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Abstract

We study the list chromatic number of the Cartesian product of any graph G and
a complete bipartite graph with partite sets of size a and b, denoted χℓ(G�Ka,b). We
have two motivations. A classic result on the gap between list chromatic number and the
chromatic number tells us χℓ(Ka,b) = 1 + a if and only if b ≥ aa. Since χℓ(Ka,b) ≤ 1 + a
for any b ∈ N, this result tells us the values of b for which χℓ(Ka,b) is as large as possible
and far from χ(Ka,b) = 2. In this paper we seek to understand when χℓ(G�Ka,b) is
far from χ(G�Ka,b) = max{χ(G), 2}. It is easy to show χℓ(G�Ka,b) ≤ χℓ(G) + a. In
2006, Borowiecki, Jendrol, Král, and Mǐskuf showed that this bound is attainable if b
is sufficiently large; specifically, χℓ(G�Ka,b) = χℓ(G) + a whenever b ≥ (χℓ(G) + a −
1)a|V (G)|. Given any graph G and a ∈ N, we wish to determine the smallest b such
that χℓ(G�Ka,b) = χℓ(G) + a. In this paper we show that the list color function, a list
analogue of the chromatic polynomial, provides the right concept and tool for making
progress on this problem. Using the list color function, we prove a general improvement
on Borowiecki et al.’s 2006 result, and we compute the smallest such b exactly for some
large families of chromatic-choosable graphs.

Keywords. graph coloring, list coloring, Cartesian product, list color function, chromatic
choosable.
Mathematics Subject Classification. 05C15.

1 Introduction

In this paper all graphs are nonempty, finite, simple graphs unless otherwise noted. Gen-
erally speaking we follow West [19] for terminology and notation. The set of natural numbers
is N = {1, 2, 3, . . .}. For k ∈ N, we write [k] for the set {1, 2, . . . , k}. If G is a graph and
S ⊆ V (G), we write G[S] for the subgraph of G induced by S. For v ∈ V (G), we write dG(v)
for the degree of vertex v in the graph G. If G and H are vertex disjoint graphs, we write
G ∨H for the join of G and H.
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1.1 List Coloring

List coloring is a variation on the classic vertex coloring problem. It was introduced in the
1970’s independently by Vizing [17] and Erdős, Rubin, and Taylor [4]. In the classic vertex
coloring problem we seek a proper k-coloring of a graph G which is a coloring of the vertices
of G with colors from [k] such that adjacent vertices receive different colors. The chromatic
number of a graph, denoted χ(G), is the smallest k such that G has a proper k-coloring.
For list coloring, we associate a list assignment, L, with a graph G such that each vertex
v ∈ V (G) is assigned a list of colors L(v) (we say L is a list assignment for G). The graph G
is L-colorable if there exists a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V (G)
(we refer to f as a proper L-coloring of G). A list assignment L is called a k-assignment for
G if |L(v)| = k for each v ∈ V (G). The list chromatic number of a graph G, denoted χℓ(G),
is the smallest k such that G is L-colorable whenever L is a k-assignment for G. We say G
is k-choosable if k ≥ χℓ(G).

It is immediately obvious that for any graph G, χ(G) ≤ χℓ(G). Both Vizing [17] and
Erdős, Rubin, and Taylor [4] observed bipartite graphs can have arbitrarily large list chro-
matic number. This implies the gap between χ(G) and χℓ(G) can be arbitrarily large. The
following result illustrates this.

Theorem 1. For a, b ∈ N, χℓ(Ka,b) = a+ 1 if and only if b ≥ aa.

It is worth mentioning that Theorem 1 is often attributed to Vizing [17] or Erdős, Rubin,
and Taylor [4], but it is not stated in those papers. It is best described as a folklore result.
In this paper we prove results similar in flavor to Theorem 1 for Cartesian products.

Graphs in which χ(G) = χℓ(G) are known as chromatic-choosable graphs [12]. The notion
of chromatic-choosability has received considerable attention in the literature. Many families
of graphs have been conjectured to be chromatic-choosable (see for example [2], [6], and [7]),
and there are several families of graphs that have been shown to be chromatic-choosable (see
for example [5], [8], [11], [13], and [16]). We are studying how Cartesian products with a
complete bipartite factor can be far from being chromatic-choosable.

1.2 List Coloring Cartesian Products

The Cartesian product of graphs M and H, denoted M�H, is the graph with vertex set
V (M) × V (H) and edges created so that (u, v) is adjacent to (u′, v′) if and only if either
u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(M). Throughout this paper, if G = M�H
and u ∈ V (M) (resp. u ∈ V (H)), we let Vu be the subset of V (G) consisting of the vertices
with first (resp. second) coordinate u. By the definition of Cartesian product of graphs, it
is easy to see G[Vu] is a copy of H (resp. M), and we refer to G[Vu] as the copy of H (resp.
M) corresponding to u.

It is well known that χ(G�H) = max{χ(G), χ(H)}. On the other hand, the list chro-
matic number of the Cartesian product of graphs is not nearly as well understood. In 2006,
Borowiecki, Jendrol, Král, and Mǐskuf [3] showed the following.

Theorem 2 ([3]). For any graphs G and H, χℓ(G�H) ≤ min{χℓ(G) + col(H), col(G) +
χℓ(H)} − 1.
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Here col(G), the coloring number of a graph G, is the smallest integer d for which there
exists an ordering, v1, v2, . . . , vn, of the elements in V (G) such that each vertex vi has at most
d − 1 neighbors among v1, v2, . . . , vi−1. For any graph G, it is easy to see that Theorem 2
implies χℓ(G�Ka,b) ≤ χℓ(G)+a. In proving that the bound in Theorem 2 is tight, Borowiecki,
Jendrol, Král, and Mǐskuf also proved the following.

Theorem 3 ([3]). Suppose G is a graph with n vertices. Then, χℓ(G�Ka,b) = χℓ(G) + a
whenever b ≥ (χℓ(G) + a− 1)an.

One motivation for this paper was: For any given graph G, can we improve upon the
bound on b in Theorem 3? With this question in mind, for a ∈ N, we let fa(G) be the
smallest b such that χℓ(G�Ka,b) = χℓ(G) + a. Along the lines of Theorem 1, computing
fa(G) for some graph G and a ∈ N yields: χℓ(G�Ka,b) = χℓ(G) + a if and only if b ≥ fa(G).
Theorem 1 says that fa(K1) = aa.

There are several other observations about fa(G) that are immediate. First, χℓ(G�Ka,0) =
χℓ(G) < χℓ(G) + a which implies that fa(G) ≥ 1. Second, Theorem 3 implies that fa(G) ≤
(χℓ(G)+a−1)a|V (G)|. This means fa(G) exists and is a natural number. Also, if G is a discon-
nected graph with components: H1,H2, . . . ,Hr, we have fa(G) = maxHi,χℓ(Hi)=χℓ(G) fa(Hi).
So, we will restrict our attention to connected graphs.

In this paper we use a list analogue of the chromatic polynomial called the list color
function to find an upper bound on fa(G) that is an improvement on the result of Theorem 3.
We also present some further results on computing fa(G) in the special case where G is a
strongly chromatic-choosable graph.

1.3 The List Color Function and Strong Chromatic-Choosability

We let P (G, k) be the chromatic polynomial of the graph G; that is, P (G, k) is equal to the
number of proper k-colorings of G. It can be shown that P (G, k) is a polynomial in k (see [1]).
This notion was extended to list coloring as follows. If L is a list assignment for G, we use
P (G,L) to denote the number of proper L-colorings of G. The list color function Pℓ(G, k) is
the minimum value of P (G,L) where the minimum is taken over all possible k-assignments
L for G. Since a k-assignment could assign the same k colors to every vertex in a graph, it
is clear that Pℓ(G, k) ≤ P (G, k) for each k ∈ N. In general, the list color function can differ
significantly from the chromatic polynomial for small values of k. However, Wang, Qian, and
Yan [18] recently showed: If G is a connected graph with m edges, then Pℓ(G, k) = P (G, k)
whenever k > m−1

ln(1+
√
2)
. Also see [10] and [15] for earlier results on the list color function.

In the case G is a complete graph or odd cycle, it is well known (see [14]) that P (Cn, k) =
(k− 1)n + (−1)n(k− 1) and P (Kn, k) =

∏n−1
i=0 (k− i). It is easy to see that for each n, k ∈ N,

P (Kn, k) = Pℓ(Kn, k), and it was recently shown in [9] that for each n, k ∈ N, P (Cn, k) =
Pℓ(Cn, k).

In [8] we introduced the notion of strong chromatic-choosability, and we used the list color
function to exactly compute f1 for graphs that are strongly chromatic-choosable. Strong
chromatic-choosability is a notion of criticality in the context of chromatic-choosability. A
graph G is strong k-chromatic-choosable if χ(G) = k and every (k − 1)-assignment, L, for
which G is not L-colorable has the property that the lists are the same on all vertices 1. We

1List assignments that assign the same list of colors to every vertex of a graph are called constant.
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say G is strongly chromatic-choosable if it is strong χ(G)-chromatic-choosable. Note that if
G is strong k-chromatic-choosable, then the only reason G is not (k − 1)-choosable is that a
proper (k−1)-coloring of G does not exist. Simple examples of strongly chromatic-choosable
graphs include complete graphs, odd cycles, and the join of a complete graph and odd cycle
(see [8] for many other examples). See Section 3 for a summary of their properties, etc. The
following is proven in [8].

Theorem 4 ([8]). Let M be a strong k-chromatic-choosable graph. Then, f1(M) = Pℓ(M,k).

We will generalize this result in Theorem 8, as stated in the next section.

1.4 Outline of Results and an Open Questions

In this subsection we present an outline of the paper while stating our results and men-
tioning some open questions. Recall that fa(G) is defined to be the smallest b such that
χℓ(G�Ka,b) = χℓ(G) + a.

In Section 2, we prove that for any graph G, χℓ(G�Ka,b) = χℓ(G) + a whenever b ≥
(Pℓ(G,χℓ(G) + a − 1))a. Thus, starting with any chromatic-choosable G, and taking its
Cartesian product with a sequence of appropriate Ka,b (with a = 0, 1, 2, . . .), we can construct
a sequence of graphs that at each step get one farther from being chromatic-choosable: for
any s ≥ t ≥ 2 there exists a graph H with χ(H) = t and χℓ(H) = s.

Theorem 5. For any graph G and a ∈ N, fa(G) ≤ (Pℓ(G,χℓ(G) + a− 1))a.

It is easy to see that if G has at least one edge, then Pℓ(G,χℓ(G) + a− 1) < (χℓ(G) + a−
1)|V (G)|. This implies that Theorem 5 is an improvement on Theorem 3 whenever G has an
edge. We will see many examples in Section 3 that illustrate that the bound in Theorem 5 is
tight (notice Theorem 4 shows the bound is tight when a = 1 and G is strongly chromatic-
choosable). However, it is not the case that fa(G) = (Pℓ(G,χℓ(G)+ a− 1))a for all graphs G
and a ∈ N since it is easy to see that f1(C2n) = 1, yet Pℓ(C2n, 2) = 2. This observation leads
us to the following open question.

Question 6. For what graphs does fa(G) = (Pℓ(G,χℓ(G) + a− 1))a for each a ∈ N?

It is possible to slightly modify the proof idea of Theorem 5 to obtain the following more
general result.

Theorem 7. Suppose H is a bipartite graph with partite sets A and B where |A| = a and
|B| = b. Let δ = minv∈B dH(v). If b ≥ (Pℓ(G,χℓ(G) + δ − 1))a, then χℓ(G�H) ≥ χℓ(G) + δ.

Notice that Theorem 7 gives us conditions on when χℓ(G�H) is guaranteed to be far
from χ(G�H) = max{χ(G), 2} for any bipartite graph H. Furthermore, notice that when
δ = a, H = Ka,b. So, Theorem 7 implies Theorem 5.

In Section 3 we prove that ifM is a strong k-chromatic choosable graph and k ≥ a+1, then
χℓ(M�Ka,b) = χℓ(G)+ a if and only if b ≥ (Pℓ(M,χℓ(M)+ a− 1))a. This is a generalization
of Theorem 4.

Theorem 8. If M is strongly chromatic-choosable and χ(M) ≥ a + 1, then fa(M) =
(Pℓ(M,χℓ(M) + a− 1))a.
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So, we have that the bound in Theorem 5 is tight when our graph is strongly chromatic-
choosable and its chromatic number is sufficiently large. There are infinite families of such
graphs constructed in [8]. Theorem 8 and the fact that P (Kn, k) = Pℓ(Kn, k) and P (Cn, k) =
Pℓ(Cn, k) whenever n, k ∈ N imply the following.

Corollary 9. The following statements hold.
(i) For any l ∈ N, f2(C2l+1) = (Pℓ(C2l+1, 4))

2 = (32l+1 − 3)2 = 9(9l − 1)2.

(ii) For n ∈ N satisfying n ≥ a+ 1, fa(Kn) = (Pℓ(Kn, n+ a− 1))a =
(

(n+a−1)!
(a−1)!

)a

.

Notice that Corollary 9 (ii) shows that the bound in Theorem 5 is tight for any a ∈ N.
We do not know of any strongly chromatic-choosable graph M for which fa(M) <

(Pℓ(M,χℓ(M) + a− 1))a. This leads us to the following question.

Question 10. Does there exist a strongly chromatic-choosable graph M such that fa(M) <
(Pℓ(M,χℓ(M) + a− 1))a?

Another interesting question involves only complete graphs.

Question 11. Is it the case that fa(Kn) =
(

(n+a−1)!
(a−1)!

)a

for each n, a ∈ N?

Since fa(K1) = aa, the answer to Question 11 is yes when n = 1. We have a rather
tedious argument, which for the sake of brevity will not be presented in this paper, that
shows f2(K2) = 36. One could ask questions analogous to Question 11 for any family of
strongly chromatic-choosable graphs. We end Section 3 by proving a general lower bound on
fa for strongly chromatic-choosable graphs.

Theorem 12. Suppose M is a strong k-chromatic-choosable graph. Then,

(Pℓ(M,k + a− 1))a

2k−1
≤ fa(M).

Considering Theorem 8, Theorem 12 gives us something new when χ(M) < a+ 1.

2 General Upper Bound

In this section we will prove Theorem 5. Before we prove this theorem, we introduce
some notation and terminology that will be used for the remainder of this paper. Whenever
we have a graph of the form H = G�Ka,b with a, b ∈ N, we will assume that the vertex
set of the first factor is {v1, v2, . . . , vn}. We also assume that the partite sets of the copy of
Ka,b used to form H are {u1, u2, . . . , ua} and {w1, w2, . . . , wb}. If L is a list assignment for
H = G�Ka,b and f is a proper L-coloring of H[

⋃a
j=1 Vuj

], then we say f is a bad coloring
for the copy of G corresponding to wl if there is no proper L′-coloring for H[Vwl

] where L′

is the list assignment for H[Vwl
] given by L′(vi, wl) = L(vi, wl)−{f(vi, uj) : j ∈ [a]} for each

i ∈ [n] 2. We now present a straightforward lemma related to this notion of bad coloring.

2We use L(vi, wl) rather than the technically correct L((vi, wl)).
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Lemma 13. Suppose H = G�Ka,b with a, b ∈ N and L is a list assignment for H. Suppose
C is the set of all proper L-colorings of H[

⋃a
j=1 Vuj

]. For each f ∈ C there exists an l ∈ [b]
such that f is a bad coloring for the copy of G corresponding to wl if and only if there is no
proper L-coloring of H.

Proof. We prove the only if direction first. Suppose for the sake of contradiction that c is a
proper L-coloring of H. Let c′ be the proper L-coloring of H[

⋃a
j=1 Vuj

] obtained by restricting
the domain of c to

⋃a
j=1 Vuj

(clearly c′ ∈ C). We know that there is a d ∈ [b] such that c′ is a
bad coloring for the copy of G corresponding to wd. Let L

′(vi, wd) = L(vi, wd)− {c′(vi, uj) :
j ∈ [a]} for each i ∈ [n]. Restricting the domain of c to Vwd

yields a proper L′-coloring of the
copy of G corresponding to wd which is a contradiction.

We now prove the contrapositive of the converse. Suppose there is a g ∈ C such that for
each t ∈ [b], g is not a bad coloring for the copy of G corresponding to wt. Let L′(vi, wt) =
L(vi, wt) − {c′(vi, uj) : j ∈ [a]} for each i ∈ [n] and t ∈ [b]. For each t ∈ [b], since g is not a
bad coloring for the copy of G corresponding to wt, there is a proper L′-coloring of H[Vwt ].
Coloring each copy of G corresponding to a vertex in {w1, w2, . . . , wb} according to a proper
L′-coloring extends g to a proper L-coloring of H.

We are now ready to prove Theorem 5

Proof. Suppose H = G�Ka,b and χℓ(G) = k. Let t = Pℓ(G, k+ a− 1). In order to prove the
desired, we must show that χℓ(H) = k+ a when b = ta. We already know χℓ(H) ≤ k+ a (by
Theorem 2). So, we suppose that b = ta, and we will construct a (k + a− 1)-assignment, L,
for H such that there is no proper L-coloring of H.

Let Gi be the copy of G corresponding to ui. We inductively assign lists of size (k+a−1)
to the vertices in

⋃a
i=1 Vui

as follows. We begin by assigning lists, L(v), to each v ∈ V (G1)
such that there are exactly t distinct proper L-colorings of G1. Then, for each 1 < i ≤ a, we
assign lists, L(v), to each v ∈ V (Gi) such that there are exactly t distinct proper L-colorings
of Gi and





⋃

v∈V (Gi)

L(v)





⋂





i−1
⋃

j=1

⋃

v∈V (Gj)

L(v)



 = ∅

(this can be done by taking the lists for G1, thinking of the colors as natural numbers, and
adding a sufficiently large natural number to each color in each list). Now, for i ∈ [a], we let
ci,1, ci,2, . . . , ci,t denote the t distinct proper L-colorings of Gi. We note that there are exactly
ta proper L-colorings of H[

⋃a
i=1 Vui

] (since for each i ∈ [a] we have t choices in how we color
Gi). Suppose we index the ta proper L-colorings of H[

⋃a
i=1 Vui

] as: c(1), c(2), . . . , c(t
a).

Now, suppose that L′ is a (k−1)-assignment for G such that there is no proper L′-coloring
of G and





⋃

v∈V (G)

L′(v)





⋂





a
⋃

j=1

⋃

v∈V (Gj)

L(v)



 = ∅.

Let G′
d be the copy of G corresponding to wd. For each d ∈ [ta] we assign a list, L(v),

of size (k + a − 1) to each v ∈ V (G′
d) as follows. Suppose that the coloring c(d) is formed

via the colorings: c1,b1 , c2,b2 , . . . , ca,ba (note that bj is between 1 and t for each j ∈ [a]).
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By construction, we know that |{cj,bj (vi, uj) : j ∈ [a]}| = a for each i ∈ [n]. So, for each
(vi, wd) ∈ V (G′

d), we let

L(vi, wd) = L′(vi)
⋃

{cj,bj(vi, uj) : j ∈ [a]}.

This completes the construction of our (k + a− 1)-assignment for H.
Finally, notice that by construction c(d) is a bad coloring for G′

d for each d ∈ [ta].
Lemma 13 implies that there is no proper L-coloring of H.

It is fairly easy to modify the idea of the proof of Theorem 5 in order to obtain a proof
of Theorem 7. We would simply obtain graph H ′ from H by deleting edges in H until all
vertices in B have degree δ. Then, we could use the same construction idea to obtain a
(χℓ(G) + δ − 1)-assignment for G�H ′, L, such that there is no proper L-coloring of G�H ′.
This would then imply χℓ(G) + δ − 1 < χℓ(G�H ′) ≤ χℓ(G�H).

3 Computing fa for Strongly Chromatic-Choosable Graphs

In this section we will prove Theorems 8 and 12. Suppose that M is a strong k-chromatic-
choosable graph. Recall that this means χ(M) = k and every (k−1)-assignment, L, for which
M is not L-colorable is constant. In this section our focus is studying fa(M). By Theorem 4
we know that f1(M) = Pℓ(M,k). So, we assume a ≥ 2 throughout this section. Also,
since the strong 1-chromatic-choosable graphs are edgeless graphs, we only consider strongly
chromatic-choosable graphs with chromatic number at least 2 throughout this section (since
we know fa(K1) = aa for each a ∈ N).

There are several properties of strongly chromatic-choosable graphs that follow immedi-
ately from the definition. We now mention some of these results (all proofs of these results
can be found in [8]).

Proposition 14 ([8]). Suppose M is a strong k-chromatic-choosable graph. Then,
(i) χℓ(M) = k (i.e. M is chromatic-choosable);
(ii) If L is a list assignment for M with |L(v)| ≥ k − 1 for each v ∈ V (M) and L is not a
constant (k − 1)-assignment, then there exists a proper L-coloring of M ;
(iii) M ∨Kp is strong (k + p)-chromatic-choosable for any p ∈ N;
(iv) For any v ∈ V (M), χ(M − {v}) ≤ χℓ(M − {v}) < k;
(v) k = 2 if and only if M is a K2;
(vi) k = 3 if and only if M is an odd cycle.

Proposition 15 ([8]). Suppose M is a strong k-chromatic-choosable graph. Suppose L is an
arbitrary m-assignment for M with m ≥ k. Then, for any v ∈ V (M) and any α ∈ L(v),
there is a proper L-coloring, c, for M such that c(v) = α. Consequently,

Pℓ(M,m) ≥ m max
v∈V (M)

Pℓ(M − {v},m − 1) ≥ m.

We now prove two lemmas that will lead to the proof of Theorem 8.
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Lemma 16. Suppose M is a strong k-chromatic-choosable graph and H = M�Ka,b. Suppose
that L is a (k + a − 1)-assignment for H such that there exist l, x, and y with x 6= y and
L(vl, ux) ∩ L(vl, uy) 6= ∅. Then, there is a proper L-coloring of H.

Proof. Suppose that α ∈ L(vl, ux) ∩ L(vl, uy). We begin by finding a proper L-coloring for
each of the copies of M corresponding to u1, . . . , ua. When it comes to the copies of M
corresponding to ux and uy, we ensure that our proper L-colorings for these copies color both
(vl, ux) and (vl, uy) with α. We know this is possible by Proposition 15. For the remaining
copies of M , we simply take any proper L-coloring, and we know there must be at least one
such coloring since k + a− 1 ≥ k + 1 > k. Let cj be the proper L-coloring that we found for
the copy of M corresponding to uj for each j ∈ [a].

Now, for i ∈ [n] and t ∈ [b] (we are defining a list assignment for the yet to be colored
vertices), we let L′(vi, wt) = L(vi, wt)− {cj(vi, uj) : j ∈ [a]}. It is easy to see that for each i
and t, |L′(vi, wt)| ≥ k + a− 1− a = k − 1, and |L′(vl, wt)| ≥ k + a− 1− (a− 1) = k. So, for
any t ∈ [b], we see that L′ restricted to the copy of M corresponding to wt is not a constant
(k − 1)-assignment. Proposition 14 then implies that our proper L-coloring of H[

⋃a
j=1 Vuj

]
is not bad for the copy of M corresponding to wt. Lemma 13 then implies there is a proper
L-coloring of H.

Lemma 17. Suppose M is a strong k-chromatic-choosable graph and H = M�Ka,1 with
k ≥ a+ 1. Suppose that L is a (k + a− 1)-assignment for H such that the lists
L(vi, u1), L(vi, u2), . . . , L(vi, ua) are pairwise disjoint for each i ∈ [n]. Then, there is at most
one proper L-coloring of H[

⋃a
j=1 Vuj

] that is bad for the copy of M corresponding to w1.

Proof. Throughout this proof for each j ∈ [a], we let Mj be the copy of M corresponding
to uj. Furthermore, let M∗ be the copy of M corresponding to w1. Suppose for the sake of
contradiction that there exist two distinct proper L-colorings, c and c′, of H[

⋃a
j=1 Vui

] that
are bad for M∗. Since M is strong k-chromatic-choosable, the list assignments:

L′(vi, w1) = L(vi, w1)− {c(vi, uj) : j ∈ [a]} and L′′(vi, w1) = L(vi, w1)− {c′(vi, uj) : j ∈ [a]}

for i ∈ [n] are both constant (k − 1)-assignments for M∗. Now, for j ∈ [a], let cj be the
proper L-coloring for Mj obtained by restricting the domain of c to V (Mj), and let ca+j be
the proper L-coloring for Mj obtained by restricting the domain of c′ to V (Mj). Since c
and c′ are different, we may assume without loss of generality that c1(vm, u1) 6= ca+1(vm, u1)
for some m ∈ [n]. Suppose ca+1(vm, u1) = b. Since L(vm, u1), L(vm, u2), . . . , L(vm, ua) are
pairwise disjoint, we know that:

b /∈
a
⋃

j=2

L(vm, uj) and b /∈ {cj(vm, uj) : j ∈ [a]}.

Let A be the set of (k − 1) colors that L′ assigns to all the vertices in M∗, and let B be the
set of (k − 1) colors that L′′ assigns to all the vertices in M∗. We know that for i ∈ [n],
L(vi, w1) = A

⋃

{cj(vi, uj) : j ∈ [a]}. So, for i ∈ [n],

B =
(

A
⋃

{cj(vi, uj) : j ∈ [a]}
)

− {ca+j(vi, uj) : j ∈ [a]}. (1)
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Since |B| = k− 1, b /∈ {cj(vm, uj) : j ∈ [a]}, and equation (1) holds for i = m, it must be the
case that b ∈ A. It immediately follows that b ∈ {ca+j(vi, uj) : j ∈ [a]} for each i ∈ [n]. To
see why, note that if this did not hold we would have that some of the lists obtained from L′′

would contain b and some would not.
Now, for j ∈ [a], let

Cj = {vl : ca+j(vl, uj) = b}.

Note C1, . . . , Ca are pairwise disjoint because if Cr and Cs both contained some vertex vp and
r 6= s, then b ∈ L(vp, ur)∩L(vp, us) which is a contradiction. Since b ∈ {ca+j(vi, uj) : j ∈ [a]}
for each i ∈ [n], we have that V (M) =

⋃a
j=1Cj. Since ca+j colors all the vertices in V (Mj)

with first coordinate in Cj with the color b, we know that Cj is an independent set of vertices
in M . Thus, {C1, . . . , Ca} is a partition of V (M) into a independent sets. This implies that
k = χ(M) ≤ a which is a contradiction. This completes the proof.

We now restate and prove Theorem 8.

Theorem 8. If M is strongly chromatic-choosable and χ(M) ≥ a + 1, then fa(M) =
(Pℓ(M,χℓ(M) + a− 1))a.

Proof. We know by Theorem 5, fa(M) ≤ (Pℓ(M,χℓ(M)+a−1))a. Suppose that M is strong
k-chromatic-choosable with k ≥ a + 1 and H = M�Ka,b. To prove the desired, we must
show that if b < (Pℓ(M,k + a− 1))a, then χℓ(H) < k + a.

Let t = Pℓ(M,k + a− 1), Mi be the copy of M corresponding to ui, and M ′
j be the copy

of M corresponding to wj . We assume that b < ta, and we let L be an arbitrary (k+ a− 1)-
assignment for H. To prove the desired, we will show that there is a proper L-coloring of H.
By Lemma 16, we may assume the lists L(vi, u1), L(vi, u2), . . . , L(vi, ua) are pairwise disjoint
for each i ∈ [n]. For each j ∈ [a], there are clearly at least t distinct proper L-colorings of
Mj . This implies that there are at least ta proper L-colorings of H[

⋃a
j=1 Vuj

]. Let C be the
set of distinct proper L-colorings of H[

⋃a
j=1 Vuj

] (we know |C| ≥ ta).
By Lemma 17 we know that for each d ∈ [b], there is at most one coloring in C that is

bad for M ′
d. Since b < ta ≤ |C|, there must be some f ∈ C that is not a bad coloring for any

of: M ′
1, . . . ,M

′
b. Lemma 13 then implies there is a proper L-coloring of H.

Theorem 8 along with the fact that the list color function of an odd cycle (resp. complete
graph) is equal to the chromatic polynomial of the odd cycle (resp. complete graph) for each
natural number immediately yields the following corollary.

Corollary 9. The following statements hold.
(i) For any l ∈ N, f2(C2l+1) = (Pℓ(C2l+1, 4))

2 = (32l+1 − 3)2 = 9(9l − 1)2.

(ii) For n ∈ N satisfying n ≥ a+ 1, fa(Kn) = (Pℓ(Kn, n+ a− 1))a =
(

(n+a−1)!
(a−1)!

)a

.

Notice that Corollary 9 Statement (ii) shows that the bound in Theorem 5 is tight for
any a ∈ N. Suppose M is a strongly chromatic-choosable graph. At this stage of the paper,
we have fa(M) exactly in terms of the list color function of M when χ(M) ≥ a+ 1. When
χ(M) < a+ 1 we only have an upper bound on fa(M) in terms of the list color function of
M (by Theorem 5). We will now turn our attention to proving Theorem 12 which will give
us a lower bound on fa(M) in terms of the list color function of M when χ(M) < a+1. We
begin with a lemma.
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Lemma 18. Suppose M is strong k-chromatic-choosable and H = M�Ka,1 where k < a+1.
Let L be a (k + a − 1)-assignment for H such that the lists L(vi, u1), L(vi, u2), . . . , L(vi, ua)
are pairwise disjoint for each i ∈ [n]. Let B be the set of proper L-colorings of H[

⋃a
j=1 Vuj

]

that are bad for the copy of M corresponding to w1. Then, |B| ≤ 2k−1.

Proof. We are done if B is empty. So we suppose B has at least one element. For j ∈ [a],
let Xj = {c : c ∈ L(v1, w1) ∩ L(v1, uj)} and xj = |Xj |. Note that X1,X2, . . . ,Xa must be
pairwise disjoint. We claim that

|B| ≤

∣

∣

∣

∣

∣

∣

a
∏

j=1

Xj

∣

∣

∣

∣

∣

∣

=
a
∏

j=1

xj

where
∏a

j=1Xj is the Cartesian product of the sets: X1,X2, . . . ,Xa. Now, suppose that
f ∈ B. Then, for i ∈ [n], we know that the list assignment L′ given by

L′(vi, w1) = L(vi, w1)− {f(vi, uj) : j ∈ [a]}

is a constant (k − 1)-assignment for the copy of M corresponding to w1. This implies that
{f(v1, u1), f(v1, u2), . . . , f(v1, ua)} is a set of size a that is completely contained in L(v1, w1).
Thus,

(f(v1, u1), f(v1, u2), . . . , f(v1, ua)) ∈
a
∏

j=1

Xj .

So, if for each f ∈ B, we let T (f) = (f(v1, u1), f(v1, u2), . . . , f(v1, ua)), we see that T is a
function from B to

∏a
j=1Xj . In order to prove the desired, we will show that T is injective. For

the sake of contradiction, suppose f and g are distinct colorings in B such that T (f) = T (g).
For each i ∈ [n] let L′ and L′′ be the list assignments for the copy of M corresponding to w1

given by

L′(vi, w1) = L(vi, w1)− {f(vi, uj) : j ∈ [a]} and

L′′(vi, w1) = L(vi, w1)− {g(vi, uj) : j ∈ [a]}.

We know that L′ and L′′ are both constant (k − 1) assignments. Since T (f) = T (g),
L′(v1, w1) = L′′(v1, w1) which immediately implies L′ and L′′ assign some list, A, of (k − 1)
colors to every vertex in the copy of M corresponding to w1. Since f 6= g there are con-
stants, r and t, such that f(vr, ut) 6= g(vr, ut). Since L′ and L′′ are constant (k − 1)
assignments assigning A to every vertex in the copy of M corresponding to w1, we know
that {f(vr, uj) : j ∈ [a]} = {g(vr, uj) : j ∈ [a]}. Since these two sets must have size a,
f(vr, ut) = g(vr, up) for some p 6= t. This however contradicts the fact that L(vr, ut) and

L(vr, up) are disjoint. Thus, T is injective, and we have |B| ≤
∣

∣

∣

∏a
j=1Xj

∣

∣

∣
.

To finish the proof, we must show that
∏a

j=1 xj ≤ 2k−1. Notice that each xj is a nonneg-
ative integer such that

∑a
j=1 xj ≤ k + a− 1. Under these conditions, the maximum possible

value of
∏a

j=1 xj is achieved when
∑a

j=1 xj = k+a−1 and each xj equals ⌊(k+a−1)/a⌋ = 1
or ⌈(k + a− 1)/a⌉ = 2; that is, when (k − 1) of x1, x2, . . . , xa are 2 and the rest are 1.
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It is fairly easy to show that the bound in Lemma 18 is tight for each k ≥ 2. For example,
suppose G = K3, V (G) = {v1, v2, v3}, and H = G�K3,1. Suppose L is the 5-assignment for
H that assigns: {1, 2, 3, 4, 5} to (vi, w1) for each i ∈ [3], {1, 2, 6, 7, 8} to L(v1, u1), L(v3, u2),
and L(v2, u3), {3, 4, 9, 10, 11} to L(v2, u1), L(v1, u2), and L(v3, u3), and {5, 12, 13, 14, 15}
to L(v3, u1), L(v2, u2), and L(v1, u3). It is easy to see that L satisfies the hypotheses of
Lemma 18, and there are exactly 4 proper L-colorings of H[

⋃3
j=1 Vuj

] that are bad for the
copy of G corresponding to w1. We are now ready to restate and prove Theorem 12.

Theorem 12. Suppose M is a strong k-chromatic-choosable graph. Then,

(Pℓ(M,k + a− 1))a

2k−1
≤ fa(M).

Proof. Suppose that M is strong k-chromatic-choosable and H = M�Ka,b. By Theorem 8,
the result is obvious when k ≥ a+1. So, we assume k < a+1. Let t = Pℓ(M,k+a−1), and let
Mi be the copy of M in H corresponding to wi. We assume b < ta/2k−1, and we let L be an
arbitrary (k+ a− 1)-assignment for H. To prove the desired, we will show there is proper L-
coloring for H. By Lemma 16, we may assume that the lists L(vi, u1), L(vi, u2), . . . , L(vi, ua)
are pairwise disjoint for each i ∈ [n]. Let C be the set of proper L-colorings of H[

⋃a
j=1 Vuj

].
Clearly, ta ≤ |C|. For d ∈ [b] let Cd be the subset of C that contains all the proper L-
colorings of H[

⋃a
j=1 Vuj

] that are bad for Md. By Lemma 18 we have that |Cd| ≤ 2k−1. Since

b < ta/2k−1,
b

∑

d=1

|Cd| ≤ b(2k−1) < ta ≤ |C|.

Thus,
⋃b

d=1 Cd must be a proper subset of C, and we can find an f ∈ C−
⋃b

d=1 Cd. Lemma 13
then implies there is a proper L-coloring of H.
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