of
k. Mader [I1] conjectured that, for large order of graphs, the graph G,, , would in fact present
the best possible upper bound for the sizes of a vertex-k-maximal graph.

Conjecture 1. (Mader [11]) Let k > 2 be an integer. Then for sufficiently large n, every
vertex-k-mazimal graph on n vertices satisfies |E(G)| < 3(k — 3)(n — k).

Some progresses towards Conjecture 1 are listed in the following.

Theorem 1.1. Let k > 2 be an integer.
(i) (Mader [10], see also [11]) Conjecture 1 holds for k < 6.

1) (Mader [10], see also [11|]) For sufficiently large n, every vertez-k-mazimal graph G on
/ /

n vertices satisfies |E(G)| < (1 + %)k‘(n — k).

| (C(;)zr) (3;1;;8]::(67’ [’Ji])) If n > 974]“, then every vertez-k-mazimal graph G' on n vertices satisfies
E < s55k(n — k).
= 120

(iv) (Bernshteyn and Kostochka [3]) If n > 3% then every vertez-k-mazimal graph G on n
vertices satisfies |E(G)| < 133k(n — k).

In [17], Xu, Lai and Tian obtained the lower bound of the sizes of vertex-k-maximal graphs.

Theorem 1.2. (Xu, Lai and Tian [17]) Let n,k be integers with n > k+1 > 3. If G is a
vertez-k-mazximal graph on n vertices, then |E(G)| > (n—k)k+ @ Furthermore, this bound

1s best possible.

The related studies on edge-k-maximal graphs have been conducted by quite a few re-
searchers, as seen in [7,9,12,13,15], among others. For corresponding digraph problems, see
[1,8], among others.

Let H = (V, E) be a hypergraph, where V is a finite set and F is a set of non-empty subsets
of V, called edges. An edge of cardinality 2 is just a graph edge. For a vertex u € V and an edge
e € E, we say u is incident with e or e is incident with u if u € e. If all edges of H have the same
cardinality r, then H is a r-uniform hypergraph; if E consists of all r-subsets of V', then H is
a complete r-uniform hypergraph, denoted by K, where n = |V|. For n < r, the complete
r-uniform hypergraph K is just the hypergraph with n vertices and no edges. The complement
of a r-uniform hypergraph H = (V, E), denoted by H¢, is the r-uniform hypergraph with vertex
set V and edge set consisting of all r-subsets of V not in E. A hypergraph H' = (V', E’) is called
a subhypergraph of H = (V, E), denoted by H' C H, if V' CV and E' C E. For X C E(H°),
H + X is the hypergraph with vertex set V(H) and edge set F(H)UX; for X' C E(H), H— X'
is the hypergraph with vertex set V(H) and edge set E(H)\ X’. We use H +e for H + {e} and
H—¢ for H—{e'} whene € E(H®) and ¢ € E(H). For Y C V(H), we use H[Y] to denote the
hypergraph induced by Y, where V(H[Y]) =Y and E(H[Y]) ={e€ E(H):eCY}. H—-Y is
the hypergraph induced by V(H) \ Y.



Let H be a hypergraph and Vi, Va,---,V; be subsets of V(H). An edge e € E(H) is
(Vi,Va, -, V))-crossing if eN'V; # ) for 1 < i < I. If in addition, e C UL_,V;, then e is
exact-(V1, Vo, -+, V))-crossing. The set of all (Vi,Va,--- ,V))-crossing edges of H is denoted
by Eg[Vi,Va, -, V]; the set of all exact-(Vy,Va,- -, V))-crossing edges of H is denoted by
EH[VlLJVzU---UVL][Vlv Va,--- ’W] Let dH(Vl’ Vo, ’W) = |EH[V17 Vo, -, Vl” and dH[V1UV2U~~~UVl}
Vi, Vo, s V1) = |Erpioveu.-uv Vi, Vo, -+, V]| For a vertex u € V(H), we call dy(u) =
dg({u},V(H) \ {u}) the degree of u in H. The minimum degree §(H) of H is defined as
min{dg(u) : v € V}; the mazimum degree A(H) of H is defined as maz{dy(u) : u € V}.
When §(H) = A(H) = k, we call H k-regular.

Given a hypergraph H, we define a walk in H to be an alternating sequence v1, e1,vo, -+ , €5,
vs+1 of vertices and edges of H such that: v; € V(H) for i = 1,--- ,s+1; ¢; € E(H) for
i =1,---,s; and v;,v;41 € ¢; for i = 1,---,s. A path is a walk with additional restrictions

that the vertices are all distinct and the edges are all distinct. A hypergraph H is connected
if for every pair of vertices u,v € V(H), there is a path connecting u and v; otherwise H is
disconnected. A component of a hypergraph H is a maximal connected subhypergraph of H.
A subset X C V is called a vertex-cut of H if H — X is disconnected. We define the vertex-
connectivity of H, denoted by x(H), as follows: if H had at least one vertex-cut, then x(H)
is the cardinality of a minimum vertex-cut of H; otherwise x(H) = |V(H)| — 1. We call a
hypergraph H k-vertex-connected if k(H) > k. Let ®(H) = max{xk(H') : H C H}. For a
positive integer k, the r-uniform hypergraph H is vertex-k-maximal if ®(H) < k but for any
edge e € E(H), R(H + €) > k. Since k(K]) = n —r + 1, we note that H is complete if H is
a vertex-k-maximal r-uniform hypergraph with n —r + 1 < k, where n = |V (H)|. The edge-k-
maximal hypergraph can be defined similarly. For results on the connectivity of hypergraphs,
see [2,5,6] for references.

In [16], we determined, for given integers n, k and r, the extremal sizes of an edge-k-maximal
r-uniform hypergraph on n vertices.

Theorem 1.3. (Tian, Xu, Lai and Meng [16]) Let k and r be integers with k,r > 2, and
let t = t(k,r) be the largest integer such that (f,__ll) < k. That is, t is the integer satisfying
(Y <k < (t_)). If H is an edge-k-mazimal r-uniform hypergraph with n = |V (H)| > t, then

(i) |E(H)| < () + (n—t)k, and this bound is best possible;
(ii) |[E(H)| > (n— 1)k — ((t = 1)k — (L)) [ 2], and this bound is best possible.

The main goal of this research is to investigate, for given integers n, k and r, the extremal
sizes of a vertex-k-maximal r-uniform hypergraph on n vertices. Section 2 below is devoted
to the study of some properties of vertex-k-maximal r-uniform hypergraphs. In Section 3, we
give the best possible lower bound of the sizes of vertex-k-maximal r-uniform hypergraphs. We
propose a conjecture on the upper bound of the sizes of vertex-k-maximal r-uniform hypergraphs
and verify the conjecture for the case r > k in Section 4.

2 Properties of vertex-k-maximal r-uniform hypergraphs

Combining the definition of vertex-k-maximal r-uniform hypergraph with x(K]) =n —r + 1,
we obtain that H is isomorphic to K], if H is a vertex-k-maximal r-uniform hypergraph with



n=|VH)| <k+r—1.

Lemma 2.1. Let n,k,r be integers with k,r > 2 andn > k+r —1. If H is a vertez-k-maximal
r-uniform hypergraph on n vertices, then ®R(H) = k(H) = k.

Proof. Since H is vertex-k-maximal, we have x(H) < ®(H) < k. In order to complete the
proof, we only need to show that k(H) > k.

If n =k+r—1, then H is complete and k(H) = n—r+1 = k. Thus, assume n > k+r, and
so H is not complete. On the contrary, assume x(H) < k. Since H is not complete, H has a
vertex-cut S with |S| = k(H) < k. Let C; be a component of H—S and Cy = H— (SUV(Ch)).
By |[V(C1)UV(Cs)| =n—|S| > k+r—(k—1) = r+1, we can choose a r-subset e C V(C1)UV (V3)
such that e NV (C;) # 0 for i = 1,2. Then e € E(H®).

Since H is vertex-k-maximal, we have K(H+e) > k+1. Hence H+e contains a subhypergraph
H' with k(H") =®(H +¢€) > k + 1. Since ®(H) < k, H' cannot be a subhypergraph of H, and
soe € E(H'). Since V(H' )NV (C;) # 0 for i = 1,2, it follows that V(H') N S is a vertex-cut of
H' —e.

Since |[V(C1)UV(Cy)|=n—|S|>k+r—(k—1)=r+12> 3, one of C;, say Cy, contains
at least two vertices. Let u; € eNV(Cy). Then S' = (V(H') N S) U {u1} is a vertex-cut of H’,
and so we obtain

E+1>[S|+1>|VH)NS|+1= |5 >r(H) > k+1,

a contradiction. [J

Let H be a vertex-k-maximal r-uniform hypergraph with |V(H)| > k + r. By Lemma 2.1,
R(H) =k(H) =k. By [V(H)| > k+r, H is not complete, thus H contains vertex-cuts. Let S
be a minimum vertex-cut of H, C; be a component of H —S and Cy = H — (SUV(C})). We
call (S, Hi, Ha) a separation triple of H, where H; = H[S UV (C1)] and Hy = H[S U V(C)].

Lemma 2.2. Let n,k,r be integers with k,r > 2 and n > k+r, and H be a vertex-k-maximal
r-uniform hypergraph on n vertices. Assume (S, Hy,Hs) is a separation triple of H. If e €
E(H{)UE(HS), then any subhypergraph H' of H+e with k(H') > k+1 is either a subhypergraph
of Hy + e or a subhypergraph of Hoy + e. Furthermore, if e C E(Hf) \ E((H[S])¢), then H' is a
subhypergraph of H; + e fori=1,2.

Proof. Let e € E(HY) U E(HS). Since H is vertex-k-maximal, we have ®(H +¢e) > k + 1.
Let H' be a subhypergraph of H + e with k(H') = ®(H +¢€) > k + 1. We assume, on the
contrary, that V(H') N (V(Hy) — S) # 0 and V(H') N (V(Hy) — S) # 0. This, together with
e € E(H{)UE(HS), implies that SNV (H') is a vertex-cut of H'. Hence k = |S| > [SNV (H")| >
k(H') > k + 1, a contradiction. Therefore, we cannot have both V(H') N (V(H;) — S) # 0 and
VH)YN(V(Hy) —S)#£0. fV(H)N(V(Hy) —S) =0, then H' is a subhypergraph of Hs + ¢;
if V(H')N (V(Hz) — S) =0, then H' is a subhypergraph of H; + e.

If e C E(HS)\ E((H[S])¢), then V(H')N(V(Hy) —S) # 0 and V(H') N (V(Hs) — S) = 0,
thus H' is a subhypergraph of H; + e. Similarly, if e C E(HS) \ E((H[S])¢), then H' is a
subhypergraph of Hy + e. [



Lemma 2.3. Let n, k,r be integers with k,r > 2 and n > k +r, and H be a vertex-k-maximal
r-uniform hypergraph on n vertices. Assume (S, Hy, Hs) is a separation triple of H and n; =
|V (H;)| fori=1,2. Then

(Z) EHC[V( 1) - 57 S7V(H2) - S] = (D’ and
(i) du(V(Hy) — 8,8,V (Hz) = ) = () = (') — (2) + () —
Proof. (i) By contradiction, assume Epc[V(Hy) — S,S,V(Hy) — S] # 0. Let e € Egc[V(H;) —
S, S,V (Hs) — S]. Since H is vertex-k-maximal, there is a subhypergraph H’ of H + e such that
k(H') =%®(H+e) > k+1. Byr(H) <k, eec E(H'). This, together with e € Epc[V(H;) —
S, S, V(Hy) — S], implies V(H'YNS # 0 and V(H') N (V(H;) — S) # 0 for i = 1,2. Hence

SNV(H') is a vertex-cut of H'. But then we obtain k = |S| > |[SNV(H')| > k(H') > k+1, a
contradiction. It follows Ey<[V(Hy) — S, S,V (Hs) — S] = 0.

(i1) By (i), Egec[V(Hy) — S,S,V(Hs) — S] = 0. This implies that if e is a r-subset such
that eNS # 0 and enN (V(H;) — S) # 0 for i = 1,2, then e € E(H). Since the number of
r-subsets contained in V (H;) or V(Hs) is (?1) + (?2) — (¥), and the number of r-subsets exactly
intersecting V (Hy) — S and V(Hy) — S is (?7F) — ("17%) — ("27F), we have

dp(V(Hy) = S,5,V(Hy) = 5)
= |Eg[V(H1) = 5,8,V (Ha) = 5]
=) =M+ =)= (=) = (=)
=M =) =)+ =+ + ).
This completes the proof. [

R+ (R + (2.

(
(i

3 The lower bound of the sizes of vertex-k-maximal r-uniform
hypergraphs

The union of two hypergraphs H; and Hs, denoted by Hy U Ho, is the hypergraph with vertex
set V(H1) UV (H2) and edge set E(H;) U E(Hg). The r-join of two hypergraphs H; and Hj,
denoted by Hi V., Hs, is the hypergraph obtained from the union of H; and Ho by adding all
the edges with cardinality r that connect the vertices of H; with Hs.

Definition 1. Let n, k,r be integers such that k,7 > 2 and n > k + 1. We define Hy(n;k,r) to
be Kj Vv, (K) _,)°.

Lemma 3.1. Let n,k,r be integers such that k,r > 2 and n > k+ 1. If H = Hr(n; k,r), then
(i) H is vertez-k-mazimal, and
(it) [E(H)| = (7) = (7).
Proof. (i) By Definition 1, H is obtained from the union of K} and (K] _,)¢ by adding all
edges with cardinality r connecting V(K}) with V((K)_,)¢).

Since V(K7) is a vertex-cut of H and H —V (K}) = (K _, )¢, there is no subhypergraph with
vertex-connectivity at least k + 1, and so ®(H) < k. If E(H®) = (), then H is vertex-k-maximal



by the definition of vertex-k-maximal hypergraph. If F(H¢) # (), then for any e € E(H®),
e must be contained in V((K;_,)°) , and so (H + e)[V(K};) U e] is isomorphic to K} and
k((H +e)[V(K])Ue]) =k+ 1. That is K(H +e) > k+ 1. Thus H is vertex-k-maximal.

(74) holds by a direct calculation. O

Theorem 3.2. Letn, k,r be integers such that k,r > 2 andn > k+1. If H is vertez-k-maximal,
then |E(H)| > () — (%)

Proof. We will prove the theorem by induction on n. If n < k 4+ r — 1, then by H is vertex-k-
maximal, we have H = K". Thus |[E(H)|= () =®) - "% ) byn—k<r—1.

Now we assume that n > k+r, and that the theorem holds for smaller value of n. Since H is
vertex-k-maximal and n > k+r, we have H is not complete. By Lemma 2.1, ®(H) = k(H) = k,
and so H has a separation triple (S, Hy, Hy) with |S| = k. Let ny = |V(H1)| and ng = |V (Ha)|.
Then ni,no > k+1and n=n1 +ng — k.

Since H is vertex-k-maximal, for any e € E((H[S])¢), there is a (k + 1)-vertex-connected
subhypergraph H' of H + e. By Lemma 2.2, H' is either a subhypergraph of H; + ¢ or a
subhypergraph Hs + e. Define

Ey={e:ec E((H[S])) and R(H; +¢€) = k}
Ey ={e:ec E((H[S]))) and R(H2 + ¢) = k}
Claim. Each of the following holds.
(i) By N Ey =0 and Ey U By C E((H[S])®).
(it) There is a subset Ef C E such that H; + Ef is vertex-k-maximal.
(i7¢) There is a subset E) C Ey such that Hy + EY is vertex-k-maximal.

By the definition, Fy UEy C E((H[S])¢). Since H is vertex-k-maximal, we have E1 N Ey = (),
and so Claim (7) holds.

Assume first that Hy + Fy is complete. If n; < k+r—1, then K(Hy+ E1) < k, and so H; + E;
is vertex-k-maximal by the definition of vertex-k-maximal hypergraphs. If ny > k + r, then by
R(Hy) <®(H) < kand R(H1+ FE1) > k+1, we can choose a maximum subset ] C E; such that
R(Hy + E7) < k. It follows by the maximality of E] and by the definition of vertex-k-maximal
hypergraphs that Hy + EY is vertex-k-maximal. Next, we assume H; + Ej is not complete. Take
an arbitrary edge e € E((Hy + E1)€). Then e € E(H€), and so as H is vertex-k-maximal, H + e
contains a (k + 1)-vertex-connected subhypergraph H' with e € E(H'). If en (V(Hy) — S) # 0,
then by Lemma 2.2, H' is a subhypergraph of Hy +e. If e C S, then as e ¢ E7, we can choose H'
such that H' is a subhypergraph of Hy +e. That is, ®(H1 + FE1+e) > k+ 1. f ®(H, + E1) < k,
then Hy + Ej is vertex-k-maximal. If ®(Hy + F1) > k+ 1, then by ®(H;) < ®R(H) < k, we
can choose a maximum subset Ef C Ej such that ®(H; + Ef) < k. It also follows by the
maximality of E] and by the definition of vertex-k-maximal hypergraphs that Hy + F] is vertex-
k-maximal. This verifies Claim (i7). By symmetry, Claim (¢i7) holds. Thus the proof of the
Claim is complete.

By Claim (i¢) and Claim (i), there are Ef C Fy and E!, C Es such that Hy+ E} and Hy+ E},
are vertex-k-maximal. Since nq,n2 > k + 1, by induction assumption, we have |E(H; + E})| >



(M) — (M=F) and |E(Hy + Eb)| > (72) — (?27%). By Claim (i) and the definition of (H[S])¢, we
have |Eq| + | Ey| + |E(H[S)| < |E1| + |Ea| + |[E(H[S))| < [E((H[S)))| + |[E(H[S])| = (F). Thus

|[E(H)| = |E(Hy)| + |E(H2)| — |[E(H[S])| + |[Eg[V(H1) = 5,5,V (H2) = 5]|
= |E(H,+EY)| - |Ef|+|E(Hy + Ey) | — | By | — |[E(H[S])[+ | En [V (Hy) = 5,5,V (Hz2) = S]]
> () = () - (2 = ()
H0) = () = )+ ) = )+ () + (2 7F) (By Lemma 2.3)
=)=,
This proves Theorem 3.2. [J

By Lemma 3.1, the lower bound of the sizes of vertex-k-maximal hypergraphs given in
Theorem 3.2 is best possible. If r = 2, then a r-uniform hypergraph H is just a graph. Thus
Theorem 1.2 is a corollary of Theorem 3.2.

Corollary 3.3. (Xu, Lai and Tian [17]) Let n, k be integers with n > k+1 > 3. If G is a vertex-
k-mazimal graph on n vertices, then |E(G)| > (3) — (537%) = (n — k)k + (k KE=D) - Purthermore,
this bound is best possible.

4 The upper bound of the sizes of vertex-k-maximal r-uniform
hypergraphs

Definition 2. Let n, k,r be integers such that k,r > 2 and n > 2k. Assume n = pk + ¢, where
p,q are integers and 1 < ¢ < k. We define Hy (n; k,7) to be ((p — 1)K} U KJ) V, (K[)¢, where
(p — 1)K}, is the union of p — 1 complete r-uniform hypergraphs on k vertices.

Lemma 4.1. Let n,k,r be integers such that k,r > 2 and n > 2k. If H = Hy(n; k,r), then
(i) H is vertez-k-maximal, and

(ii) |[E(H)| < (%) — (%) + (& — 2)(F), where the equality holds if n is a multiple of k.

Proof. (i) By Definition 2, H = ((p— 1)K UK})V, (K})¢. Denote the p—1 complete r-uniform
hypergraphs on k vertices by K (1),---,Kj(p—1). Let Ho = H[V((K})°)], Hy = H[V(K})]
and H; = H[V (K (i))] for 1 <i<p—1. Then H = HyV, (H; U---UH,).

Since V' (Hy) is a vertex-cut of size k and every component of H — V(Hj) has at most
k vertices. It follows that H contains no (k + 1)-vertex-connected subhypergraphs, and so
R(H) < k. If E(H®) = (), then H is vertex-k-maximal by the definition of vertex-k-maximal
hypergraphs. Thus we assume E(H¢) # () in the following. Let e € E(H¢). If e C V(Hy), then
H' = H[V(H;) U e] is isomorphic to K., and so x(H') =k +1. If e C V(Hy) U--- UV (Hp),
let e be exact-(V(H;1),- -,V (H;s))-crossing. We will prove that H” = H[V (Hy) UV (H;1) U
U (Hjs)] + e is (k + 1)-vertex-connected. It suffices to prove that H” — S is connected for
any S C V(H") with |S| = k. If S = V(H,), then, by e is exact-(V (H;1),- -,V (H;s))-crossing,
H" — S is connected. So assume VJ = V(Hp)\S # 0. Let V{ = (V(H;1)U---UV(H;s))\'S. Then
— S is isomorphic to H[V{|V, H[V]] if SNe # (; and H"—S is isomorphlc to H[VO]\/T [Vi]+e
if SNe=0. Since V§,V/ # 0 and |Vj U V/| > r, we obtain that H” — S is connected. Thus
R(H +e) > k+ 1 for any e € E(H®), and so H is vertex-k-maximal.



(i7) By a direct calculation, we have |E(H)| < () — ("7F) 4+ (2 — 2)(F), where the equality
holds if n is a multiple of k. [

Motivated by Conjecture 1, we propose the following conjecture for vertex-k-maximal 7-
uniform hypergraphs.

Conjecture 2. Let k,r be integers with k,r > 2. Then for sufficiently large n, every vertex-k-
magzimal r-uniform hypergraph H on n vertices satisfies |E(H)| < (*) — (7% + (% — 2)().
The following theorem confirms Conjecture 2 for the case k < r.

Theorem 4.2. Letn,k,r be integers such that k,r > 2 andn > 2k. If k < r, then every vertez-
k-mazimal r-uniform hypergraph H on n vertices satisfies |E(H)| < () — ("7F) + (£ = 2)(¥) =
() =G5

Proof. We will prove the theorem by induction on n. If n < k 4+ r — 1, then by H is vertex-k-
maximal, we have H = K”. Thus [E(H)|= () =®) - " ) byn—k<r—1.

Now we assume that n > k + r, and that the theorem holds for smaller value of n. Since
H is vertex-k-maximal and n > k + r, we have H is not complete. Let S be a minimum
vertex-cut of H. By Lemma 2.1, |S| = k. Let Cy be a minimum component of H — S and
Cy=H— (V(Cy)US). Assume H; = H[V(C1) U S] and Hy = H[V(C2) U S]. Since k < 7,
we have E((H[S])¢) = 0, and so Hy and Hy are both vertex-k-maximal by Lemma 2.2. Let
ni = |V(H1)| and ng = |V(Hz)|. Then n =n; +nge —k and k+ 1 < n; < ny. We consider two
cases in the following.

Case 1. |V(Cy)| = 1.

By |V(C1)| = 1, we obtain that no =n—12> k+r—1 > 2k. Since Hj is vertex-k-maximal,
by induction assumption, we have |E(Hs)| < (*~1) — (»=*=1). Thus

|E(H)| = |E(H1)| + |E(Hs)| — [E(H[S])| + |[Ex[V (H1) = 5,5,V (Hs) = 5]|
S Y (e I i S Gy I D B (i)
= () -G
Case 2. |V(C4)] > 2.

By |V(C1)| > 2, we obtain that C7 contains edges, and so [V (C1)| > r. Thus ny > ny >
k+r > 2k+ 1. Since both Hy and Hs are vertex-k-maximal, by induction assumption, we have
|E(H;)| < () — (%) for i = 1,2. Thus

|[E(H)| = |E(H)| + |E(H2)| — |[E(H[S])| + |[Eg[V(H1) = 5,5,V (H2) = 5]|
< () = () + () = ()
+HE) = () = () + () = () + () + (2 7F) (By Lemma 2.3)
=) =)
This completes the proof. [J
Combining Theorem 3.2 with Theorem 4.2, we have the following corollary.

Corollary 4.3. Let n,k,r be integers such that k,r > 2 and n > 2k. If k < r, then every
vertex-k-mazimal r-uniform hypergraph H on n vertices satisfies |E(H)| = (%) — (*7F).
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