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Abstract

An ordered graph G is a graph together with a specified linear ordering on the vertices,

and its interval chromatic number is the minimum number of independent sets consisting of

consecutive vertices that are needed to partition the vertex set. The t-color Ramsey number

Rt(G) of an ordered graph G is the minimum number of vertices of an ordered complete graph

such that every edge-coloring from a set of t colors contains a monochromatic copy of G such

that the copy of G preserves the original ordering on G. An ordered graph is k-ichromatic if it

has interval chromatic number k. We obtain lower bounds linear in the number of vertices for

the Ramsey numbers of certain classes of 2-ichromatic ordered graphs. We also determine the

exact value of the t-color Ramsey number for two families of 2-ichromatic ordered graphs, and

we prove a linear upper bound for a class of 2-ichromatic ordered graphs.

1 Introduction

An ordered graph G is a graph together with a specified linear ordering on the vertices. We can

view the vertices as placed along a horizontal line. An interval coloring of an ordered graph G is a

partition of V (G) into independent sets of consecutive vertices (intervals); we call these sets parts.

The interval chromatic number of an ordered graph G, written χi(G), is the minimum number of

parts in an interval coloring of G. When the interval chromatic number is k, we say that G is

interval k-chromatic or simply k-ichromatic. Note that since the parts of an interval coloring are

independent sets, always χi(G) is at least the chromatic number.

The t-color Ramsey number of a graph G is the minimum number of vertices of a complete

graph such that every edge-coloring from a set of t colors contains a monochromatic copy of G. An

ordered graph G is a subgraph of an ordered graph G′ if there is an order-preserving injection from
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the vertices of G to the vertices of G′ that preserves edges; we then also say that G is contained in

G′. Two ordered graphs are isomorphic if each is contained in the other. Just as in the unordered

setting, the t-color Ramsey number of an ordered graph G, which we write as Rt(G), is the minimum

number of vertices of an ordered complete graph such that every edge-coloring from a set of t colors

contains a copy of G in color i for some i. Unless noted otherwise, we use the term Ramsey number

to refer to the 2-color Ramsey number, denoted R(G). Although “Ramsey number” usually refers

to the Ramsey number for unordered graphs, in this paper we only consider ordered graphs, so

R(G) will always refer to the ordered setting.

Ramsey’s Theorem [11] implies that for k ∈ N, there exists n such that every 2-edge-colored

ordered complete graph with n vertices contains a monochromatic ordered complete graph with k

vertices. Since an ordered complete graph contains every ordered graph with the same number of

vertices, and there is only one isomorphism class of ordered complete graphs with a given number

of vertices, Ramsey’s Theorem implies that the Ramsey number is well-defined for every ordered

graph. Moreover, the Ramsey number is monotone on ordered graphs: if an ordered graph G is

contained in an ordered graph H, then R(G) ≤ R(H).

The extremal number or Turán number of a graph H, written ex(n,H), is the maximum number

of edges an n-vertex graph can have without containing H. Similarly, the extremal number of an

ordered graph H, which we also write as ex(n,H), is the maximum number of edges an ordered

n-vertex graph can have without containing H. Extremal numbers are closely related to Ramsey

numbers, because if there are more than ex(n,H) edges of one color, then that color must contain

a monochromatic copy of H.

Ordered Ramsey theory is a relatively recent but increasingly popular area of study. Interest

in Ramsey numbers of ordered graphs arose from the well-known Erdős-Szekeres Lemma [4], which

states that every sequence of at least (k−1)2+1 distinct integers contains a decreasing or increasing

subsequence of length k. The monotone path with n vertices, written as Pmon
n , uses the vertex

ordering v1, . . . , vn such that along the path the vertices are v1, . . . , vn. The Erdős-Szekeres Lemma

is equivalent to R(Pmon
n ) = (n − 1)2 + 1 [5]. This relationship was used to generalize the Erdős-

Szekeres Lemma to ordered Ramsey numbers in various ways [5, 7, 8, 9]. Ramsey numbers of

specific classes of ordered graphs were explored in [1, 2, 3].

Pach and Tardos [10] studied the extremal numbers of k-ichromatic ordered graphs, proving

that for any ordered graph H, the maximum number of edges that an H-free ordered graph with

n vertices can have is

ex(n,H) =

(
1− 1

χi(H)− 1

)(
n

2

)
+ o(n2),

where χi(H) is the interval chromatic number of H.

The alternating path P alt
n uses the vertex ordering v1, . . . , vn such that along the path the vertices
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are v1, vn, v2, vn−1, . . .. The ordered graph P alt
n is 2-ichromatic, because the first dn/2e vertices form

an independent set, as do the last bn/2c. Balko, Cibulka, Král, and Kynčl [1] conjectured that P alt
n ,

whose Ramsey number they showed grows linearly in n, has the smallest Ramsey number among all

ordered paths with n vertices. The monotone path Pmon
n has the largest interval chromatic number

among all orderings of Pn, since every vertex must be in an interval separate from its neighbors,

and above we mentioned the observation of [5] that R(Pmon
n ) is quadratic in n.

One may then think that as the interval chromatic number increases, the Ramsey number also

increases. However, this is false, since Balko et al. [1] proved that for arbitrarily large n, there are

ordered matchings M on n vertices such that R(M) ≥ n
logn

5 log logn . An ordered matching has interval

chromatic number at most n/2. Given such an ordered matching M , we can add edges to M to

create an ordered n-vertex path P ◦n with interval chromatic number less than n (avoid creating

the monotone path). Thus by the monotonicity of the Ramsey number, R(P ◦n) ≥ n
logn

5 log logn ; the

lower bound is superpolynomial in n. Because Pmon
n has interval chromatic number n and quadratic

Ramsey number, the Ramsey number on ordered paths is not monotone with respect to the interval

chromatic number.

We consider 2-ichromatic ordered graphs. We extend the ideas in the proof by Balko et al. [1]

that the Ramsey number of the alternating path is linear in the number of vertices. We extend

their lower bound methods, generalizing the alternating path to a large class of 2-ichromatic ordered

graphs. The lower bound we obtain applies more generally, including many 2-ichromatic ordered

graphs with many fewer edges than the alternating path.

Definition 1. A k-ichromatic ordered graph is stitched if the set of size 2k consisting of the first

and last vertices from each part lies in a single component of the graph.

All connected k-ichromatic ordered graphs are stitched, but stitched ordered graphs need not be

connected, which is the reason for introducing a new term. For a connected 2-ichromatic ordered

graph G,the parts of the unique interval 2-coloring are the same as the color classes of G as a

bipartite graph. We depend heavily on the following slightly more general observation:

Observation 2. A stitched 2-ichromatic ordered graph has a unique interval 2-coloring, meaning

that the parts are uniquely determined.

In Section 3, we prove that if G is a stitched 2-ichromatic ordered graph with parts of size m

and n, then R(G) ≥ 4(min(m,n)−1)+1. Moreover, if G also satisfies certain additional conditions,

then R(G) ≥ 5(min(m,n)−1) + 1. In Section 4, we give exact formulas for the Ramsey numbers of

two specific families of 2-ichromatic ordered graphs that are not stitched. In Section 5, we extend

our results to t colors, and we extend the upper bound given by Balko et al. [1] for a special family

of ordered graphs.
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2 Matrices associated with ordered graphs

We prove our results by converting the graph problems to matrix problems. The adjacency matrix

of an ordered graph G with vertices v1, . . . , vN in order is an N×N {0, 1}-matrix M where the rows

and columns are indexed by the vertices, and an entry aij is 1 if and only if vivj is an edge in G.

Since we consider only undirected graphs, these matrices are symmetric along the main diagonal.

The structure of the adjacency matrix of a 2-ichromatic ordered graph is shown in Figure 1. If

the parts have sizes m and n, then the nonzero entries of the adjacency matrix are contained in

two off-diagonal blocks A1 and A2, where A1 is indexed by rows 1 through m and columns m+ 1

through m+n and A2 is the transpose of A1. Thus any 2-ichromatic ordered graph G with uniquely

determined parts can be described by the single m×n matrix A1, which we call the core matrix of

G.

1 · · · m m+ 1 · · · m+ n

1
... 0 A1

m

m+ 1
... A2 0

m+ n

Figure 1: The adjacency matrix of A a 2-ichromatic ordered graph with part-sizes n and m.

We can view a 2-edge-coloring of the complete ordered graph KN on N vertices as a symmetric

N × N red/blue matrix M , where each entry of M corresponds to an edge of KN . Call an s × t
submatrix B′ of M a monochromatic copy of an s× t {0, 1}-matrix B in M if the nonzero entries

of B correspond to a set of entries in B′ all having the same color.

A principal submatrix is one whose row indices and column indices are the same. If we consider

a 2-ichromatic ordered graph G as a subgraph of KN , a copy of the adjacency matrix A of G will

appear as a principal submatrix A′ of M . Let A′1 and A′2 be the corresponding copies of submatrices

A1 and A2 of A (as shown in Figure 1). Due to the ordering of G, A′1 is above the diagonal and is

completely above and to the right of every entry in A′2.

In Section 5 we make use the analogue for matrices of Turán numbers. A {0, 1}-matrix M

contains an r × s {0, 1}-matrix A if M has a r × s submatrix A′ that has a 1 in every position

where A has a 1, with the rows and columns in the same order as in A. A matrix avoids A if

it does not contain A. A matrix A is tightly contained in a matrix M if M contains A and has
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the same dimensions as A. The extremal number exA(m,n) of a {0, 1}-matrix A is the maximum

number of nonzero entries in an m×n {0, 1}-matrix avoiding A. An r×s matrix A is minimalist if

exA(m,n) = (s− 1)m+ (r− 1)n− (r− 1)(s− 1). The term “minimalist” was introduced by Füredi

and Hajnal [6] because for each choice of m and n, the value (s− 1)m+ (r− 1)n− (r− 1)(s− 1) is

the smallest extremal number of any r × s {0, 1}-matrix A having at least one nonzero entry. We

say also that a 2-ichromatic ordered graph G is minimalist if the core matrix of G is minimalist.

One can build larger minimalist matrices from existing minimalist matrices by a method of

Füredi and Hajnal [6]. An elementary operation on a {0, 1}-matrix M produces a {0, 1}-matrix

M ′ by adding a new first or last row or column containing a single 1 next to a 1 of M . Füredi and

Hajnal proved that if M is a minimalist matrix and M ′ is obtained from M by applying elementary

operations, then M ′ is minimalist. Since the 1 × 1 identity matrix is clearly minimalist, this is

one way to create minimalist matrices. Also, any nonzero matrix tightly contained in a minimalist

matrix is minimalist. However, these are not all the minimalist matrices; the matrix below is

minimalist but neither is created by applying elementary operations to the 1 × 1 identity matrix

nor is tightly contained in such a matrix [6].
0 1 0

1 0 0

1 0 1


The ordered path P alt

n is minimalist. Balko et al. [1] used this fact in proving an upper bound

on R(P alt
n ). In Section 5 we extend their result to t colors and all minimalist 2-ichromatic ordered

graphs.

3 Lower bounds for stitched 2-ichromatic ordered graphs

Theorem 3. Let G be a stitched 2-ichromatic ordered graph. If the parts have size m and n, then

R(G) ≥ 4r + 1, where r = min(m,n)− 1.

Proof. Let A be the adjacency matrix of G, and let A1 and A2 be the core matrix of G and its

transpose, respectively. To prove the lower bound, we construct a symmetric N×N red/blue matrix

M such that no (m+n)×(m+n) principal submatrix A′ is a monochromatic copy of A in M . This

corresponds to a 2-coloring of the complete ordered KN that does not contain a monochromatic

copy of G. Since M is symmetric and A′ is principal, it suffices to avoid monochromatic copies of

A1 above the diagonal of M . We achieve this by block coloring: when N is a multiple of r, M is

r × r block 2-colored when each r × r block of entries is monochromatic.

Suppose that M is r × r block 2-colored and has a principal monochromatic copy A′ of A. Let

A′1 and A′2 be the monochromatic copies of A1 and A2 in A′. Recall that A′1 is on or above the
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diagonal and is completely above and to the right of every entry in A′2. Also A′2 is located below

the diagonal in the positions reflecting A′1.

Let X denote the set of first and last vertices of the parts in the interval 2-coloring of G. Since

G is a stitched 2-ichromatic ordered graph, the four vertices of X are connected by paths. Consider

only those entries in A1 that correspond to the edges of these paths; let C be the set of these

entries. These edges form a connected subgraph of G, and there exists at least one entry in C in

each of the first and last columns and the first and last rows of A1. Let C ′ be the corresponding

entries in A′1.

Now consider the r × r blocks of M that contain entries in C ′; recall that r = min(m,n) − 1.

Since A′ is a principal monochromatic copy of A, these blocks have the same color in M . Since

C ′ has entries in the extreme rows and columns of A′1, and A′1 spans m rows and n columns, C ′

cannot be contained within a single row or column of blocks. Because the subgraph corresponding

to C ′ is connected, there is a “path of blocks” joining any two blocks used by C ′, meaning that

at each step only the row or only the column is changed. Since C ′ cannot be captured in a single

row or column of blocks, there is thus such a path with two steps, one row change and one column

change, which yields one of the four patterns in Figure 2. (Note that the blocks in a pattern

need not be contiguous.) We conclude that if an r × r block 2-colored matrix M does not have a

monochromatic instance of one of these four block patterns on or above the diagonal, then we will

not have a monochromatic copy of A.

1) 2) 3) 4)

Figure 2: Forbidden r × r block patterns in M

We claim further that the three blocks we have extracted from C ′ cannot occur in pattern 1

using a diagonal block, and hence we do not need to avoid such instances of pattern 1 to establish

the lower bound. Consider such an instance. If one of these three blocks is on the diagonal, then

it must be the upper left or lower right block. By symmetry we may assume it is the upper left

block, let this be B. Let x be an entry of C ′ in B, and let y be an entry of C ′ in the lower right

block. Because A′ is principal, the reflection of C ′ through the diagonal is contained in A′2. When

we reflect x to x̂ ∈ A′2, x̂ is still in B, but the original entry y ∈ A′1 is in a lower row of blocks.

Hence the entry y ∈ A′1 is not above the entry x̂ ∈ A′2, which contradicts the structure of matrix A

shown in Figure 1.

When N = 4r, the block coloring of an upper triangular matrix shown in Figure 3 avoids the

four patterns in Figure 2, except for an instance of pattern 1 using the diagonal. For later use, we

may say that the color used on the upper right block is color 1 (red). Therefore, M avoids A, and

the corresponding 2-edge-coloring of the ordered complete graph on 4r vertices avoids the ordered
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graph G.

Figure 3: Block coloring that avoids the forbidden patterns

The lower bound of 4r + 1 in Theorem 3 relies on the necessity of avoiding monochromatic

instances of all four block patterns in Figure 2. We can improve the bound if avoiding the specific

graph only requires us to avoid certain subsets of these patterns: If we only need to avoid pattern

2, then we improve the lower bound to 5r+ 1, and we can also obtain a lower bound of 5r+ 1 when

avoiding just patterns 3 and 4. The block colorings that prove these claims are shown in Figure 4.

The coloring in Figure 4a appears in [1].

(a) (b)

Figure 4: Block colorings that (a) avoid patterns 3 and 4, and (b) avoid pattern 2.

Motivated by this, we determine some of the graphs that require either pattern 3 or 4 to cover

the nonzero entries in their matrix, as well as some of the graphs that require pattern 2. Thus we

obtain lower bounds on Ramsey numbers for these ordered graphs.

Corollary 4 directly extends the result of [1] that the Ramsey number of the alternating path

is at least 5r + 1, where r is one less than half the number of vertices in the path [1], to a larger

family of graphs containing the alternating path.

Corollary 4. Let G be a stitched 2-ichromatic ordered graph with parts v1, . . . , vm and vm+1, . . . , vm+n.

If G has edges v1vm+n and vmvm+1, then R(G) ≥ 5r + 1, where r = min(m,n)− 1.

Proof. Let A1 be the core matrix of G, and as in Theorem 3 consider an r × r block 2-colored

matrix M , which contains a copy A′1 of A1 above the diagonal. Edges v1vm+n and vmvm+1 of G

correspond to nonzero entries in the top right corner and lower left corner of A1. Since A′1 spans

at least m rows and n columns, one cannot cover these two entries with only blocks in the same
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row or column. Hence the extreme blocks intersected by A′1 must be two diagonally placed blocks,

B1 to the upper right and B2 to the lower left.

Since G is stitched, it has paths connecting the vertices {v1, vm, vm+1, vm+n}. Let C be the col-

lection of entries of A1 that correspond to the edges of these paths, and let C ′ be the corresponding

entries of A′1. As in the proof of Theorem 3, since the graph corresponding to C ′ is connected, there

is a path of blocks joining any two blocks used by C ′. Since B1 is the top and rightmost block used

by C ′, and there must be a path of blocks to reach B2, the path first steps downward or leftward,

and when the path first takes a step in the other direction, we obtain pattern 3 or pattern 4. The

r × r block 2-colored 5r × 5r matrix shown in Figure 4a avoids pattern 3 and pattern 4 above the

diagonal. Thus it yields a 2-edge-coloring of the ordered complete graph on 5r vertices that does

not contain a monochromatic copy of the ordered graph G.

Corollary 5 proves the same lower bound for a different family of ordered graphs.

Corollary 5. Let G be a 2-ichromatic ordered graph with parts v1, . . . , vm and vm+1, . . . , vm+n. If

G has edges v1vm+1, vmvm+n, and vmvm+1, then R(G) ≥ 5r + 1, where r = min(m,n)− 1.

Proof. Let A be the core matrix of G. The specified edges of G correspond to nonzero entries in

the top left, bottom left, and bottom right corners of A. Since r = min(m,n)−1, one must use two

blocks in one column of blocks to cover the top left entry and bottom left entry of A, and then use

a third block to the right of the bottom block in the same row of blocks to cover the lower right

entry. Thus, to cover the nonzero entries with r × r blocks, one must use pattern 2 from Figure

2. The r × r block 2-colored 5r × 5r matrix shown in Figure 4b avoids pattern 2 on or above the

diagonal. Thus it yields an edge-coloring of the ordered complete graph on 5r vertices that does

not contain a monochromatic copy of G.

Remark 6. By case analysis, we can show that it is not possible to 2-color a triangular configuration

with more than five rows and columns of blocks to avoid pattern 2 or avoid patterns 3 and 4. It

is also not possible to 2-color a triangular configuration with more than four rows and columns of

blocks to avoid any other subset of the four patterns in Figure 2. Thus we cannot enforce larger

lower bounds than 4r + 1 with this block coloring technique for any other subset of the four block

patterns, and we cannot enforce larger lower bounds than 5r+ 1 for the two families in Corollaries

4 and 5.

4 Exact Values for Special Families

The lower bounds presented in Corollaries 4 and 5 are larger than the Ramsey numbers for the

ordered graphs consisting of only the matching M consisting of {v1vm+n, vmvm+1}, even though

they differ by perhaps only one edge. For example, an ordered graph treated by Corollary 4 can
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be obtained by adding just one edge to M to make the graph stitched. We consider two specific

examples among 2-ichromatic ordered graphs with color classes of sizes m and n.

{ {m n { {m n

(a) (b)

Figure 5: 2-ichromatic ordered graphs with (a) nested edges or (b) crossing edges.

Proposition 7. If G is the 2-ichromatic ordered graph with parts of size m and n and two nested

edges, one joining the outermost vertices and one joining the innermost vertices (see Figure 5a),

then R(G) = 2m+ 2n− 2.

Proof. Upper Bound. Consider a 2-edge-coloring of the ordered complete graph whose 2m+ 2n− 2

vertices are v1, . . . , v2m+2n−2. Consider the three edges v1v2m+2n−2, vmv2m+n−1, and v2m−1v2m, as

shown in Figure 6. Two of these three edges have the same color, and these two edges along with

m − 2 vertices between their left endpoints and n − 2 vertices between their right endpoints form

a copy of G. Thus R(G) ≤ 2m+ 2n− 2.

2m+2n-21 2m+n-1m 2m2m-1

Figure 6: Particular edges in an ordered graph with 2m+ 2n− 2 edges

Lower Bound. Given the ordered complete graph with 2m + 2n − 3 vertices, we construct a

coloring avoiding G. Assign red to each edge having an endpoint among either the first m−1 vertices

or the last n− 1 vertices; assign blue to all other edges. We claim that this coloring avoids G. Any

two red nested edges have left endpoints at most m − 2 apart from each other or right endpoints

at most n − 2 apart from each other, so there is no red G. All blue edges are contained within a

subgraph having only m+ n− 1 vertices, so there is no blue G. Thus R(G) > 2m+ 2n− 3.
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Proposition 8. If G is the 2-ichromatic ordered graph with parts of size m and n and two crossing

edges, one joining the first vertices in each part and one joining the last vertices in each part (see

Figure 5b), then R(G) = m+ n+ max(m,n)− 1.

Proof. We may assume m ≥ n (otherwise, reverse the ordering).

Upper Bound. Consider a 2-edge-coloring of the ordered complete graph with 2m+n−1 vertices

v1, . . . v2m+n−1 in order. Consider two long edges (v1v2m and vmv2m+n−1) and three shorter edges

(v1vm+1, vmv2m, and v2m−1v2m+n−1), as shown in Figure 7. Three of these five edges have the

same color. The two long edges together with the first m − 2 and last n − 2 other vertices form

a copy of G. Any two consecutive short edges and the vertices between their endpoints form a

copy of G. If one long edge and the two nonconsecutive short edges have the same color, then the

long edge and the short edge incident to the other extreme vertex form a copy of G, together with

the first m− 2 and last n− 2 other vertices. Therefore, there is a monochromatic copy of G, and

R(G) ≤ 2m+ n− 1.

2m+n-11 2mm 2m-1m+1

Figure 7: Particular edges in an ordered graph with 2m+ n− 1 edges.

.

Lower Bound. Given the ordered complete graph with 2m + n − 2 vertices, we construct a

coloring avoiding G. Assign red to each edge having an endpoint among the first m − 1 vertices;

assign blue to all other edges. We claim that this coloring avoids G. Any two red crossing edges

have their left endpoints at most m − 2 apart from each other, so there is no red G, and all blue

edges are contained within a subgraph having only m+ n− 1 vertices, so there is no blue G. Thus

R(G) > 2m+ n− 2.

Thus, in the case m = n, adding one specific edge to either nested edges or crossing edges

increases the Ramsey number. We can add an edge to the nested edges from Proposition 7 to make

the graph stitched, increasing the Ramsey number from 4n − 2 to at least 5n − 4. Similarly, we

can add the edge joining the last vertex in the first part and the first vertex in the second part

to the crossing edges from Proposition 8 to make the graph satisfy the hypothesis of Corollary 5,

increasing the Ramsey number from 3n− 1 to at least 5n− 4.
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5 Extensions to t-color Ramsey Numbers

We can also extend our general lower bounds to the t-color Ramsey case, where we color the edges

from a set of t colors:

Corollary 9. 1. If G1 is a stitched 2-ichromatic ordered graph with parts of sizes n and m, then

Rt(G1) ≥ 2tr + 1, where r = min(n,m)− 1.

2. Let G2 be a stitched 2-ichromatic ordered graph with parts v1, . . . , vm and vm+1, . . . , vm+n.

If edges v1vm+n and vmvm+1 are contained in G2, then Rt(G2) ≥ (2t + 1)r + 1, where r =

min(m,n)− 1.

3. Let G3 be a 2-ichromatic ordered graph with parts v1, . . . , vm and vm+1, . . . , vm+n. If edges

v1vm+1, vmvm+n, and vmvm+1 are contained in G, then Rt(G3) ≥ (2t + 1)r + 1, where

r = min(m,n)− 1. .

Proof. Using t = 2 and Theorem 3, Corollary 4, and Corollary 5 as the base cases for our three

statements, we use induction on t. Having already colored the appropriately sized matrix for t

colors, we can extend the coloring to t + 1 colors by adding new rows and columns as in Figure

8: For statement 1, add a top row and right column of the new color, with one block of color 1 in

the top right. For statement 2, add a top row and right row. For statement 3, add a top row and

diagonal.

The first matrix coloring (Figure 8a) avoids monochromatic instances of all four patterns in

Figure 2 (except pattern 1 on the diagonal), the second (Figure 8b) avoids patterns 3 and 4, and

the third (Figure 8c) avoids pattern 2. Thus, they avoid G1, G2, and G3 respectively. Each

inductive step adds two rows and columns of blocks, and the results follow.

(a) (b) (c)

Figure 8: Block colorings for the 4-color Ramsey extensions.
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Since we have thus far found lower bounds that are linear in the number of vertices for certain

2-ichromatic ordered graphs, it is desirable to also find linear upper bounds for some 2-ichromatic

ordered graphs. In proving that the alternating path has linear Ramsey number, Balko, Cibulka,

Král and Kynčl [1] used minimalist matrices to prove a linear upper bound for the alternating path

P alt
n with n vertices:

R(P alt
n ) ≤ 2n− 4 +

√
2n2 − 8n+ 11

In fact, their proof is valid for any minimalist graph with equal part-sizes. Here we extend this

proof to t colors and to 2-ichromatic ordered graphs with general part-sizes:

Proposition 10. If G is a minimalist 2-ichromatic ordered graph with parts size m and n, then

Rt(G) ≤ t(n+m− 2) +
√
t2(n+m− 2)2 + 2t(3(n+m)− 4− 2mn).

Proof. Consider an ordered complete graph with N vertices having a t-color edge-coloring that

contains no monochromatic G. Consider the adjacency matrix for the coloring, and consider the

upper right submatrix B formed by the first dN/2e rows and last bN/2c columns. Because the

given coloring has no monochromatic copy of G, this matrix B does not contain a monochromatic

copy of the core matrix of G. Since G is minimalist,

exA1(dN/2e, bN/2c) = (n− 1)dN/2e+ (m− 1)bN/2c − (m− 1)(n− 1)

≤ 1

2
(n+m)(N + 3)−N − 2−mn

≤
(

1

2
(n+m)− 1

)
N +

(
3

2
(n+m)− 2−mn

)
.

By the pigeonhole principle, at least 1
t of the dN/2ebN/2c edges in B have the same color. Note

that 1
t dN/2ebN/2c ≥ (N2 − 1)/4t. To avoid monochromatic copies of G, the following inequality

must be satisfied.

N2 − 1 ≤ (2t(n+m)− 4t)N + 6t(n+m)− 8t− 4tmn.

Now the quadratic formula completes the proof.

N ≤ t(n+m− 2) +
√

(t(n+m)− 2t)2 + 6t(n+m)− 8t− 4tmn.

Thus there is a family of 2-ichromatic ordered graphs whose Ramsey number is linear in the

number of vertices. However, this linear upper bound is only for minimalist 2-ichromatic ordered

graphs. Finding upper bounds for more 2-ichromatic ordered graphs is a topic for further study.

For example, whenever the extremal number of the core matrix of a 2-ichromatic ordered graph G

is subquadratic in the number of vertices, one can use the method above to obtain an upper bound

for Rt(G).
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