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Abstract

Let G be a graph and let fi, i ∈ {1, . . . , s}, be a function from V (G) to the set of nonnegative

integers. In [23], the concept of DP-F -coloring, a generalization of DP-coloring and variable

degeneracy, was introduced. We use DP-F -coloring to define DPG-[k, t]-colorable graph and

modify the proofs in [22, 24, 25] to obtain more results on list coloring, DP-coloring, list-forested

coloring, and variable degeneracy.

1. Introduction

Every graph in this paper is finite, simple, and undirected. We let V (G) denote the vertex

set and E(G) denote the edge set of a graph G. Let dG(v) denote the degree of a vertex v in

a graph G. If no confusion arises, we simply use d(v) instead of dG(v). Let S be a subset of

V (G). A subgraph of G induced by S is denoted by G[S]. If a plane graph G contains a cycle

C, we use int(C) (respectively, ext(C)) for the subgraph induced by vertices on C and inside C

(respectively, outside C).

Let f be a function from V (G) to the set of positive integers. A graph G is strictly f -degenerate

if every subgraph G′ has a vertex v with dG′(v) < f(v). Equivalently, G is strictly f -degenerate

if and only if vertices of G can be ordered so that each vertex has less than f(v) neighbors in

the lower order. Let k be a positive integer. A graph G is strictly k-degenerate if and only if

G is strictly f -degenerate where f(v) = k for each vertex v. Thus a strictly 1-degenerate graph

is an edgeless graph and a strictly 2-degenerate graph is a forest. Equivalently, G is strictly k-

degenerate if and only if vertices of G can be ordered so that each vertex has less than k neighbors

in the lower order.

Let fi, i ∈ {1, . . . , s}, be a function from V (G) to the set of nonnegative integers. An

(f1, . . . , fs)-partition of a graph G is a partition of V (G) into V1, . . . , Vs such that an induced

subgraph G[Vi] is strictly fi-degenerate for each i ∈ {1, . . . , s}. A (k1, . . . , ks)-partition where ki is

a constant for each i ∈ {1, . . . , s} is an (f1, . . . , fs)-partition such that fi(v) = ki for each vertex v.

We say that G is (f1, . . . , fs)-partitionable if G has an (f1, . . . , fs)-partition. By Four Color Theo-

rem [2], every planar graph is (1, 1, 1, 1)-partitionable. On the other hand, Chartrand and Kronk

[11] constructed planar graphs which are not (2, 2)-partitionable. Even stronger, Wegner [28]

showed that there exists a planar graph which is not (2, 1, 1)-partitionable. Thus it is of interest

to find sufficient conditions for planar graphs to be (1, 1, 1, 1)-, (2, 1, 1)-, or (2, 2)-partitionable.
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Borodin and Ivanova [7] obtained a sufficient condition that implies (1, 1, 1, 1)-, (2, 1, 1)-, or

(2, 2)-partitionability as follows.

Theorem 1.1. (Theorem 6 in [7]) Every planar graph without 4-cycles adjacent to 3-cycles is

(f1, . . . , fs)-partitionable if f1(v) + · · ·+ fs(v) ≥ 4 for each vertex v, and fi(v) ∈ {0, 1, 2} for each

v and i.

The vertex-arboricity va(G) of a graph G is the minimum number of subsets in which V (G) can

be partitioned so that each subset induces a forest. This concept was introduced by Chartrand,

Kronk, and Wall [10] as point-arboricity. They proved that va(G) ≤ 3 for every planar graph

G. Later, Chartrand and Kronk [11] proved that this bound is sharp by providing an example

of a planar graph G with va(G) = 3. It was shown that determining the vertex-arboricity of a

graph is NP-hard by Garey and Johnson [15] and determining whether va(G) ≤ 2 is NP-complete

for maximal planar graphs G by Hakimi and Schmeichel [16]. Raspaud and Wang [21] showed

that va(G) ≤ dk+1
2 e for every k-degenerate graph G. It was proved that every planar graph G

has va(G) ≤ 2 when G is without k-cycles for k ∈ {3, 4, 5, 6} (Raspaud and Wang [21]), without

7-cycles (Huang, Shiu, and Wang [17]), without intersecting 3-cycles (Chen, Raspaud, and Wang

[12]), without chordal 6-cycles (Huang and Wang [18]), or without intersecting 5-cycle (Cai, Wu,

and Sun [9]).

The concept of list coloring was independently introduced by Vizing [26] and by Erdős, Rubin,

and Taylor [14]. A k-assignment L of a graph G assigns a list L(v) (a set of colors) with |L(v)| = k

to each vertex v of G. A graph G is L-colorable if there is a proper coloring c where c(v) ∈ L(v)

for each vertex v. If G is L-colorable for each k-assignment L, then we say G is k-choosable.

The list chromatic number of G, denoted by χl(G), is the minimum number k such that G is

k-choosable.

Borodin, Kostochka, and Toft [8] introduced list vertex arboricity which is list version of vertex

arboricity. We say that G has an L-forested-coloring f for a set L = {L(v)|v ∈ V (G)} if one

can choose f(v) ∈ L(v) for each vertex v so that a subgraph induced by vertices with the same

color is a forest. We say that G is list vertex k-arborable if G has an L-forested-coloring for each

k-assignment L. The list vertex arboricity al(G) is defined to be the minimum k such that G is

list vertex k-arborable. Obviously, al(G) ≥ va(G) for every graph G.

It was proved that every planar graph G is list vertex 2-arborable when G is without k-cycles

for k ∈ {3, 4, 5, 6} (Xue and Wu [29]), with no 3-cycles at distance less than 2 (Borodin and

Ivanova [5]), or without 4-cycles adjacent to 3-cycles (Borodin and Ivanova [7]).

Borodin, Kostochka, and Toft [8] observed that the notion of (f1, . . . , fs)-partition can be

applied to problems in list coloring and list vertex arboricity. Since v cannot have less than zero

neighbor, the condition that fi(v) = 0 is equivalent to v cannot be colored by i. In other words,

i is not in the list of v. Thus the case of fi ∈ {0, 1} corresponds to list coloring, and one of

fi ∈ {0, 2} corresponds to L-forested-coloring. Note that Theorem 1.1 implies that planar graphs

without 3-cycles adjacent to 4-cycles are 4-choosable and list vertex 2-arborable.

Dvořák and Postle [13] introduced a generalization of list coloring in which they called a

correspondence coloring. Following Bernshteyn, Kostochka, and Pron [4], we call it a DP-coloring.

2



Definition 1. Let L be an assignment of a graph G. We call H a cover of G if it satisfies all the

followings:

(i) The vertex set of H is
⋃

u∈V (G)({u} × L(u)) = {(u, c) : u ∈ V (G), c ∈ L(u)};
(ii) H[{u} × L(u)] is a complete graph for each u ∈ V (G);

(iii) For each uv ∈ E(G), the set EH({u} × L(u), {v} × L(v)) is a matching (may be empty);

(iv) If uv /∈ E(G), then no edges of H connect {u} × L(u) and {v} × L(v).

Let (G,H) denote a graph G with a cover H.

Definition 2. A representative set of (G,H) is a set of vertices of size |V (G)| containing exactly

one vertex from each {v} × L(v). A DP-coloring of (G,H) is a representative set R that H[R]

has no edges. We say that a graph G is DP-k-colorable if (G,H) has a DP-coloring for each

cover H of G with a k-assignment L. The DP-chromatic number of G, denoted by χDP (G), is

the minimum number k such that G is DP-k-colorable.

If we define edges on H to match exactly the same colors in L(u) and L(v) for each uv ∈ E(G),

then (G,H) has a DP-coloring if and only if G is L-colorable. Thus DP-coloring is a generalization

of list coloring. Moreover, χDP (G) ≥ χl(G). For example, Alon and Tarsi [1] showed that every

planar bipartite graph is 3-choosable, while Bernshteyn and Kostochka [3] obtained a bipartite

planar graph G with χDP (G) = 4.

Dvořák and Postle [13] observed that χDP (G) ≤ 5 for every planar graph G. This extends a

seminal result by Thomassen [25] on list colorings. On the other hand, Voigt [27] gave an example

of a planar graph which is not 4-choosable (thus not DP-4-colorable). Kim and Ozeki [19] showed

that planar graphs without k-cycles are DP-4-colorable for each k = 3, 4, 5, 6. Kim and Yu [20]

extended the result on 3- and 4-cycles by showing that planar graphs without 3-cycles adjacent

to 4-cycles are DP-4-colorable.

Later, the concept of DP-coloring and improper coloring is combined by allowing a represen-

tative set R to yield H[R] with edges but requiring H[R] to satisfy some degree conditions such

as degeneracy [23] or maximum degree [24].

Definition 3. A DP-forested-coloring of (G,H) is a representative set R such that H[R] is a

forest. We say that a graph G is DP-vertex-k-arborable if (G,H) has a DP-forested-coloring for

each k-assignment L and each cover H of G.

If we define edges on H to match exactly the same colors in L(u) and L(v) for each uv ∈ E(G),

then (G,H) has a DP-forested-coloring if and only if G has an L-forested-coloring.

From now on, we assume G is a graph with a k-assignment of colors L such that
⋃

v∈V (G) L(v) ⊆
{1, . . . , s} and H is a cover of G. Assume furthermore that F = (f1, . . . , fs) and fi, where

1 ≤ i ≤ s, is a function from V (G) to the set of nonnegative integers. The concept of DP-coloring

is combined with (f1, . . . , fs)-partition in [23] as follows.

Definition 4. A DP-F -coloring R of (G,H) is a representative set which can be ordered so that

each element (v, i) in R has less than fi(v) neighbors in the lower order. Such order is called a

strictly F -degenerate order. We say that G is DP-F -colorable if (G,H) has a DP-F -coloring for

every cover H.
3



If we define edges on H to match exactly the same colors for each uv ∈ E(G), then G has an

(f1, . . . , fs)-partition if and only if (G,H) has a DP-F -coloring. Thus an (f1, . . . , fs)-partition

is a special case of a DP-F -coloring. Observe that a DP-F -coloring where fi(v) ∈ {0, 1} for

each i and each vertex v is equivalent to a DP-coloring. Furthermore, a DP-F -coloring where

fi(v) ∈ {0, 1, 2} for each i and each vertex v is equivalent to a DP-forested-coloring. We show in

this work that the condition fi(v) ∈ {0, 1} (DP-coloring) may be relaxed to fi(v) ∈ {0, 1, 2} to

obtain a more general result. For conciseness, we define the following definition.

Definition 5. Let |f(v)| denote f1(v) + · · ·+ fs(v). A graph G is DPG-[k, t]-colorable if (G,H)

has a DP-F -coloring for every cover H and f such that |f(v)| ≥ k and fi(v) ≤ t for every vertex

v and every i with 1 ≤ i ≤ s.

Lemma 1.2. Let C(i) denote the set of vertices colored i in G. If G is DPG-[k, 2]-colorable, then

we have the followings:

(1) G is DP-k-colorable and thus k-choosable.

(2) G is DP-vertex-dk/2e-arborable.

(3) Let 2d > k. If L is a d-assignment for G where d ≤ k and 1, 2, . . . , 2d− k are colors, then we

can find an L-foreted-coloring such that C(i) is an independent set for each i ∈ {1, . . . , 2d− k}.

Proof. Let G be a DPG-[k, 2]-colorable graph.

(1) Let L be a k-assignment of G. Define fi(v) = 1 if i ∈ L(v), otherwise fi(v) = 0. Note that

(G,H) has a DP-k-coloring if and only if (G,H) has a DP-F -coloring. Since G is DPG-[k, 2]-

colorable, (G,H) has a DP-k-coloring for every cover H.

(2) Let L be a dk/2e-assignment of G. Define fi(v) = 2 if i ∈ L(v), otherwise fi(v) = 0. Note

that (G,H) has a DP-forested-coloring if and only if (G,H) has a DP-F -coloring. Since G is

a DPG-[k, 2]-colorable graph, (G,H) has a DP-forested-coloring for every cover H and every

dk/2e-assignment of G.

(3) Let L be a d-assignment of G. Define fi(v) = 1 when i ∈ L(v) and 1 ≤ i ≤ 2d− k, fi(v) = 2

when i ∈ L(v) and i ≥ 2d−k+1, and fi(v) = 0 otherwise. Let edges on H match exactly the same

colors. Note that G has an L-forested-coloring with C(i) is an independent set for 1 ≤ i ≤ 2d− k
if and only if (G,H) has a DP-F -coloring. Since G is DPG-[k, 2]-colorable, we have the desired

result.

�

We use the concept of DPG-[k, 2]-colorable graph to generalize these three results on list

coloring and DP-coloring.

Theorem 1.3. [25] Every planar graph is 5-choosable.

Theorem 1.4. [24] Let A be the family of planar graphs without pairwise adjacent 3-, 4-, and

5-cycles. If G ∈ A contains a 3-cycle C, then each precoloring of C can be extended to a DP-4-

coloring of G.

Theorem 1.5. [22] Let G be a planar graph without cycles of lengths {4, a, b, 9} where a and b

are distinct values from {6, 7, 8}. Then G is DP-3-colorable.
4



Using DPG-[k, 2]-colorability, we modify the proof of Theorems 1.3, 1.4, and 1.5 to obtain the

following main results.

Theorem 1.6. Every planar graph G is DPG-[5, 2]-colorable. In particular, we have the follow-

ings.

(1) G is 5-choosable [25].

(2) G is 5-DP-colorable [13].

(3) If L is a 4-assignment of G with colors i, j, and k, then G has an L-forested-coloring with

C(i), C(j), and C(k) are independent sets.

(4) If L is a 3-assignment of G with a color i, then G has an L-forested-coloring with C(i) is an

independent set.

(5) G is DP-vertex-3-arborable.

(6) G is (f1, . . . , fs)-partitionable if |f(v)| ≥ 5 and fi(v) ∈ {0, 1, 2} for every vertex v and every

i with 1 ≤ i ≤ s.

Theorem 1.7. Let G ∈ A contains a 3-cycle C0. Let |f(v)| ≥ k and fi(v) ≤ 2 for 1 ≤ i ≤ s.

Then every DP-F -coloring on C0 can be extended to a DP-F -coloring on G. In particular, we

have the followings.

(1) G is DP-4-colorable [24].

(2) If L is a 3-assignment of G with colors i and j, then G has an L-forested-coloring with C(i)

and C(j) are independent sets.

(3) G is DP-vertex-2-arborable.

(4) G is (f1, . . . , fs)-partitionable if |f(v)| ≥ 4 and fi(v) ∈ {0, 1, 2} for every vertex v and every

i with 1 ≤ i ≤ s.
Note that (1), (2), and (3) still hold even when G has a corresponding precoloring on C0.

Theorem 1.8. Let G be a planar graph without cycles of lengths {4, a, b, 9} where a and b are

distinct values from {6, 7, 8}. Then G is DPG-[3, 2]-colorable. In particular, we have the follow-

ings.

(1) G is DP-3-colorable [22].

(2) G is DP-vertex-2-arborable.

(3) If L is a 2-assignment of G with a color i, then G has an L-forested-coloring with C(i) is an

independent set.

(4) G is (f1, . . . , fs)-partitionable if |f(v)| ≥ 3 and fi(v) ∈ {0, 1, 2} for every vertex v and every

i with 1 ≤ i ≤ s.

2. Helpful Tools

Some definitions and lemmas which are used to prove the main results are presented in this

section. Since we focus on DP-[k, 2]-colorability, we assume from now on that fi(v) ∈ {0, 1, 2} for

every vertex v and every i with 1 ≤ i ≤ s. Furthermore, a DP-F -precoloring on a subgraph G′ is

assumed to be a DP-F -coloring restrict on (G′, H ′) where H ′ is a cover H restrict to G′.
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Definition 6. Let R′ be a DP-F -precoloring on an induced subgraph G′ of G. The residual

function f∗ = (f∗1 , . . . , f
∗
s ) for G−G′ is defined by

f∗i (v) = max{0, fi(v)− |{(x, j) ∈ R′ : (v, i)(x, j) ∈ E(H)}|}

for each v ∈ V (G)− V (G′).

For conciseness, we simply say R2 is a DP-F ∗-coloring of G−G′ instead of that of (G−G′, H−
H ′). From the above definition, we have the following fact.

Lemma 7. Let R′ be a DP-F -precoloring of an induced subgraph G′ of G and let F ∗ = (f∗1 , . . . , f
∗
s )

be a residual function of G−G′. If G−G′ has a DP-F ∗-coloring, then (G,H) has a DP-F -coloring.

Proof. Let R1 be a DP-F -precoloring of G′ with a strictly F -degenerate order S1 and R2 be a DP-

F ∗-coloring of G−G′ with a strictly F ∗-degenerate order S2. Then R1∪R2 is a representative set

of (G,H). We claim that the order S obtained from S1 followed by S2 is a strictly F -degenerate

order of R1 ∪ R2. Consequently, R1 ∪ R2 is a DP-F -coloring of (G,H). For (v, i) ∈ R1, the

neighbors in the lower order of S and that of S1 are the same. By the construction of S1, (v, i)

has less than fi(v) neighbors in the lower order of S. Consider (v, i) ∈ R2. Suppose (v, i) has d

neighbors in R1. Note that f∗i (v) ≥ 1, otherwise (v, i) cannot be chosen in R2. It follows that

f∗i (v) = fi(v) − d by the definition of f∗i . Since (v, i) has less than f∗i (v) neighbors in R2 in the

lower order of S, (v, i) has less than f∗i (v) + d = fi(v) neighbors in the lower order of S. Thus S

is a strictly F -degenerate order. �

Similarly, a partial DP-F -coloring R′ with a strictly F -degenerate order S can be extended by

a greedy coloring on a vertex v with |f∗(v)| ≥ 1. We add (v, i) with fi(v) ≥ 1 to R′. It can be

seen that S followed by (v, i) is a strictly F -degenerate order.

The term minimal counterexample is used for (G,H) that is a counterexample and |V (G)| is

minimized.

Lemma 2.1. If (G,H) is a minimal counterexample to Theorem 1.8, then every vertex has degree

at least 3.

Proof. Suppose to the contrary that a vertex v has degree at most 2. By minimality, G − v has

a DP-F -coloring. Now, |f∗(v)| ≥ |f(v)| − d(v) ≥ 3− 2 = 1. Thus we can apply a greedy coloring

to v to complete the coloring. �

With a similar proof, one obtain the following lemma.

Lemma 2.2. If (G,H) and a precolored 3-cycle C0 is a minimal counterexample to Theorem 1.7,

then every vertex not on C0 has degree at least 4.

Lemma 2.3. Let G be a graph containing a subgraph K with the following property: if H is a

cover of G and f has f(v)| ≥ k for every vertex v, then each DP-F -coloring of K can be extended

to that of (G,H). Suppose R1 is a DP-F -coloring of K. Then there exists a DP-F -coloring of

(G,H) with a strictly F -degenerate S such that the |R1| lowest-ordered elements are in R1.
6



Proof. Let R1 be a DP-F -coloring of K with a strictly F -degenerate order S1. By renaming the

colors, we assume that S1 has the order (v1, 1), . . . , (vt, 1). Let H ′ be a cover of G obtained from

H by modifying matchings between colors in R1 so that R1 is independent.

Let f ′ be obtained from f by defining f ′i(v1) = · · · = f ′i(vt) = 1 if 1 ≤ i ≤ k, otherwise

f ′i(v1) = · · · = f ′i(vt) = 0. Note that |f ′(v)| ≥ k and f ′i(v) ∈ {0, 1, 2} for every vertex v and

every i with 1 ≤ i ≤ k. By condition of G and K, (G,H ′) has a DP-f ′-coloring R with a strictly

f ′-degenerate order S′. Let S be obtained from S′ by moving (v1, 1), . . . , (vt, 1) to be in the lowest

order. We claim that R is a DP-F -coloring with a strictly F -degenerate order S.

It is obvious that R is a representative set of (G,H) and (v1, 1), . . . , (vt, 1) are the lowest

elements of S. It remains to show that S is a strictly F -degenerate order. Consider (u, i) ∈ R.
If (u, i) ∈ R1, then it has less than fi(u) neighbors in the lower order of S1 by the construction.

Since the neighbors in the lower order of S1 and that of S are the same, (u, i) has less than fi(u)

neighbors in the lower order of S.

Assume that (u, i) /∈ R1. Suppose to the contrary that (u, i) has at least fi(u) neighbors in

the lower order of S. Since S′ is a strictly f ′-degenerate order, (u, i) has less than f ′i(u) = fi(u)

neighbors in the lower order of S′. Then an additional neighbor in the lower order of S, say (v, 1),

is in R1 by the construction of S. Moreover, the order of (u, i) in S′ is lower than that of (v, 1).

It follows that (v, 1) has at least f ′1(v) = 1 neighbor in the lower order of a strictly f ′-degenerate

order S′, a contradiction. It follows that (u, i) has less than fi(u) neighbors in the lower order of

S. Thus S is a strictly F -degenerate order and this completes the proof. �

Note that Lemma 2.3 holds regardless of an upper bound on fi(v).

Lemma 2.4. Let (G,H) be a minimal counterexample to Theorem 1.7 with a DP-F -precoloring

of 3-cycle C0. Then G has no separating 3-cycles.

Proof. Suppose to the contrary that G has a separating 3-cycle C. By symmetry, we assume

C0 ⊆ ext(C). By minimality, a DP-F -coloring on C0 can be extended to a coloring R1 on ext(C).

Let S1 be a strictly F -degenerate order of R1. Let V (C) = {x, y, z} and (x, 1), (y, 1), (z, 1) ∈ R1.

By minimality, int(C) has a DP-F -coloring R2 including (x, 1), (y, 1), (z, 1). By Lemma 2.3, R2

has a strictly F -degenerate order S2 such that (x, 1), (y, 1), (z, 1) are the lowest order elements.

It is obvious that R1 ∪ R2 is a representative set of (G,H). Let S′2 be obtained from S2 by

deleting (x, 1), (y, 1), (z, 1). We claim that S obtained from S1 followed by S′2 is a strictly F -

degenerate order. If (u, i) ∈ R1, then the neighbors of (u, i) in the lower order of S are the same

as that of S1 by the construction of S. It follows from S1 is a strictly F -degenerate that (u, i)

has less than fi(u) neighbors in the lower order of S. Note that this case also includes (u, i) is

(x, 1), (y, 1) or (z, 1).

Consider (u, i) ∈ R2−R1. Then (u, i) has less than fi(v) neighbors in the lower order of S2. It

follows that (u, i) has less than fi(v) neighbors that are in R2 and in the lower order of S. Since

(u, i) is not adjacent to any elements in R1 − {(x, 1), (y, 1), (z, 1)}, all neighbors of (u, i) are in

R2. Consequently, (u, i) has less than fi(v) neighbors in the lower order of S. Thus R1 ∪ R2 is a

DP-F -coloring of (G,H), a contradiction. �

7



Lemma 2.5. Let k ≥ 3 and K ⊆ G with V (K) = {v1, . . . , vm} such that the followings hold.

(i) k − (dG(v1)− dK(v1)) ≥ 3.

(ii) dG(vm) ≤ k and neighbors of vm in K are exactly v1 and vm−1.

(iii) For 2 ≤ i ≤ m− 1, vi has at most k − 1 neighbors in G[{v1, . . . , vi−1}] ∪(G−K).

If |f(v)| ≥ k for every vertex v, then a DP-F -precoloring of G−K can be extended to that of G.

Proof. Let R0 be a DP-F -coloring on G −K. From Condition (i), |f∗(v1)| ≥ |f(v)| − (dG(v1) −
dK(v1)) ≥ k − (dG(v1)− dK(v1)) ≥ 3. From Condition (ii), |f∗(vm)| ≥ |f(vm)| − (k − 2) ≥ 2. We

consider only the case |f∗(vm)| = 2 since a strictly F ∗-degenerate order of R2 is also a strictly

g-degenerate if gi(v) ≥ f∗i (v) for every vertex v and i such that 1 ≤ i ≤ s. By renaming the

colors, we assume that (vm, j) and (vi, j), where i = 1 and m− 1, are adjacent for each j. Since

|f∗(v1)| ≥ 3, we may assume further that f∗1 (v1) > f∗1 (vm). By Lemma 7, it suffices to show that

K has a DP-F ∗-coloring. Consider two cases.

Case 1: f∗
1 (vm) = 0.

Choose (v1, 1) in a coloring. Observe that |f∗(vm)| remains the same. Apply greedy coloring to

v2, . . . , vm−1, respectively. At this stage |f∗(vm)| ≥ 1, thus we can use greedy coloring to vm to

complete a DP-F ∗-coloring.

Case 2: f∗
1 (vm) ≥ 1.

Recall that we consider only fi(v) ∈ {0, 1, 2} for each vertex v and every i such that 1 ≤ i ≤ s. It

follows that f∗1 (v1) = 2 and f∗1 (vm) = 1. Since |f∗(vm)| = 2, we assume that f∗2 (vm) = 1. Choose

(v1, 1) in a coloring. We can apply greedy coloring to v2, . . . , vm−1, respectively. By Condition

(iii), K − vm has a DP-F ∗-coloring, say R. By Condition (ii), (vm, 2) has exactly two neighbors

in H restrict to K.

If (vm−1, 2) is not in R, then (vm, 2) has no neighbors in R. Thus we can add (vm, 2) to

Rto complete a DP-F ∗-coloring. Assume otherwise that (vm−1, 2) ∈ R. Let (vi, ji) ∈ R for

2 ≤ i ≤ m − 2. By greedy coloring, we have a strictly F ∗-degenerate order S1 = (v1, 1), (v2, j2),

. . . , (vm−2, jm−2), (vm−1, 2).

We claim that the order S constructed from (vm, 1) followed by S is a strictly F ∗-degnerate

order. It is obvious that (v1, 1) has less than f∗1 (v1) = 2 neighbors in the lower order. Consider

(vi, ji) where 2 ≤ i ≤ m− 2. Since (vi, ji) is not adjacent to (vm, 1) by Condition (ii), (vi, ji) has

less than f∗ji(vi) neighbors in the lower order of S. Since (vm−1, 2) is not adjacent to (vm, 1), the

element (vm−1, 2) has less than f∗2 (vm−1). It is obvious that the set of elements in the order of S

is a representative set of K. Thus K has a DP-F ∗-coloring. This completes the proof. �

3. Proofs of Main Results

Proof of Theorem 1.6. The outline of the proof is similar to that in [25] with additional de-

tails on DP-F -coloring. We begin by adding new edges in a plane graph until we obtain a plane

graph G such that every bounded face is a triangle. Let |f(v)| ≥ 5 for each vertex v. Let a cycle

C = v1 . . . vp be the boundary of the unbounded face. Using induction on |V (G)|, we prove the

stronger result that a DP-F -coloring can be achieved even when v1 and vp have been precolored
8



and |f(vi)| ≥ 3 for 2 ≤ i ≤ p− 1. Let {(v1, a), (vp, b)} be a DP-F -precoloring. If |V (G)| = 3, the

vertex v2 can be greedily colored. Consider |V (G)| ≥ 4 for the induction step.

Case 1: C has a chord vivj with 1 ≤ i ≤ j − 2 ≤ p − 1.

Let C1 be the cycle v1v2 . . . vi vjvj+1 . . . vp and let C2 be the cycle vjvivi+1 . . . vj−1. Let G1 =

int(C1) and let G2 = int(C2). By induction hypothesis and Lemma 2.3, G1 has a DP-F -coloring

R1 with a strictly F -degenerate order S1 such that two lowest elements are (vi, 1) and (vj , 1). It

follows from Lemma 2.3 that G2 has a DP-F -coloring R2 with a strictly F -degenerate order S2

with two lowest elements (vi, 1) and (vj , 1). Let S′2 be an order obtained from S2 by removing

(vi, 1) and (vj , 1). It can be shown as in the proof of Lemma 2.4 that R1 ∪R2 is a representative

set with a strictly F -degenerate order obtained from S1 followed by S′2.

Case 2: C has no chords.

Let v1, u1, u2, . . . , um, v3 be the neighbors of v2 in order. Let U denote {u1, . . . , um} and G′ denote

G− {v2}. Using a DP-F -coloring on v1 and vp, we have |f∗(v2)| ≥ |f(v2)| − 1 = 2 for p ≥ 4 and

|f∗(v2)| ≥ |f(v2)| − 2 = 1 for p = 3. By renaming the colors, we assume furthermore that (v2, i)

is adjacent to (u, i) for each u ∈ U ∪ {v3} and 1 ≤ i ≤ s. Let f∗1 (v2) = max{f∗1 (v2), . . . , f
∗
s (v2)}.

Case 2.1: p = 3 or f∗
1 (v2) ≥ 2.

We choose (v2, 1) in a DP-F -coloring. Let f ′ be obtained from f by letting f ′1(u) = 0 for each

u ∈ U. Since f1(u) ≤ 2, we have |f ′(u)| ≥ 3 for each u ∈ U. By induction hypothesis and Lemma

2.3, G′ has a DP-f ′-coloring R′ with a strictly f ′-degenerate order S′ such that (v1, a) and (vp=3, b)

are the first two elements.

Suppose p = 3. Let S be obtained from S′ by inserting (v2, 1) as the third element. Since

f∗1 (v2) ≥ 1 when we have a precoloring {(v1, a), (vp, b)}, the element (v2, 1) can be chosen by a

greedy coloring.

Note that the only neighbors of v2 are v1, v3, and vertices in U. If u ∈ U, then (u, 1) is not in

R′ since f ′1(u) = 0. Thus (v, c) where v /∈ U ∪ {v1, v3} has less than f ′c(v) = fc(v) neighbors in

the lower order of S. Thus S is a strictly F -degenerate order of R′ ∪ {(v2, 1)}. It is obvious that

R′ ∪ {(v2, 1)} is a representative set and thus a DP-F -coloring.

Suppose p = 4 and f∗1 (v2) ≥ 2. After a coloring on G′, we have f∗1 (v2) ≥ 2 − 1 since the only

possible neighbor of (v2, 1) other than (v1, a) in the coloring R1 is (v3, 1). Thus a greedy coloring

can be applied to v2.

Case 2.2: p ≥ 4 and f∗
1 (v2) = 1.

Since |f∗(v2)| ≥ 2 and by symmetry, we assume f∗2 (v2) = 1. Define gi(v2) = f∗i (v2). Let f ′ be

obtained from f by letting f ′1(u) = max{0, f1(u) − 1}, f ′2(u) = max{0, f2(u) − 1}. Observe that

|f ′(u)| ≥ 3 for each u ∈ U. By induction hypothesis, G′ has a DP-f ′-coloring R′ (thus a DP-F -

coloring). It follows from Lemma 2.3 that R′ has a strictly f ′-degenerate order S′ with (v1, a)

and (vp, b) are the two lowest ordered elements.

Let t = 1 if (v3, 1) is not in R′, otherwise let t = 2. It is obvious that R = R′ ∪ {(v2, t)} is a

representative set. Let S be an order obtained from inserting (v2, t) as the third element into S′.

We claim that S is a strictly F -degenerate order of R.

9



Figure 1: Forbidden configurations in Theorem 1.7

Consider (v2, t). Since p ≥ 4, (v2, t) is not adjacent to (vp, b). If t = a, then ft(v2) = gt(v2)+1 =

2, otherwise, ft(v2) = gt(v2) = 1. In both cases, (v2, t) has less than ft(v2) neighbors in the lower

order of S.

Consider (v, c) in R where v /∈ {v1, v2, vp}. We have (v, c) has less than f ′c(v) neighbors other

than (v2, t) in the lower order of S by the construction of S. If (v, c) is adjacent to (v2, t), then

v ∈ U and c = t. Consequently, fc(v) = f ′c(v) + 1. If (v, c) is not adjacent to (v2, t), then

fc(v) ≥ f ′c(v). In both cases, (v, c) has less than fc(v) neighbors in the lower order of S. Thus S

is a strictly F -degenerate of R. This completes the proof.

Modification of the Proof of Theorem 1.7.

For the proof of Theorem 1.7, each configurations that are forbidden to be contained in a

minimal counterexample are obtained from the fact that (i) G ∈ A, (ii) G has no separating

3-cycles (Lemma 2.4) and the following lemma.

Lemma 3.1. Let |f(v)| ≥ 4 for each vertex v. Let C be a cycle x1 . . . xm with V (C)∩ V (C0) = ∅
where C0 is a precolored 3-cycle. Let C(l1, . . . , lk) be obtained from a cycle C with k − 1 internal

chords sharing a common endpoint x1. Suppose K = G[C] contains C(l1, . . . , lk) where x2 or xm

is not the endpoint of any chord in C. If dG(x1) ≤ k + 2 and dK(x1) = k + 1, then there exists

i ∈ {2, 3, . . . ,m} such that d(xi) ≥ 5.

One can see that Lemma 3.1 is immediate from Lemma 2.5 by assuming an order x1, . . . , xm

with xm is not endpoint of any chord. Thus all forbidden configurations required as in the proof

of Theorem 1.4 in [24] are obtained. Using Lemma 2.2 about vertex degrees and the discharging

method as in [24], one can complete the proof.

Modification of the Proof of Theorem 1.8. All five forbidden configurations of minimal

counterexample to Theorem 1.8 (as in Lemma 2.3 of [22]) are in (See Fig. 1). Consider a
10



subgraph K induced by the labeled vertices and order the vertices according to labels. Note that

all labeled vertices are different to avoid creating cycles of forbidden lengths. It can be proved

by Lemma 2.5 that DP-F -precoloring of G −K can be extended to that of G. Thus a minimal

counterexample cannot contains configurations in Fig. 1. Using Lemma 2.1 about vertex degrees

and the discharging method as in [22], one can complete the proof.
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