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Abstract

Finding the multiplicity of cycles in bipartite graphs is a fundamental problem of interest in many

fields including the analysis and design of low-density parity-check (LDPC) codes. Recently, Blake and

Lin computed the number of shortest cycles (g-cycles, where g is the girth of the graph) in a bi-regular

bipartite graph, in terms of the degree sequences and the spectrum (eigenvalues of the adjacency matrix)

of the graph [IEEE Trans. Inform. Theory 64(10):6526–6535, 2018]. This result was subsequently

extended in [IEEE Trans. Inform. Theory, accepted for publication, Dec. 2018] to cycles of length

g + 2, . . . , 2g − 2, in bi-regular bipartite graphs, as well as 4-cycles and 6-cycles in irregular and half-

regular bipartite graphs, with g ≥ 4 and g ≥ 6, respectively. In this paper, we complement these positive

results with negative results demonstrating that the information of the degree sequences and the spectrum

of a bipartite graph is, in general, insufficient to count (a) the i-cycles, i ≥ 2g, in bi-regular graphs,

(b) the i-cycles for any i > g, regardless of the value of g, and g-cycles for g ≥ 6, in irregular graphs,

and (c) the i-cycles for any i > g, regardless of the value of g, and g-cycles for g ≥ 8, in half-regular

graphs. To obtain these results, we construct counter-examples using the Godsil-McKay switching.

Index Terms: Cycle multiplicity, bipartite graphs, Tanner graphs, graph spectrum, low-density

parity-check (LDPC) codes, bi-regular bipartite graphs, irregular bipartite graphs, half-regular bipartite

graphs, girth.

I. INTRODUCTION

Bipartite graphs are commonly used in science and engineering to represent systems, where

the nodes on one side of the bipartition represent the variables, and the nodes on the other side

represent local constraints, each involving its adjacent variables, see, e.g., [20]. A well-known

example is the Tanner graph representation [30] of low-density parity-check (LDPC) codes [8].

This paper was presented in part at ISTC 2018, Hong Kong. This research was supported by NSERC Discovery Grant

217239-2013-RGPIN.
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In graph representations, cycles and degree sequences often play an important role in determining

the performance of the system. For example, in the case of LDPC codes, the performance of

iterative message-passing algorithms, that are used in practice for the decoding, depends highly

on the cycle distribution and the degree sequences of the underlying Tanner graph [1], [11],

[12], [14], [16]–[18], [27], [28], [32]. For the purpose of analysis and design of systems and

codes, it is thus important to know the number of cycles of different length in the corresponding

bipartite graphs, and the relationships that may exist between the cycle distribution and the

degree sequences of the graph.

The connection between the performance of LDPC codes and cycles of the Tanner graph has

motivated much research on the study of the cycle distribution and the counting of cycles in

bipartite graphs, see, e.g., [2], [6], [7], [10], [19]. Counting cycles of a given length, even in

bipartite graphs, is known to be NP-hard [24]. In [19], Karimi and Banihashemi presented an

efficient message-passing algorithm to count the number of cycles of length less than 2g, in a

general graph, where g is the girth of the graph. The distribution of cycles in different ensembles

of bipartite graphs was studied in [6], where it was shown that for random ensembles of bipartite

graphs, the multiplicities of cycles of different lengths have independent Poisson distributions

with the expected values only a function of the cycle length and the degree distribution (and

independent of the size of the graph). More recently, Blake and Lin [2] presented a formula

to compute the multiplicity of cycles of length g in bi-regular bipartite graphs as a function

of the spectrum (eigenvalues of the adjacency matrix of the graph) and degree sequences of

the graph. This result was subsequently extended in [7] to compute the number of cycles of

length g + 2, . . . , 2g − 2, in bi-regular bipartite graphs, as well as the number of 4-cycles and

6-cycles in irregular and half-regular bipartite graphs, with g ≥ 4 and g ≥ 6, respectively. It is

noteworthy that, while the majority of techniques developed in the literature for counting cycles

are algorithmic, the results in [2] and [7] are presented as closed-form formulas.

In relation to the results of [2] and [7], that use the spectrum {λi} of a bipartite graph as part of

the required information to derive the cycle multiplicities, we note that, in general, determining

the properties of a graph from its spectrum is an active area of research in graph theory. For

some examples, see [5], [22], [23], [26], [29]. It is known that
∑

i λ
j
i for j = 1, 2, and 3 is

equal to 0, the number of edges in the graph, and six times the number of 3-cycles of the graph,

respectively. It is, however, not possible to extend the last result to cycles of length larger than

three. (For example, the complete bipartite graph with one and four nodes on the two sides of
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the bipartition, and the union of a 4-cycle and a single node are two bipartite graphs with the

same spectrum {−2, 0, 0, 0, 2}, but with different number of 4-cycles.) The results of [2] and [7]

make this extension possible but with the extra information about the degree sequences of the

graph.

In this paper, we complement the results of [2] and [7] by demonstrating, through counter-

examples, that the information of the degree sequences and the spectrum of a bipartite graph is,

in general, insufficient to count (a) the i-cycles with i ≥ 2g in bi-regular graphs, (b) the i-cycles

for any i > g, regardless of the value of g, and g-cycles for g ≥ 6, in irregular graphs, and (c)

the i-cycles for any i > g, regardless of the value of g, and g-cycles for g ≥ 8, in half-regular

graphs. To construct our counter-examples, we use the Godsil-McKay switching [9], and prove

that the application of such switches to bi-regular bipartite graphs preserves the degree sequences

and the spectrum of the graph.

We note that in graph theory, the Godsil-McKay switching is a well-known tool to construct

cospectral graphs. For example, Blázsik et al. [3] used the switching to construct two cospectral

regular graphs such that one has a perfect matching while the other does not have any perfect

matching. For more applications, see [15], [21], [25].

The summary of the results regarding the possibility of computing the number of cycles of

different length in different types of bipartite graphs with different girth using only the spectrum

and the degree sequences of the graph is presented in Table I. In this table, the notation “P”

(“IP”) is used to mean that it is possible (impossible), in general, to find the multiplicity of

cycles of a given length in a graph from the spectrum and the degree sequences of the graph.

The organization of the rest of the paper is as follows: In Section II, we present some definitions

and notations. Next, in Section III, we construct two bi-regular bipartite graphs such that they

have the same spectrum, degree sequences and girth, but different number of i-cycles for i ≥ 2g.

This demonstrates that, in general, it is not possible to determine the number of i-cycles for i ≥ 2g

in a bi-regular bipartite graph as a function of only the spectrum and the degree sequences of

the graph. In Section IV, we study the possibility of computing the multiplicity of short cycles

of irregular bipartite graphs using only the spectrum and degree sequences, and demonstrate

through some graph constructions that the answer is generally negative, except for the case of

4-cycles in graphs with g ≥ 4 (the equation for the multiplicity of 4-cycles was derived in [7]

as a function of graph spectrum and its degree sequences). In Section V, we continue our study

of computing the multiplicity of short cycles in half-regular bipartite graphs, and show that for
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TABLE I

A SUMMARY OF THE RESULTS ON THE POSSIBILITY OF COUNTING CYCLES OF LENGTH i IN BI-REGULAR, HALF-REGULAR

AND IRREGULAR BIPARTITE GRAPHS WITH GIRTH g USING ONLY THE SPECTRUM AND THE DEGREE SEQUENCES OF THE

GRAPH. (NOTATIONS “P” AND “IP” ARE USED FOR “POSSIBLE” AND “IMPOSSIBLE,” RESPECTIVELY.)

i = g g + 2 ≤ i ≤ 2g − 2 2g ≤ i

Bi-regular g ≥ 4 P [2] P [7] IP (Section III)

Half-regular

g = 4 P [7] IP (Subsection IV-A) IP (Subsection IV-A)

g = 6 P [7] IP (Section V) IP (Section V)

g ≥ 8 IP (Section V) IP (Section V) IP (Section V)

Irregular

g = 4 P [7] IP (Subsection IV-A) IP (Subsection IV-A)

g = 6 IP (Subsection IV-C) IP (Subsection IV-C) IP (Subsection IV-C)

g ≥ 8 IP (Subsection IV-B) IP (Subsection IV-B) IP (Subsection IV-B)

all girths and cycle sizes, with the exception of 6-cycles in graphs with g ≥ 6 (and 4-cycles in

graphs with g ≥ 4), the information of only the spectrum and degree sequences is insufficient

to count the cycles. The paper is concluded with some remarks in Section VI.

II. DEFINITIONS AND NOTATIONS

A graph G is defined as a set of vertices or nodes V (G) and a set of edges E(G), where

E(G) is a subset of the pairs {{v, u} : v, u ∈ V (G), v 6= u}. The shorthands V and E are used

if there is no ambiguity about the graph. An edge e ∈ E with endpoints u ∈ V and w ∈ V

is denoted by {u, w}, or by uw or wu, in brief. Throughout this work, we consider undirected

graphs with no loop or parallel edges (i.e., simple graphs).

A walk of length k in the graph G is a sequence of nodes v1, v2, . . . , vk+1 in V such that

{vi, vi+1} ∈ E, for all i ∈ {1, . . . , k}. A walk is a path if all the nodes v1, v2, . . . , vk are distinct.

A walk is called a closed walk if the two end nodes are identical, i.e., if v1 = vk+1. Under the

same condition, a path is called a cycle.

The length of a walk, path or cycle is the number of its edges. We use the notation Pn to

denote a path with n nodes. We denote cycles of length k, also referred to as k-cycles, by Ck.

The length of the shortest cycle(s) in a graph is called girth and is denoted by g.

A graph G = (V,E) is called bipartite, if the node set V can be partitioned into two disjoint

subsets U and W , i.e., V = U ∪ W and U ∩ W = ∅, such that every edge in E connects a
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node from U to a node from W . A graph is bipartite if and only if the lengths of all its cycles

are even. Tanner graphs of LDPC codes are bipartite graphs, in which U and W are referred to

as variable nodes and check nodes, respectively. Parameters n and m in this case are used to

denote |U | and |W |, respectively. Parameter n is the code’s block length and the code rate R

satisfies R ≥ 1− (m/n).

A graph is called complete if every node is connected to all the other nodes. We use the notation

Ka for a complete graph with a nodes. A bipartite graph G(U ∪W,E) is called complete, and

is denoted by K|U |,|W |, if every node in U is connected to every node in W .

The number of edges incident to a node v is called the degree of v, and is denoted by

d(v). The degree sequences of a bipartite graph G are defined as the two monotonic non-

increasing sequences of the node degrees on the two sides of the graph. For example, the complete

bipartite graph K4,3 has degree sequences (3, 3, 3, 3) and (4, 4, 4). The degree sequences also

contain the information about the number of nodes on each side of the graph. A bipartite graph

G = (U ∪W,E) is called bi-regular, if all the nodes on the same side of the bipartition have

the same degree, i.e., if all the nodes in U have the same degree du and all the nodes in W

have the same degree dw. We also call such graphs (du, dw)-regular graphs. It is clear that, for

a bi-regular graph, |U |du = |W |dw = |E(G)|. A bipartite graph is called half-regular, if all the

nodes on one side of the bipartition have the same degree. A half-regular Tanner graph can be

either variable-regular or check-regular. A bipartite graph that is not bi-regular is called irregular.

With this definition, half-regular graphs are a special case of irregular graphs.

A graph G is connected, if there is a path between any two nodes of G. If the graph G is

not connected, we say that it is disconnected. A connected component of a graph is a connected

subgraph such that there are no edges between nodes of the subgraph and nodes of the rest of

the graph.

The adjacency matrix of a graph G is the matrix A = [aij ], where aij is the number of edges

connecting the node i to the node j for all i, j ∈ V . The matrix A is symmetric and since we

have assumed that G has no parallel edges or loops, aij ∈ {0, 1}, for all i, j ∈ V , and aii = 0,

for all i ∈ V . The set of the eigenvalues {λi} of A is called the spectrum of the graph. It is

well-known that the spectrum of a disconnected graph is the disjoint union of the spectra of its

components [31]. One important property of the adjacency matrix is that the number of walks

between any two nodes of the graph can be determined using the powers of this matrix. More

precisely, the entry in the ith row and the j th column of Ak, [Ak]ij , is the number of walks of
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length k between nodes i and j. In particular, [Ak]ii is the number of closed walks of length

k containing node i. The total number of closed walks of length k in G is thus tr(Ak), where

tr(·) is the trace of a matrix. Since tr(Ak) =
∑|V |

i=1 λ
k
i , it follows that the multiplicity of closed

walks of different length in a graph can be obtained using the spectrum of the graph. It is also

known that
∑

i λi(G)j , for j = 1, 2, 3, is equal to 0, |E(G)|, and 6×N3(G), respectively, where

N3(G) is the number of 3-cycles in G. It is, however, not possible to extend the last result to

cycles of length larger than three, and find the multiplicity of such cycles as a function of only

the spectrum. For example, the complete bipartite graph K1,4 and the graph C4 ∪K1 (the union

of a 4-cycle and a single node) are two bipartite graphs with the same spectrum {−2, 0, 0, 0, 2},

but with different number of 4-cycles.

To devise our counter-examples, we often use cycles and paths. The path graph Pn has the

following spectrum:

2 cos
( πj

n+ 1

)

, j = 1, . . . , n , (1)

and the spectrum of a cycle of length n, Cn, is as follows:

2 cos
(2πj

n

)

, j = 0, . . . , n− 1 . (2)

In general, the spectrum of a graph does not uniquely determine the graph. Two graphs are

called cospectral or isospectral if they have the same spectrum. On the other hand, there are

graphs that are known to be uniquely determined by their spectrum. Two examples are the

complete graph Kn, and the complete bipartite graph Kn,n [31].

III. COUNTING LARGE CYCLES IN BI-REGULAR BIPARTITE GRAPHS

In this section, we demonstrate that the knowledge of spectrum and degree sequences of a bi-

regular bipartite graph is not in general sufficient to determine the multiplicity of cycles of length

2g and larger. We start by providing a counter-example of two regular bipartite graphs whose

spectrum, degree sequences and girth are identical but have different number of cycles of length

2g and larger. To construct this counter-example, we use the concept of switching in graphs and

in particular, Godsil-McKay switching [9]. The latter is a graph transformation that maintains

the spectrum of the graph. We also prove that Godsil-McKay switching, in general, maintains

the degree sequences of a bi-regular bipartite graph and can thus be used to construct cospectral

bi-regular bipartite graphs with similar degree sequences, but different cycle distributions for

cycle lengths larger than 2g − 2.
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Theorem 1. [Godsil-McKay switching [9]] Let G be a graph and let {X1, . . . , Xℓ, Y } be a

partition of the node set V (G) of G. Suppose that for every node y ∈ Y , and every i ∈

{1, . . . , ℓ}, the node y has either 0, 1
2
|Xi| or |Xi| neighbors in Xi. Moreover, suppose that for

each i, j ∈ {1, . . . , ℓ} (i and j can be equal), all the nodes in Xi have the same number of

neighbors in Xj . Construct a new graph G′ as follows: For each y ∈ Y and i ∈ {1, . . . , ℓ} such

that y has 1
2
|Xi| neighbors in Xi, delete the corresponding 1

2
|Xi| edges and join y instead to

the 1
2
|Xi| other nodes in Xi. Then, the graphs G and G′ are cospectral.

In the above process, the node partition {X1, . . . , Xℓ, Y } is called a Godsil-McKay switching

partition.

In the following, we construct a 3-regular bipartite graph G with girth six. We then use

Theorem 1 to convert G to G′, such that G′ is also 3-regular and bipartite, and G and G′ are

cospectral. In our construction of G, we use the Heawood graph [4], shown in Fig. 1. (In the rest

of the paper, to make the identification of the nodes on each side of the bipartition easier, we

sometimes use black and white colors to distinguish them.) The Heawood graph is a 3-regular

bipartite graph with girth six.

e

Fig. 1. The Heawood graph.

Construction of G: Consider two disjoint cycles of length 6 and 18 with nodes d1, d2, . . . , d6,

and a1, a2, . . . , a6, b1, . . . , b6, c1, . . . , c6, respectively. Add to the graph twelve nodes v1, u1, . . . , v6, u6,

and for each i ∈ {1, 2, . . . , 6}, add the edges vidi, viai, uibi, uici. Further add to the graph nodes

v′, v′′, u′, u′′, and edges v′v1, v
′v3, v

′v5, v
′′v2, v

′′v4, v
′′v6, u

′u3, u
′u5, u

′′u4, u
′′u6, u

′u′′. Now, add a

copy of the Heawood graph, and remove one of its circumferential edges such as e = zz′ (see

Fig. 1). Finally, add the edges u1z and u2z
′ to the graph. The resulting graph is a 3-regular

bipartite graph with girth six. We call this graph G. See Fig. 2.



8

v

u

1

2

3

4

5

6b

c
d

a

1

a

a

a

a

a

2

3

4

5

6

b

b

b

b

b

1

2

3

4

5

6

c c c c c1 2 3 4 5 6

d

d

d

d

d

v
v

6
5

4vv
v

3
2

1

uuu

u

u

6543

1

2

v v

u u/ //

/ //

Fig. 2. The 3-regular bipartite graph G.

Construction of G′: We use Theorem 1, and construct G′ from G. Let ℓ = 6, and for each

i, 1 ≤ i ≤ 6, let Xi = {ai, bi, ci, di}. Also, Let Y = V (G) \ ∪6
i=1Xi. It can be seen that for

every node y ∈ Y , and every i ∈ {1, . . . , 6}, node y has either 0 or 2 neighbors in Xi (note that

for each i, |Xi| = 4). Also, for each pair i, j ∈ {1, . . . , ℓ}, all the nodes in Xi have the same

number of neighbors in Xj (see Table II). Consequently, the partitioning has all the properties

of Theorem 1. We can thus apply Godsil-McKay switching, and obtain G′. (See Fig. 3.)
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Fig. 3. The 3-regular bipartite graph G′, obtained by the application of Godsil-McKay switching to the graph G in Fig. 2.

Both G and G′ are 3-regular bipartite graphs and based on Theorem 1, both have the same
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TABLE II

THE (i, j) ENTRY OF THE TABLE SHOWS THE NUMBER OF NEIGHBORS THAT AN ARBITRARY NODE v ∈ Xi HAS IN THE SET

Xj (FOR GODSIL-MCKAY SWITCHING PARTITION OF G SHOWN IN FIG. 2).

X1 X2 X3 X4 X5 X6

X1 0 1 0 0 0 1

X2 1 0 1 0 0 0

X3 0 1 0 1 0 0

X4 0 0 1 0 1 0

X5 0 0 0 1 0 1

X6 1 0 0 0 1 0

spectrum. In Table III, we have listed the number of cycles of length 6 up to 22, for both graphs.1

As expected from the results presented in [7], both graphs have the same cycle distribution for

cycles of length up to 2g−2 = 10. From the table, however, it can be seen that the multiplicities

of cycles of length 2g = 12 and larger are different in these graphs.

TABLE III

MULTIPLICITIES OF CYCLES OF LENGTH 6 UP TO 22 IN G AND G′

Graph 6-cycles 8-cycles 10-cycles 12-cycles 14-cycles 16-cycles 18-cycles 20-cycles 22-cycles

G 51 54 186 212 460 659 1609 4038 11132

G′ 51 54 186 213 458 669 1576 4090 10977

Although, the example just provided was for regular bipartite graphs, one can use the following

theorem to construct cospectral (du, dw)-regular bipartite graphs with du 6= dw, whose i-cycle

multiplicities are different for i ≥ 2g.

Theorem 2. Let G be a bi-regular bipartite graph, and suppose that Godsil-McKay switching

is used to convert G into G′. Then, the graph G′ is also bi-regular and both graphs have the

same degree sequences.

1The cycles are counted using a Matlab program by Jeff Howbert [13]. This program counts all cycles in a simple undirected

graph up to a specified size limit, using a backtracking algorithm.
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Proof. For the proof, we first discuss some of the properties of a Godsil-McKay switching

partition of a bi-regular bipartite graph. Let G = (U ∪W,E) be a bi-regular graph in which all

the nodes in U have the same degree du and all the nodes in W have the same degree dw. Let

{X1, . . . , Xℓ, Y } be a Godsil-McKay switching partition for the nodes of G. For each i, we say

that the set of nodes Xi is of Type 1 (Type 2), if all nodes of Xi are in U (W ). Otherwise, we

say that Xi is of Type 3 (if some nodes of Xi are in U and some others are in W ). Let Xi be a

set of Type 3. Partition Xi into two parts X1
i and X2

i , where X1
i is the subset of nodes of Xi that

are in U , and thus X2
i contains the nodes of Xi that are in W . Therefore, |Xi| = |X1

i | + |X2
i |.

If Xi is of Type 3, we say it is of Type 3.1, if |X1
i | = |X2

i |. Otherwise, we say that Xi is of

Type 3.2. We then have the following properties for partition sets of different types.

Lemma 1. Any Godsil-McKay switching partition {X1, . . . , Xℓ, Y } of the nodes of a (du, dw)-

regular bipartite graph G = (U ∪W,E) has the following properties:

P1. There is no connection (edge) between the nodes of a Type-3 set and the nodes of a Type-1

or Type-2 set.

P2. There is no connection between the nodes of a Type-3.1 set and the nodes of a Type-3.2

set.

P3. Let Xi and Xj be two sets of Type 3.2. Assume that the nodes in Xi have at least one

neighbor in Xj . Then, if |X1
i | > |X2

i |, we have |X1
j | < |X2

j |, and if |X1
i | < |X2

i |, we have

|X1
j | > |X2

j |.

P4. Let Xi be a set of Type 3. If a node y ∈ Y has a neighbor in Xi, then y is adjacent with

|Xi|
2

nodes of X1
i or y is adjacent with

|Xi|
2

nodes of X2
i (y cannot have neighbors in both

X1
i and X2

i ).

P5. For each Xi, each node in Xi is connected to the same number of nodes in ∪ℓ
j=1Xj .

Proof. P1. Let Xi be a set of Type 3 and Xj be a set of Type 2 or Type 1. Since the graph is

bipartite, some of the nodes of Xi cannot have any connection to the nodes of Xj . Moreover,

all the nodes of Xi must have the same number of neighbors in Xj . This number thus must be

zero. P2. Let Xi be a set of Type 3.2 and Xj be a set of Type 3.1. Let |E ′| be the number of

edges between X1
i and X2

j , and |E ′′| be the number of edges between X2
i and X1

j . Since Xj

is a set of Type 3.1, and every node in Xj has the same number of neighbors in Xi, we have

|E ′| = |E ′′|. On the other hand, since Xi is a set of Type 3.2 and every node in Xi has the
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same number of neighbors in Xj , we have |E ′| 6= |E ′′|, which is a contradiction. The proofs for

P3-P5 are straightforward.

We now prove Theorem 2. Consider the application of the Godsil-McKay switching to convert

a (du, dw)-regular bipartite graph G = (U ∪W,E) into the graph G′. The nodes of G′ can be

partitioned into two sets U ′ and W ′ according to the following rules:

Rule 1. For each node v ∈ Y in the graph G, assign the corresponding node v in G′ to U ′ (W ′)

if v in G is in U (W ).

Rule 2. For each i, if Xi is of Type 1 or Type 2, then for each node v in Xi in the graph G,

assign the corresponding node v in G′ to U ′ (W ′) if v in G is in U (W ).

Rule 3. For each i, if Xi is of Type 3, then for each node v in Xi in the graph G, assign the

corresponding node v in G′ to U ′ (W ′) if v in G is in W (U).

Now, we show that G′ = (U ′ ∪ W ′, E ′) is a bi-regular graph in which all the nodes in U ′

have the same degree du and all the nodes in W ′ have the same degree dw. To show this, we

examine the degrees of different partition sets Y and Xi’s. For the latter sets, the examination

is based on the type of the set.

(i) Set Y : It is clear that the Godsil-McKay switching does not change the degree of any node

in Y , and by Rule 1, those nodes in Y with degree du (dw) are in U ′ (W ′).

(ii) Type-1 or Type-2 Xi: Let Xi be a set of Type 1. If there is no node y ∈ Y such that y is

adjacent with
|Xi|
2

nodes of Xi, then the Godsil-McKay switching does not change the degree

of any node in Xi. Now, assume that there is a node y ∈ Y such that y is adjacent to
|Xi|
2

nodes of Xi. Let Yi ⊂ Y be a subset of nodes such that for each node y ∈ Yi, the node y is

adjacent to
|Xi|
2

nodes of Xi. Considering that all nodes in Xi have the same degree du, by using

P5, we conclude that all the nodes in Xi have the same number of neighbors in Yi. Call this

number γ. By counting the number of edges η between Xi and Yi, we find that η = γ|Xi|. On

the other hand, η = |Yi||Xi|/2. Thus, |Yi| = 2γ. This implies that each node v ∈ Xi is adjacent

to half of the nodes in Yi (γ of them), and has no connection to the other half. Consequently,

the Godsil-McKay switching does not change the degree of any node in Xi. This together with

Rule 2 shows that each node in any Type-1 set in U ′ has degree du. The proof for a Type-2 set

is similar.

(iii) Let Xi be a set of Type 3.1. By P1 and P2, all the connections to Xi are from Y and

Type-3.1 sets. Based on P4, after applying the Godsil-McKay switching, the degree of each node
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in X1
i will be dw and the degree of each node in X2

i will be du. Thus, by Rule 3, and the fact

that |X1
i | = |X2

i |, the degree sequence of the graph does not change after switching. Moreover,

it is easy to see that after the application of the switching to Xi, the graph still remains bipartite.

(iv) Let Xi be a set of Type 3.2. We consider two cases:

Case 1. Without loss of generality, assume that dw > du. In this case, by P4, P5, and the

condition dw > du, there must be a node y′ ∈ Y such that y′ is adjacent with
|Xi|
2

nodes of X2
i .

Thus, |X2
i | ≥

|Xi|
2

. This together with the definition of Type 3.2 sets, i.e., |X1
i | 6= |X2

i |, result in

|X1
i | < |X2

i | . (3)

Note that (3) is valid for any set Xi of Type 3.2. On the other hand, the set X1
i contains at least

one node v. By P1 and P2, none of the du connections of v can be to any node in Type 1, Type

2 or Type 3.1 sets. The connections cannot be to the nodes in X2
i either, because this implies,

by the condition of Godsil-McKay partitioning, that every node in Xi must also be connected

to du other nodes in Xi. This however, is not possible because it would imply that there must

be |X2
i |×du connections from X2

i to X1
i , which, by (3), is more than the total number of edges

connected to X1
i , i.e., |X1

i | × du. We thus conclude that there is at least a set Xj of Type 3.2

such that each node of Xi has at least one neighbor in Xj , and by P3, |X1
j | > |X2

j |. But this

contradicts (3). We thus come to the conclusion that this case cannot happen.

Case 2. Now, assume that dw = du. If there are two nodes y and y′ in Y such that y is adjacent

to
|Xi|
2

nodes of X1
i and y′ is adjacent to

|Xi|
2

nodes of X2
i , then

|Xi|
2

≤ |X1
i | and

|Xi|
2

≤ |X2
i |.

This implies |X1
i | = |X2

i | =
|Xi|

2
. But this contradicts the definition of Type 3.2 sets. Also, if

there is a node y ∈ Y such that y is adjacent to
|Xi|
2

nodes of X1
i (or X2

i ), but there is no node

y′ ∈ Y such that y′ is adjacent to
|Xi|
2

nodes of X2
i (or X1

i ), then by P5, we have du 6= dw, again

a contradiction. Thus, there is no connection between the nodes in Y and those of Xi. Let S be

the union of all Type-3.2 sets. Partition S into two sets S1 and S2, where S1 is a subset of U and

S2 is a subset of W . Each node in S has no neighbor in Y , Type-1, Type-2, or Type-3.1 sets.

Now, consider the node-induced subgraph on the set of nodes S. Since the degree of all nodes

in G are the same, by counting the number of edges from two sides, we have |S1| = |S2|. This

combined with du = dw, and Rule 3 shows that the Godsil-McKay switching does not change

the degree sequence of G. The graph also remains bipartite. This completes the proof.

Remark 1. From the discussions above, one can see that a Godsil-McKay switching partition

of bi-regular bipartite graphs, in which degrees of the two sides are unequal, cannot have Type
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3.2 sets. Thus, for practical Tanner graphs in which du 6= dw, a valid Godsil-McKay switching

partition {Y,X1, . . . , Xℓ} of the nodes can only have Xi’s that are either Type 1, Type 2 or Type

3.1. There can also be connections only between Types 1 and 2, and between Types 3.1 and 3.1.

Nodes in Y can be connected to the nodes in all three types of Xi sets.

It is important to note that, in general, Godsil-McKay switching does not preserve the degree

sequences of a graph. As an example, consider the half-regular bipartite graph G shown in Fig.

4(a). Let ℓ = 3, and choose X1 = {v1, v2, v3, v4}, X2 = {u1, u2, u3, u4}, X3 = {z1, z2, z3, z4}

and Y = {x1, x2, x3}. The partitioning has all necessary properties of Theorem 1. We can thus

apply Godsil-McKay switching. By applying the switching, we obtain the graph G′, given in

Fig. 4(b). One can see that although G′ is also half-regular with the same degree of two on the

regular side, the degree sequence of the two graphs differ on the irregular side.

v

u

z

1 2 3 4

1

1

v

u

z

v

u

z

v

u

z

2

2

3

3

4

4

x x x1 2 3

(a) (b)

Fig. 4. Two cospectral graphs: (a) G and (b) G′.

IV. COMPUTING THE NUMBER OF CYCLES IN IRREGULAR BIPARTITE GRAPHS

In this section, we consider the problem of counting the cycles of different length in irregular

bipartite graphs of different girth g. First, we demonstrate through counter-examples that if g = 4,

the information of degree sequences and spectrum is, in general, insufficient to count i-cycles

for any i ≥ g + 2. Next, for g ≥ 6, we show by counter-examples that spectrum and degree

sequences cannot, in general, uniquely determine the multiplicity of i-cycles for any i ≥ g. The

results for the case of g ≥ 8 are provided before those of g = 6, since the graphs constructed

for the former case are used as building blocks for graph constructions in the latter.



14

A. g = 4: Counter-example for i-cycles, i ≥ g + 2

In this subsection, we construct two half-regular bipartite graphs such that they both have the

same spectrum, degree sequence and girth 4, but have different number of i-cycles for i ≥ 6.

Construction of the graph G:

Consider two disjoint cycles of length 4 and 12 with node sets {v1, v2, v3, v4}, and {u1, u2, . . . , u12},

respectively. Add two nodes w and w′ to the union of the cycles, and connect both w and w′ to the

nodes v1, v3, u1, u3. Also, add another node w′′, and connect it to the nodes u5, u7, u9, u11. Finally,

add two more nodes x and y to the graph, and connect them to the nodes v2, v4, u2, u4, u6, u8, u10, u12.

Call the resultant graph G. The graph G is bipartite, and has 21 nodes and its girth is 4. See Fig. 5.

Consider the node partition V (G) = U∪W for G, where W = {x, y, v1, v3, u1, u3, u5, u7, u9, u11}.

We thus have n = |U | = 11 and m = |W | = 10. The degree sequence of W is (8, 8, 4, 4, 4, 4, 3, 3, 3, 3),

and the degree of each node in U is 4. Thus, G is variable-regular with variable degree 4.

w

v
u1

1

/

w / w /

x y

Fig. 5. Graph G of Subsection IV-A.

Construction of G ′ from G: We use Godsil-McKay switching of Theorem 1. We choose ℓ = 2,

X1 = {vi, ui : i is odd} and X2 = {vi, ui : i is even}. Thus, |X1| = |X2| = 8. Also, we select

Y = {w,w′, w′′, x, y}. Nodes w,w′ and w′′, each has 4 neighbors in X1, and no neighbor in X2.

Also, each of the nodes x and y has 8 neighbors in X2 and no neighbor in X1. Moreover, for each

pair i, j ∈ {1, 2}, all nodes in Xi have the same number of neighbors in Xj . The partitioning

has all necessary properties of Theorem 1, and thus, we can apply Godsil-McKay switching. By

applying the switching, we obtain the graph G ′, which has the same degree sequences as G. In

Table IV, we have listed the cycle distribution of both graphs for cycle lengths up to 18. One

can see that G and G ′, although having the same spectrum, degree sequences and g = 4, have

different number of i-cycles for i = 6, 8, . . . , 18.
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TABLE IV

MULTIPLICITIES OF CYCLES OF LENGTH 4 UP TO 18 IN G AND G′ , CONSTRUCTED IN SUBSECTION IV-A

Graph 4-cycles 6-cycles 8-cycles 10-cycles 12-cycles 14-cycles 16-cycles 18-cycles

G 60 248 1300 4056 11992 29780 43040 32640

G′ 60 250 1294 4026 11706 28440 41656 32096

B. g ≥ 8: Counter-examples for i-cycles with i ≥ g

In this subsection, we consider irregular bipartite graphs with girth g at least eight, and

demonstrate that the information of spectrum, and degree sequences is not sufficient, in general,

to determine the multiplicity of i-cycles for i ≥ g. For this, in the following, for each t ≥ 1, we

first construct two irregular bipartite graphs Gt and G′
t such that they have the same spectrum

and degree sequences, but different number of (6+2t)-cycles (one vs. zero). The disjoint union

of these graphs can then be used to provide counter-examples for cospectral irregular graphs

with the same degree sequences and the same girth g (for any girth g ≥ 8), but with different

number of i-cycles for any i ≥ g. (We note that the irregular graph constructed by the disjoint

union of Gt graphs, t ≥ τ , has girth 6+2τ , while the corresponding disjoint union of G′
t graphs

has an infinite girth. To make an example where both graphs have the same girth, one can simply

consider the union of the constructed graphs with a cycle of length 6 + 2τ .)

a b

c d

v u

1

2

5a 1 b

1

5

d

1

5 5c

1 v

Fig. 6. Graph G4 constructed in Subsection IV-B.

Construction of the graph Gt: Consider the integer t ≥ 1, and four paths, each of length t,

with the node sets {a1, . . . , at+1}, {b1, . . . , bt+1}, {c1, . . . , ct+1}, and {d1, . . . , dt+1}, respectively.

Then, add three nodes v1, v2 and u, and the edges v1a1, v1b1, v2a1, v2d1, udt+1 and ubt+1, to the

graph. Call the resultant bipartite graph Gt. As an example, the graph G4 is shown in Fig. 6.
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The graph Gt has 4t+ 7 nodes and only one cycle of length 6 + 2t. From 4t+ 7 nodes, 4t+ 3

are of degree 2, one node has degree 3 and three nodes have degree 1.

Constructing G′
t from Gt: We use Godsil-McKay switching of Theorem 1 with ℓ = t+1, and

for each i, 1 ≤ i ≤ t + 1, we select Xi = {ai, bi, ci, di}. We thus have Y = {v1, v2, u}. It can

be seen that, for every node y ∈ Y , and every i ∈ {1, . . . , t + 1}, the node y has either 0 or 2

neighbors in Xi (note that for each i, |Xi| = 4). Also, for each pair i, j ∈ {1, . . . , t+1}, all the

nodes in Xi have the same number of neighbors in Xj . The (i, j) entry of the following matrix

shows the number of neighbors that an arbitrary node v ∈ Xi has in the set Xj :



























0 1 0 0 · · · 0 0 0

1 0 1 0 · · · 0 0 0

0 1 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 0 1

0 0 0 0 · · · 0 1 0



























.

This matrix shows that for each pair i, j ∈ {1, . . . , ℓ}, all the nodes in Xi have the same number

of neighbors in Xj . Thus, the node partitioning has all the necessary properties of Theorem 1

for the application of Godsil-McKay switching. By applying the switching, we obtain the graph

G′
t. For example, corresponding to G4 in Fig. 6, we obtain the graph G′

4, shown in Fig. 7. The

graph G′
t has the same spectrum and degree sequences as Gt, but does not have any cycle.

a b
c d

v u

1

2

5a 1 b
1

5

d

1

5 5c

1 v

Fig. 7. Graph G′

4, obtained by Godsil-McKay switching from G4, shown in Fig. 6.

Remark 2. Consider the graph Gt, where t is an even number. Consider the partition V (Gt) =

U ∪W for the nodes of Gt, where U = {v1, v2, u}∪{ai, bi, ci, di : i is even}. The graphs Gt and

G′
t are variable-regular with variable degree 2. We thus conclude that the number of g-cycles in

half-regular bipartite graphs cannot be, in general, computed using the spectrum and the degree
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sequences of the graph when the girth of the variable-regular bipartite graph is g = 6 + 2t,

where t ≥ 2 is an even number.

C. g = 6: Counter-examples for i-cycles with i ≥ g

In this subsection, we first provide a counter-example of two cospectral irregular graphs with

similar degree sequences and g = 6, but different N6. In Part IV-C2, we then construct two

irregular bipartite graphs Gt,k and G′
t,k with girth 6, such that they both have the same spectrum

and degree sequences, but different multiplicity for i-cycles with i ≥ g + 2.

1) Counter-example for 6-cycles: Consider the disjoint union of two 6-cycles and two paths,

each of length 5, and call it G1 (i.e., G1 = 2C6 ∪ 2P6). Also, consider the disjoint union of a

6-cycle, a 14-cycle and two paths, each of length one, and call it G2 (i.e., G2 = C6∪C14∪2P2).

It is easy to see that G1 and G2 are irregular bipartite graphs with the same degree sequences

(both have ten nodes with degree 2 and two nodes with degree 1 on each side of the bipartition).

Using (1) and (2), one can also see that G1 and G2 are cospectral. The girth of both graphs is

six, but they have different number of 6-cycles (two vs. one).

2) Counter-example for i-cycles with i ≥ g + 2: Construction of the graph Gt,k: Let t and k

be two integers such that t > k ≥ 0, and t+ k is an even number. Consider the graph Gt which

was constructed in Subsection IV-B. Add a path of length k with the node set {f1, . . . , fk+1},

as well as the edges uf1 and v2fk+1 to Gt. Call the resultant graph Gt,k. As an example, the

graph G4,2 is shown in Fig. 8(a). The graph Gt,k has 4t+ k+8 nodes, out of which, 4t+ k+2

nodes have degree 2, three have degree 3, and three have degree 1. The graph is also bipartite

and has one cycle of length t + k + 4, one cycle of length t + k + 6 and one cycle of length

6 + 2t.

Construction of G′
t,k from Gt,k: We use Godsil-McKay switching to transform Gt,k into G′

t,k.

Let ℓ = t + 1, and for each i, 1 ≤ i ≤ t + 1, let Xi = {ai, bi, ci, di}. We then have

Y = {v1, v2, u, f1, f2, . . . , fk+1}. All the conditions of Theorem 1 apply to this partition. We

call the graph obtained by the switching G′
t,k. The graph G′

t,k can also be generated directly

from G′
t, the Godsil-McKay switched version of Gt: Add to G′

t a path of length k with the

node set {f1, . . . , fk+1}, and the edges uf1 and v2fk+1. As an example, in Fig. 8(b), the graph

G′
4,2 is shown. The graph G′

t,k has the same spectrum and degree sequences as Gt,k, but has

only one cycle of length t + k + 4. Now, for a fixed i ≥ 1, consider the disjoint union of

graphs G2,0, G3,1, . . . , Gi+2,i, and call it Di. Also, use D′
i to denote the disjoint union of graphs
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Fig. 8. Graphs (a) G4,2 and (b) G′

4,2.

G′
2,0, G

′
3,1, . . . , G

′
i+2,i. For each j ∈ {0, . . . , i}, the graph Gj+2,j has one (2j + 6)-cycle, one

(2j + 8)-cycle and one (2j + 10)-cycle. Also, the graph G′
j+2,j has only one cycle of length

2j+6. Considering that the spectrum of a disconnected graph is the disjoint union of the spectra

of its components, one can see that Di and D′
i are cospectral. They also have the same degree

sequences and girth g = 6. It can however, be seen that while both graphs have only one cycle

of length 6, they have different number of k-cycles for each 6 < k ≤ 2i+ 10. As an example,

the cycle distributions of D3 and D′
3 are given in Table V.

TABLE V

MULTIPLICITIES OF CYCLES OF LENGTH 6 UP TO 16 IN GRAPHS D3 AND D′

3

Graph 6-cycles 8-cycles 10-cycles 12-cycles 14-cycles 16-cycles

D3 1 2 3 3 2 1

D′

3 1 1 1 1 0 0

V. COUNTING CYCLES IN HALF-REGULAR BIPARTITE GRAPHS

The counter-example constructed in Subsection IV-A for g = 4 was based on half-regular

bipartite graphs. We thus know that if g = 4, the knowledge of spectrum and degree sequences

is not sufficient in general to count the number of i-cycles for i ≥ g+2 in half-regular bipartite

graphs. On the other hand, the positive result of [7] is applicable to half-regular graphs and can

be used to compute N4. Furthermore, in Remark 2, we showed that, in general, one cannot find

Ng for g = 6 + 2t, where t ≥ 2 is an even number, in half-regular graphs just by using the
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information of spectrum and degree sequences. In this section, we complement these results.

We present counter-examples for g-cycles if g = 6 + 2t, where t ≥ 1 is an odd number, or for

i-cycles with i ≥ g + 2, in graphs with g ≥ 6.

A. Counter-examples for g-cycles (g = 6 + 2t, t ≥ 1 and odd)

Consider the disjoint union of two cycles, each of length 6+2t, and two paths, each of length

5+ t, and call it G1. Also, consider the disjoint union of a (6+ 2t)-cycle, a (14+ 2t)-cycle and

two paths, each of length t+1, and call it G2. One can see that both G1 and G2 are half-regular

bipartite graphs and have the same degree sequences (the regular side has 11+3t degree-2 nodes

and the irregular side has 9 + 3t degree-2 and 4 degree-1 nodes).2 Using (1) and (2), one can

also see that G1 and G2 are cospectral, and both have girth g = 6+2t. The number of g-cycles

Ng, however, is different for each graph (two vs. one).

B. g ≥ 6: Counter-examples for i-cycles, i ≥ g + 2

In this subsection, we construct variable-regular bipartite graphs that have the same spectrum,

degree sequences and girth g ≥ 6, but have different multiplicities of i-cycles for i ≥ g+2. We

first start by constructing two graphs Gt,k and G ′
t,k, related by Godsil-McKay switching.

Construction of the graph Gt,k: Let t and k be two even integers such that t ≥ k ≥ 0 and

t > 0. Consider the graph Gt,k which was constructed in Subsection IV-C. For each node z in

the set {ai, bi, ci, di, fi : i even} ∪ {v1}, add a new node z′ to Gt,k, and connect z to z′. Call

the resultant variable-regular graph Gt,k. As an example, Fig. 9(a) shows G4,2. The graph Gt,k is

bipartite and has one cycle of length t + k + 4, one cycle of length t+ k + 6 and one cycle of

length 6 + 2t. (Note that if t = k, then the graph Gt,k has one cycle of length 2t + 4, and two

cycles of length 2t+ 6.)

Construction of the graph G ′
t,k: We use Godsil-McKay switching of Theorem 1 to construct

G ′
t,k from Gt,k. Let ℓ = 3t/2 + 1, and for each i, 1 ≤ i ≤ t + 1, let Xi = {ai, bi, ci, di}. Also,

for each i, t + 2 ≤ i ≤ 3t/2 + 1, let j = 2(i − t − 1), and Xi = {a′j, b
′
j , c

′
j, d

′
j}. We thus have

Y = {v1, v2, u, f1, f2, . . . , fk+1}∪{f
′
i : i even}∪{v′1}. It can be seen that this partitioning satisfies

all the required conditions of Theorem 1. We thus apply the switching and obtain the graph G ′
t,k.

The graph G ′
t,k can also be constructed by the following approach: Consider the graph G′

t,k which

2Note that if t is selected to be an even number, the graphs G1 and G2 will not be half-regular.
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was constructed in Subsection IV-B. For each node z in the set {ai, bi, ci, di, fi : ieven} ∪ {v1},

add a new node z′ to G′
t,k, and connect z to z′. As an example, Fig. 9(b) shows the graph G ′

4,2.

The graph G ′
t,k is also variable-regular bipartite and has the same spectrum and degree sequences

as Gt,k. It however, has only one cycle of length t + k + 4.
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Fig. 9. Graphs (a) G4,2 and (b) G′

4,2.

Let i be an even number. The graph Gi+2,i has one (2i + 6)-cycle, one (2i + 8)-cycle

and one (2i + 10)-cycle. The graph G ′
i+2,i, however, has only one cycle of length 2i + 6.

Now, for fixed integers j and k satisfying j ≥ k ≥ 1, consider the disjoint union of graphs

G2k,2k−2,G2k+2,2k, . . . ,G2j,2j−2, and call it Fj,k. Also, consider the disjoint union of graphs

G ′
2k,2k−2,G

′
2k+2,2k, . . . ,G

′
2j,2j−2, and call it F ′

j,k. Both Fj,k and F ′
j,k have the same spectrum and

degree sequences. They also have the same girth of 4k + 2, and both have one (4k + 2)-cycle.

They however, have different number of ℓ-cycles for any 4k + 2 < ℓ ≤ 4j + 6.

To cover the cases where g = 4(k+1), k ≥ 1, let k′ be an odd number satisfying k′ > 2k+1,

and consider two graphs G1 and G2, where G1 is the disjoint union of the cycle C4(k+1) and two

copies of the path Pk′ , and G2 is the disjoint union of C2(k′+1), and two copies of the path P2k+1.

One can see that G1 and G2 are half-regular bipartite graphs with similar degree sequences. It

can also be seen, using (1) and (2), that both graphs have the same spectrum. The two graphs,

however, have different cycle distributions, i.e., while G1 has one cycle of length 4(k + 1), G2

has one cycle of larger length 2(k′+1). Now, if one considers the disjoint unions of G1 and G2

with a cycle of length 4(k + 1), then the resultant graphs both have the same girth of 4(k+ 1),

but they have different number of cycles of length 2(k′ + 1).
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VI. CONCLUDING REMARKS

It is well-known that the number of closed walks in a graph can be computed using the

spectrum of the graph. It is also known that the multiplicity of cycles of length larger than three

cannot be determined only by the knowledge of the spectrum. Recently, in [2], [7], it was shown

that adding the knowledge of degree sequences for bipartite graphs to the information about the

spectrum will enable the computation of multiplicities of cycles of certain lengths in bi-regular,

half-regular and irregular graphs. (See Table I.) In this work, we complemented the results

of [2], [7], and demonstrated, by constructing counter-examples, that for the remaining cases,

the information of the spectrum and degree sequences is insufficient, in general, to determine

the multiplicity of cycles. An interesting topic of research would be to determine what extra

information, in addition to degree sequences and spectrum, is required to compute the multiplicity

of cycles of length larger than or equal to 2g.

In Theorem 2, we proved that Godsil-McKay switching preserves the degree sequences of

bi-regular bipartite graphs. It is also known that the spectrum of the graph is preserved under

this switching. This implies that the multiplicity of short cycles of length up to 2g − 2 remains

unchanged with the application of the Godsil-McKay switching to a bi-regular bipartite graph.

On the other hand, short cycles and their combinations form graphical objects that trap the

iterative decoding algorithms of LDPC codes. An interesting topic would be to study the effect

of Godsil-McKay switchings on the distribution of trapping sets and the possibility of reducing

the multiplicity of trapping sets through the application of this switching.
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