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Abstract

A mixed graph is a graph with undirected and directed edges. Guo and Mohar in

2017 determined all mixed graphs whose Hermitian spectral radii are less than 2. In

this paper, we give a sufficient condition which can make Hermitian spectral radius of

a connected mixed graph strictly decreasing when an edge or a vertex is deleted, and

characterize all mixed graphs with Hermitian spectral radii at most 2 and with no cycle

of length 4 in their underlying graphs.
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1 Introduction

Characterizing the structure of a graph by the eigenvalue spectrum of an associated matrix

with the graph is a basic problem in spectral graph theory. Since restrictions on the spectral

radii of graphs with respect to their adjacency matrices often force those to have very

special structures, it is always a hot topic to characterize the graphs whose spectral radii

are bounded above. Smith [12] determined all graphs whose spectral radii are at most

2. This work stimulated the interest of the researchers. There are a lot of results in the

literature concerning the topic. Brouwer and Neumaier [1] characterized the graphs whose

spectral radii are contained in the interval (2,
√

2 +
√
5] and later, Woo and Neumaier [14]

described the structure of graphs whose spectral radii are bounded above by 3
2

√
2.

Studying the same problem on digraphs has received less attention. Xu and Gong [16]

investigated digraphs whose spectral radii with respect to their skew adjacency matrices do
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not exceed 2. Guo and Mohar [8] determined all mixed graphs whose spectral radii with

respect to their Hermitian adjacency matrices are less than 2. Their work shows that 2 is

the smallest limit point of the Hermitian spectral radii of connected mixed graphs. In the

present paper, we characterize all C4-free mixed graphs whose Hermitian spectral radii do

not exceed 2.

A graph containing undirected edges and directed edges is called amixed graph. Clearly,

mixed graphs are natural generalizations of both simple graphs and digraphs. Indeed, a

mixed graph D can be obtained from a simple graph G by orienting a subset of its edge set.

We call G as the underlying graph of D and denote it by G(D). Formally, a mixed graph

D is comprised of the vertex set V (D), which is the same as the vertex set V (G), and the

edge set E(D), which consists of two parts: undirected edge set E0(D) and directed edge

set E1(D). To distinguish undirected and directed edges, we denote an undirected edge

between the vertices u and v by {u, v} and a directed edge from u to v by (u, v). If there

is no danger of confusion, we write uv instead of {u, v} or (u, v).

Let D be a mixed graph of order n. For a vertex v of D, we define the set of neighbors

of v as N(v) = {u ∈ V (D) |uv ∈ E(G(D))}. The degree of v is defined as d(v) = |N(v)|. A
mixed graph is said to be a mixed tree (respectively, unicyclic mixed graph) if its underlying

graph is a tree (respectively, unicyclic graph). A mixed subgraphH ofD is called elementary

if each connected component of H is either a mixed edge or a mixed cycle. A mixed graph

D is called C4-free if G(D) contains no cycle of length 4 as a subgraph.

The Hermitian adjacency matrix of D is defined as H(D) = [huv ] with

huv =























1 if {u, v} ∈ E0(D);

i if (u, v) ∈ E1(D);

−i if (v, u) ∈ E1(D);

0 otherwise,

where i is the unit imaginary number. Since H(D) is Hermitian, the eigenvalues of H(D)

are real and can be arranged as λ1(D) > · · · > λn(D). The eigenvalues and spectrum

of H(D) are called the Hermitian eigenvalues and Hermitian spectrum of D, respectively.

The Hermitian spectral radius of D is defined as ρ(D) = max{|λ1(D)|, . . . , |λn(D)|}. The

characteristic polynomial of H(D) is denoted by Φ(D,λ) and is called the Hermitian char-

acteristic polynomial of D. These terminologies were introduced by Liu and Li [10] in the

study of graph energy and independently by Guo and Mohar [7]. In the paper [10], authors

investigate the properties of characteristic polynomials of mixed graphs and cospectral prob-

lems among mixed graphs. The latter paper contains an introduction to the properties of

Hermitian spectrum, and discusses similarities and differences from the case of undirected
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graph. Recently, the Hermitian spectrum has been the subject of several publications. For

more details about the Hermitian spectrum, one can see the literature [2, 3, 4, 6, 9, 11, 13]

and references therein.

In this paper, we deal with Hermitian spectral radii of mixed graphs. A mixed graph D

is called C4-free if G(D) contains no C4 as a subgraph. We characterize all C4-free mixed

graphs whose Hermitian spectral radii are at most 2. The rest of the paper is organized as

follows: In Section 2, we will introduce some notations and preliminary results on charac-

teristic polynomials of mixed graphs. In Section 3, we will give a sufficient condition which

can make Hermitian spectral radius of a connected mixed graph strictly decreasing when

an edge or a vertex is deleted. In Section 4, we will determine all C4-free mixed graphs

whose Hermitian spectral radii do not exceed 2.

2 Notations and Preliminaries

Let H(D) = [hij ] be the Hermitian adjacency matrix of the mixed graph D. The value of

a mixed walk W : v1, v2, . . . , vℓ is defined to be h12h23 · · · h(ℓ−1)ℓ and is denoted by h(W ).

For a closed mixed walk W , we first fix an arbitrary direction for W before calculating its

value. One can verify that if the value of a closed mixed walk is α in a direction, then

for the reversed direction its value is α, the conjugate number of α. We say a mixed cycle

C to be real (respectively, imaginary) if h(C) = ±1 (respectively, ±i). It is clear that

a mixed cycle is real (respectively, imaginary) if and only if the number of its directed

edges is even (respectively, odd). Indeed, the value of a real cycle C is independent of its

chosen orientation. Furthermore, a mixed cycle C is called positive (respectively, negative)

if h(C) = 1 (respectively, −1). Clearly, a mixed cycle is positive (respectively, negative) if

and only if the difference between the number of its forward and backward directed edges

with respect to an arbitrary direction is congruence to 0 (respectively, 2) modulo 4.

We here recall the following theorem which can be considered as an analogue of Sachs’

Coefficient Theorem [5, Page 32].

Theorem 2.1 [7, 10] Let D be a mixed graph of order n with the Hermitian characteristic

polynomial Φ(D,λ) =
∑n

i=0 ciλ
n−i. Denote by Ei the set of the elementary subgraphs of D

of order i whose all mixed cycles are real. Then for i = 1, . . . , n,

ci =
∑

H∈Ei

(−1)t(H)+s(H)2r(H),

where t(H), s(H), and r(H) are respectively the number of connected components, the

number of negative mixed cycles, and the number of mixed cycles in H.
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The following two corollaries can be considered as immediate consequences of Theorem

2.1.

Corollary 2.2 [10] If a mixed graph D contains no real mixed odd cycles, then the Hermi-

tian spectrum of D is symmetric about 0.

Corollary 2.3 [10] If all the mixed cycles in a mixed graph D are positive, then the Her-

mitian spectra of D and G(D) are the same. In particular, F and G(F ) have the same

Hermitian spectrum for any mixed forest F .

In the following, we apply Theorem 2.1 to determine all mixed cycles with Hermitian

spectral radii 2.

Corollary 2.4 Let D be a mixed cycle. Then ρ(D) = 2 if and only if either D is a positive

mixed cycle or D is a negative mixed odd cycle.

Proof. Let n = |V (D)| and C = G(D). We know that ρ(C) = 2. In addition, Φ(C,−2) = 0

if and only if n is even. So, using the Perron-Frobenius theorem, ρ(D) 6 ρ(C) = 2. Define

t =

{

1 if D is real;

0 otherwise
and s =

{

1 if D is negative;

0 otherwise.

By Theorem 2.1, Φ(D,λ) − Φ(C, λ) = (−1)s+12t + 2. This means that Φ(D, 2) = 0 if and

only if t = 1 and s = 0. If n is even, then the equality Φ(D,λ) − Φ(C, λ) = (−1)s+12t+ 2

shows that Φ(D,−2) = 0 if and only if t = 1 and s = 0. If n is odd, then it follows from

Theorem 2.1 that Φ(D,λ)+Φ(C,−λ) = (−1)s+12t−2. Hence, if n is odd, then Φ(D,−2) = 0

if and only if t = 1 and s = 1.

We prove the following theorem as a consequence of Theorem 2.1.

Theorem 2.5 Let D be a mixed graph and e = uv ∈ E(D). Let Ce be the set of all real

mixed cycles in D containing e. Then

Φ(D,λ) = Φ(D − e, λ) − Φ(D − u− v, λ)− 2
∑

C∈Ce

h(C)Φ(D − C, λ).

Proof. Let n = |V (D)| and Φ(D,λ) =
∑n

ℓ=0 cℓλ
n−ℓ and fix i ∈ {1, . . . , n}. Let Ei be the

set of all elementary subgraphs of D of order i whose all mixed cycles are real. For any

given edge e, Ei can be divided into the following subsets:
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E1
i = {H ∈ Ei | e /∈ E(H)};

E2
i = {H ∈ Ei | e is a single edge of H};

E3
i = {H ∈ Ei | e is contained in a positive mixed cycle PH of H};

E4
i = {H ∈ Ei | e is contained in a negative mixed cycle NH of H}.

By Theorem 2.1, we have

∑

H∈E1
i

(−1)t(H)+s(H)2r(H) = ci(D − e),

∑

H∈E2
i

(−1)t(H)+s(H)2r(H) = −
∑

H∈E2
i

(−1)t(H−u−v)+s(H−u−v)2r(H−u−v)

= −ci−2(D − u− v),

∑

H∈E3
i

(−1)t(H)+s(H)2r(H) = −2
∑

H∈E3
i

(−1)t(H−PH )+s(H−PH )2r(H−PH )

= −2
∑

C∈C+
e

ci−|V (C)|(D − C),

and

∑

H∈E4
i

(−1)t(H)+s(H)2r(H) = 2
∑

H∈E4
i

(−1)t(H−NH )+s(H−NH )2r(H−NH )

= 2
∑

C∈C−
e

ci−|V (C)|(D − C),

where C+
e (respectively, C−

e ) is the set of all positive (respectively, negative) mixed cycles in

D containing e. Now, it follows from Theorem 2.1 and Ei = E1
i ∪ · · · ∪ E4

i that

ci(D) = ci(D − e)− ci−2(D − u− v)− 2
∑

C∈Ce

h(C)ci−|V (C)|(D − C),

which in turn implies that

n
∑

i=0

ci(D)λn−i =

n
∑

i=0

ci(D − e)λn−i −
n
∑

i=2

ci−2(D − u− v)λn−i

− 2
∑

C∈Ce

h(C)

n
∑

i=|V (C)|

ci−|V (C)|(D −C)λn−i.

This means that Φ(D,λ) = Φ(D − e, λ) − Φ(D − u− v, λ)− 2
∑

C∈Ce
h(C)Φ(D − C, λ).

The next result can be proved by applying Theorem 2.5 for the mixed edges incident to

a vertex repeatedly one by one.
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Corollary 2.6 Let D be a mixed graph and v ∈ V (D). Let Cv be the set of all real mixed

cycles in D containing v. Then

Φ(D,λ) = λΦ(D − v, λ)−
∑

uv∈E(D)

Φ(D − u− v, λ)− 2
∑

C∈Cv

h(C)Φ(D − C, λ).

3 The Hermitian spectral radii of mixed graphs

In this section, we present some results on Hermitian spectral radii of mixed graphs for later

use. From the Perron–Frobenius theorem, we know that the spectral radius of a connected

undirected graph strictly decreases by deleting a vertex or an edge from the graph. However,

the fact does not hold for Hermitian spectral radius of a connected mixed graph. We give

a sufficient condition in the following theorem generalizing Theorem 3.2 in [15].

Theorem 3.1 Let D be a connected mixed graph all whose real mixed cycles are positive

mixed even cycles. Then ρ(D) > ρ(D− u) and ρ(D) > ρ(D− e) for every vertex u ∈ V (D)

and edge e ∈ E(D).

Proof. We prove the assertion by induction on m = |E(D)|. The assertion clearly holds

for m = 1. Suppose that the assertion is valid for all connected mixed graphs of size less

than m. Consider a connected mixed graph D of size m and assume that e = uv is an

arbitrary edge of D. By Corollary 2.2, the Hermitian spectrum of D−e is symmetric about

0, so ρ = ρ(D− e) can be considered as the largest Hermitian eigenvalue of D− e. We first

establish that Φ(D − u− v, ρ) > 0. For this, we consider the following two cases.

Case 1. The edge e is a cut edge.

Denote the connected components of D − e by D1 and D2. Assume without loss of

generality that u ∈ V (D1) and v ∈ V (D2). By the induction hypothesis, ρ(D1) > ρ(D1−u)

and ρ(D2) > ρ(D2 − v). Therefore,

ρ(D − u− v) = max{ρ(D1 − u), ρ(D2 − v)} < max{ρ(D1), ρ(D2)} = ρ(D − e) = ρ.

This means that Φ(D − u− v, ρ) > 0.

Case 2. The edge e is not a cut edge.

By the induction hypothesis and the interlacing theorem, ρ = ρ(D − e) > ρ(D − u) >

ρ(D − u− v) which means that Φ(D − u− v, ρ) > 0.

Let Ce be the set of all real mixed cycles in D containing e. For any C ∈ Ce, D−C is an

induced subgraph of D−u−v and so by the interlacing theorem, ρ(D−C) 6 ρ(D−u−v) < ρ
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which yields that Φ(D − C, ρ) > 0. Since all real mixed cycles of D are positive, h(C) = 1

for each C ∈ Ce. By Theorem 2.5,

Φ(D, ρ) = Φ(D − e, ρ)− Φ(D − u− v, ρ)− 2
∑

C∈Ce

h(C)Φ(D −C, ρ) < 0,

proving that ρ(D) > ρ = ρ(D − e). Applying the interlacing theorem, ρ(D) > ρ(D − e) >

ρ(D − u).

Remark. The conditions in Theorem 3.1 can not be omitted. Consider two mixed graphs

D1 and D2 whose labeling are shown in Fig. 1. Notice that D1 contains a real mixed

odd cycle v2v3v4v2 and a negative mixed even cycle v1v2v3v4v1, and D2 contains a negative

mixed even cycle u1u2u3u4u1, no real mixed odd cycle. By an easy calculation, it follows

that ρ(D1) = ρ(D1 − v3) = 2, ρ(D1 − v3v4) ∼ 2.170 > 2; ρ(D2) = ρ(D1 − u2) =
√
3,

ρ(D2 − u1u3) = 2 >
√
3.

u1 u2

u3u4

D2

v1 v2

v3v4

D1

Fig. 1: Mixed graphs D1 and D2.

Lemma 3.2 [8] Suppose that a mixed graph M is obtained from a connected mixed graph N

by attaching a new vertex to a vertex u in N . If x is an eigenvector of N whose eigenvalue

λ satisfies |λ| = ρ(N) and xu 6= 0, then ρ(M) > ρ(N).

Lemma 3.3 Let D be a connected unicyclic mixed graph containing a mixed cycle C. If

ρ(D) = ρ(C) = 2, then D = C.

Proof. Let C = Cn. Applying Lemma 3.2, it is sufficient to show that any eigenvector

x corresponding to an eigenvalue λ of C with |λ| = ρ(C) = 2 has no zero components. If

xu = 0 for some u ∈ V (C), then the vector obtained from x by deleting the uth component

of x is an eigenvector of C − u corresponding to λ. But, this is impossible, since the
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Hermitian spectral radius of C − u is less than 2 in view of Corollary 2.3. Towards a

contradiction, suppose that D 6= C. Since D is a connected unicyclic mixed graph, there

exists a vertex v ∈ V (D − C) adjacent to exactly one vertex on C. If H is the induced

subgraph of D on V (C) ∪ {v}, then Lemma 3.2 implies that ρ(H) > ρ(C) = 2, which

contradicts ρ(H) 6 ρ(D) = 2.

4 C4-free mixed graphs whose spectral radii do not exceed 2

In this section, we determine all C4-free mixed graphs whose spectral radii do not exceed 2.

We first introduce some families of graphs to use later. Let Pn and Cn denote respectively

the path and the cycle on n vertices. A star-like tree S(n1, . . . , nk) is an undirected tree

with a vertex v such that S(n1, . . . , nk) − v = Pn1
∪ · · · ∪ Pnk

. Denote by Y (r, s, t) the

tree consisting of the path Pr+s+t−1 whose vertices are ordered as v1, . . . , vr+s+t−1 with two

extra pendant edges affixed at vr and vr+s. A dumbbell graph, denoted by D(r, s, t), is an

undirected graph consisting of two vertex disjoint cycles Cr, Cs, and a path Pt joining the

cycles having only its endpoints in common with them. A theta graph, denoted by θ(r, s, t),

is an undirected graph consisting of three internally disjoint paths Pr, Ps, Pt with the same

endpoints.

Definition 4.1 Consider the cycle Cn as v1v2 · · · vnv1. Denote by Cn(k1, . . . , kn) the undi-

rected graph obtained from Cn by identifying vi with a pendent vertex of Pki+1 for i =

1, . . . , n. We write Cn(k1, . . . , kt) instead of Cn(k1, . . . , kt, 0, . . . , 0) for simplicity whenever

kt+1 = · · · = kn = 0.

The following theorem characterizes the undirected graphs whose spectral radii do not

exceed 2.

Theorem 4.2 [12] All undirected graphs whose spectral radii do not exceed 2 are isomorphic

to one of the following undirected graphs or their subgraphs.

(i) Cn for any integer n > 3;

(ii) Y (2, n − 5, 2) for any integer n > 5;

(iii) S(1, 2, 5), S(1, 3, 3), S(2, 2, 2).

Definition 4.3 Let G be an undirected graph. Denote by G+ (respectively, G−, G∗) the

family of mixed graphs with G as their underlying graph, whose all mixed cycles are positive
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(respectively, negative, imaginary). Denote by G+̂ (respectively, G−̂, G∗̂) the family of

mixed graphs contained in G+ (respectively, G−, G∗) and their induced mixed subgraphs.

Remark. Let G be an undirected graph. Using Theorem 2.1, it is easy to see that all

mixed graphs in G+ (G−, G∗) have the same Hermitian spectrum.

The following consequence is obtained from Corollary 2.4, Lemma 3.3 and the interlacing

theorem.

Corollary 4.4 Any graph in one of the following families has the Hermitian spectral radius

greater than 2.

(i) Cn(1)
+ for any integer n > 3;

(ii) Cn(1)
− for any odd number n > 3.

The girth of a mixed graph D is the minimum length of cycles in G(D). The following

theorem generalizes the analogue result for oriented graphs appeared in [16].

Lemma 4.5 Let D be a connected C4-free mixed graph with ρ(D) 6 2. If D is neither a

mixed tree nor a mixed cycle, then D is isomorphic to a mixed graph contained in one of

the following families.

(i) C3(2)
∗̂, C6(1, 0, 1, 0, 1)

−̂ , C6(2, 0, 0, 2)
−̂, C8(1, 0, 0, 0, 1)

−̂ ;

(ii) The family of mixed graphs with underlying graph θ(3, 5, 5) containing two negative

mixed cycles C6, and their induced mixed subgraphs.

Proof. Letm be the girth ofD and let C be a mixed cycle of lengthm inD as u1u2 . . . umu1.

We identify G(C) with Cm. If m > 5, then G(D) contains an induced subgraph isomorphic

to Cm(1), since D is connected and is not a mixed cycle. If m > 9, then Cm(1) − u5

contains S(1, 3, 4) as an induced subgraph. This is a contradiction, since ρ(S(1, 3, 4)) > 2

by Theorem 4.2, and ρ(S(1, 3, 4)) 6 ρ(D) 6 2 by Corollary 2.3 and the interlacing theorem.

If m ∈ {5, 7}, then it follows from Corollary 4.4 that C is imaginary. By the Remark in

Section 4 and an easy calculation, it is easy to show that the Hermitian spectral radius of any

mixed graph in C5(1)
∗ ∪C7(1)

∗ is greater than 2, a contradiction. Therefore, m ∈ {3, 6, 8}.
Case 1. m = 3.

Since D is a connected C4-free mixed graph which is not a mixed cycle, any triangle in

G(D) is contained in an induced subgraph isomorphic to C3(1). It follows from Corollary

4.4 that C and all other triangles in D are imaginary. Towards a contradiction, suppose
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that two vertices on C have neighbors in V (D − C). Since D is C4-free, D contains an

element of C3(1, 1)
∗ as an induced subgraph. But, by the Remark in Section 4 and an easy

calculation, it is easy to show that the Hermitian spectral radius of any mixed graph in

C3(1, 1)
∗ is greater than 2, a contradiction. Without loss of generality, assume that u1 is

the unique vertex on C having a neighbor outside C, say w1. Noting that all triangles in

D are imaginary and using ρ(K1,4) = 2, we conclude from Theorem 3.1 that d(u1) = 3.

We may assume that w1 has a neighbor other than u1, since otherwise, D ∈ C3(2)
∗̂, we are

done. Since D is C4-free, N(w1)∩(N(u2)∪N(u3)) = ∅. Again, By the Remark in Section 4

and a routine calculation, it follows that the Hermitian spectral radius of any mixed graph

in C3(2)
∗ is equal to 2. Using this and noting that D is C4-free, we conclude from Theorem

3.1 that d(w1) = 2. Let w2 be the neighbor of w1 other than u1. Now, if w2 is adjacent to

a vertex other than w1, then D contains a member H ∈ C3(3)
∗ as an induced subgraph.

This contradicts Theorem 3.1, since the Hermitian spectral radius of any mixed graph in

C3(2)
∗ is equal to 2. Therefore, D ∈ C3(2)

∗̂.

Case 2. m = 6.

As we mentioned in the first paragraph of the proof, G(D) contains Cm(1) as an induced

subgraph. The Remark and a routine calculation show that the Hermitian spectral radius

of any mixed graph in C6(1)
∗ is greater than 2. This along with Corollary 4.4 forces that

C is negative. By Theorem 4.2, ρ(Y (3, 0, 3)) > 2 and so it follows from the interlacing

theorem that any vertex on C has at most 3 neighbors in D.

Case 2.1. There is no mixed cycle C ′ 6= C in D with E(C) ∩E(C ′) 6= ∅.

We first claim that D ∈ C6(k1, . . . , k6)
− for some k1, . . . , k6. Towards a contradiction

and without loss of generality, suppose that the subgraph T attached to u1 is not a path.

So, the induced mixed subgraph of D on V (C − u3) ∪ V (T ) contains an induced mixed

subgraph with the underlying graph Y (4, s, 2) for some s > 1. This contradicts Theorem

4.2, proving the claim. Now, since C6(3) − u4 = S(3, 2, 2), C6(1, 1) − u4 = Y (3, 1, 2),

and C6(2, 0, 1) − u5 = Y (3, 2, 2), it follows from Theorem 4.2 and the interlacing theorem

that D contains no induced subgraphs in C6(3)
− ∪ C6(1, 1)

− ∪ C6(2, 0, 1)
−. Therefore,

D ∈ C6(1, 0, 1, 0, 1)
− ∪ C6(2, 0, 0, 2)

− . It is routine to verify that any mixed graph in

C6(1, 0, 1, 0, 1)
− ∪ C6(2, 0, 0, 2)

− has the Hermitian spectral radius 2, we are done.

Case 2.2. There is a mixed cycle C ′ 6= C in D with E(C) ∩ E(C ′) 6= ∅.

As we mentioned in Case 2.1, D has no induced subgraphs in C6(3)
−. Further, an easy

calculation shows that the Hermitian spectral radius of any mixed graph in C7(1)
∗ is greater

than 2. Using these facts and Corollary 4.4, one deduces that D contains no mixed graph

in C6(3)
− ∪C7(1)

+ ∪C7(1)
− ∪C7(1)

∗ as an induced mixed subgraph. This implies that the
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length of C ′ must be 6. Moreover, if |E(C)∩E(C ′)| = 1, then D contains an induced mixed

subgraph in C6(3)
−, a contradiction. Consequently, the underlying graph of the induced

mixed subgraph H of D on V (C)∪V (C ′) is either θ(5, 5, 3) or θ(4, 4, 4). On the other hand,

since C and C ′ are negative, then the third mixed cycle in the induced subgraph of D on

V (C) ∪ V (C ′) must be positive. Using Corollary 4.4, any mixed graph in C6(1)
+ has the

Hermitian spectral radius greater than 2. This yields that G(H) = θ(3, 5, 5). Without loss

of generality, assume that V (C) ∩ V (C ′) = {u1, u2, u3}. As we mentioned in Case 2.1, D

has no induced subgraphs in C6(1, 1)
−. Since the girth of D is 6, one concludes that the

degree of u2 in D must be 2. Furthermore, Corollary 4.4 implies that D contains no mixed

graph in C8(1)
+. This along with the connectivity of D forces that D = H, as required.

Case 3. m = 8.

By the Remark in Section 4 and an easy calculation, it is easy to show that the Hermitian

spectral radius of any mixed graph in C8(1)
∗ is greater than 2. This along with Corollary

4.4 forces that C is negative. Since C8(2) − u5 = S(2, 3, 3), C8(1, 1) − u4 = Y (2, 1, 5),

C8(1, 0, 1) − u4 = C8(1, 0, 0, 1) − u5 = S(1, 3, 4), Theorem 4.2 along with the interlacing

theorem forces that D ∈ C8(1, 0, 0, 0, 1)
− . Note that the Hermitian spectral radius of any

mixed graph in C8(1, 0, 0, 0, 1)
− is equal to 2 by an easy calculation. The result follows.

Now we are in the position to state our main theorem which is obtained by Theorem

4.2 and Lemma 4.5.

Theorem 4.6 Let D be a connected C4-free mixed graph with ρ(D) 6 2. Then D is a

mixed graph contained in one of the following families.

(i) All mixed graphs with one of the undirected graphs Cn, Y (2, n−5, 2)(n ≥ 5), S(1, 2, 5),

S(1, 3, 3), S(2, 2, 2) as their underlying graphs, and their induced mixed subgraphs;

(ii) C3(2)
∗̂, C6(1, 0, 1, 0, 1)

−̂ , C6(2, 0, 0, 2)
−̂, C8(1, 0, 0, 0, 1)

−̂ ;

(iii) The family of mixed graphs with underlying graph θ(3, 5, 5) containing two negative

mixed cycles C6, and their induced mixed subgraphs.

By a routine calculation and checking the proof of Lemma 4.5, we get the following

corollary as the end of the paper.

Corollary 4.7 Let D be a C4-free mixed graph with ρ(D) = 2. Then D is a mixed graph

contained in one of the following families.

(i) All mixed graphs with one of the undirected graphs Y (2, n − 5, 2)(n ≥ 5), S(1, 2, 5),

S(1, 3, 3), S(2, 2, 2) as their underlying graphs;

11



(ii) C+
n for any integer n > 3 and C−

n for any odd number n > 3;

(iii) C3(2)
∗, C6(1, 0, 1)

−, C6(1, 0, 1, 0, 1)
−, C6(2)

−, C6(2, 0, 0, 1)
−, C6(2, 0, 0, 2)

−, C8(1)
−,

C8(1, 0, 0, 0, 1)
−;

(iv) The family of mixed graphs with underlying graph θ(3, 5, 5) containing two negative

mixed cycles C6.
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