
ar
X

iv
:1

90
4.

06
26

7v
1 

 [
m

at
h.

C
O

] 
 1

2 
A

pr
 2

01
9

Optimal Domination Polynomials

I. Beaton1, J.I. Brown1 and D. Cox2

1Department of Mathematics and Statistics, Dalhousie University, Halifax,
CANADA

2Department of Mathematics, Mount Saint Vincent University, Halifax,
CANADA. Corresponding Author: danielle.cox@msvu.ca

Abstract

Let G be a graph on n vertices and m edges and D(G,x) the dom-
ination polynomial of G. In this paper we completely characterize
the values of n and m for which optimal graphs exist for domination
polynomials. We also show that there does not always exist least op-
timal graphs for the domination polynomial. Applications to network
reliability are highlighted.
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1 Introduction

Consider a graph G with vertex set V (G) and edge set E(G) (we assume
throughout that all graphs are simple, that is, without loops and multiple
edges, as neither of these affect domination). Let S be a subset of ver-
tices or edges such that S has a particular graph property, P . Perhaps P
is that S is independent, complete, a dominating set or a matching. The
sequences of the number of sets of varying cardinality that have property P
have also been studied, particularly through the associated generating poly-
nomials (which are graph polynomials). Independence, clique, dominating
and matching polynomials have all arisen and been studied in this setting.
The evaluation of these polynomials at 1 yields the counts of the number of
subsets in question, important graph invariants, and all of the graph polyno-
mials can all be considered as functions on the domain [0,∞).

If the number of vertices n and edges m are fixed, one can ask whether
there exists optimal graphs with respect to a property, in the following sense.
Let Gn,m denote the set of (simple) graphs of order n and size m (that is, with
n vertices and m edges). A graph H ∈ Gn,m is optimal if f(H, x) ≥ f(G, x)
for all graphs G ∈ Gn,m and all x ≥ 0 (for any particular value of x ≥ 0, of
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course, there is such a graph H , as the number of graphs of order n and size
m is finite, but we are interested in uniformly optimal graphs). Of course, if
there is a graph H such that the counts for the associated property sets are
each greater than or equal to that for any other graph of the same order and
size, that graph will be optimal.

Optimality has been studied for independence polynomials [7], as well for
other graph polynomials such as network reliability over the domain [0, 1]
[3, 4, 5, 6, 9, 10] and chromatic polynomials [11, 12]. In this paper we
will investigate optimality of domination polynomials. Let G be a graph of
order n and size m. A subset of vertices is called dominating if every vertex
of G is either in S or adjacent to a vertex of S. The cardinality of the
smallest dominating set is the domination number, written γ(G). We define
the domination polynomial of G as

D(G, x) =

|V (G)|
∑

i=1

d(G, i)xi =

|V (G)|
∑

i=γ(G)

d(G, i)xi.

where d(G, i) is the number of dominating sets of cardinality i. We will
completely characterize the values of n and m for which optimal graphs exist
(which contrasts sharply with the other graph polynomials mentioned where
only partial results are known).

2 Optimality for Domination Polynomials

We begin our study with a useful observation that compares the coefficients
of the domination polynomials of two graphs to determine which is more
optimal for arbitrarily large and small values of x.

2.1 Optimal Graphs for Domination Polynomials

Observation 2.1 Suppose that G and H are graphs on n vertices and m
edges with

D(G, x) =

|V (G)|
∑

j=1

d(G, j)xj

and
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D(H, x) =

|V (G)|
∑

j=1

d(H, j)xj

Then

• if d(G, j) = d(H, j) for j < l but d(G, l) > d(H, l), then D(G, x) >
D(H, x) for x arbitrary small positive values of x and

• if d(G, j) = d(H, j) for t > j but d(G, t) > d(H, t), then D(G, x) >
D(H, x) for x arbitrary large.

Given two graphs G and H , if D(G, x) > D(H, x) for x > 0 then we say
that G is more optimal than H .

Our first result will be regarding the existence of optimal sparse graphs.
The following lemma describes an operation that uniformly increases the
domination polynomial on [0,∞).

Lemma 2.2 Let G be a graph on n ≥ 3 vertices with at least one isolated

vertex x and at least one edge e = uv. Let H be the graph (G−e)∪ux. Then

D(H, x) ≥ D(G, x) for x ≥ 0.

Moreover, if v has degree at least 2, then

D(H, x) > D(G, x) for x > 0.

Proof We begin by showing that every dominating set of G of size i cor-
responds uniquely to a dominating set of H of the same size.

Let Si be a dominating set of size i of G. Note that since x is an isolated
vertex, it appears in every dominating set of G.

• Case 1: If both u and v are in Si then Si dominates in H .

• Case 2: If u ∈ Si, v 6∈ Si then (Si − x)∪ {v} is a dominating set of size
i in H which does not dominate in G.

• Case 3: If u /∈ Si, v ∈ Si then Si dominates in H as x ∈ Si and
u ∈ N [x].
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• Case 4: If neither u nor v are an element of Si both u and v must be
dominated in G− e, and therefore Si a dominating set of H as well.

Thus, every dominating set of size i of G corresponds to a dominating
set of H of size i. Moreover, it is not hard to verify that the dominating
sets of H produced are different. Hence d(H, i) ≥ d(G, i) for i ≥ 1 and so
D(H, x) ≥ D(G, x) for x ≥ 0 as was to be shown.

Moreover, if v has degree at least 2, it has another vertex w 6= u adjacent
to it. Consider the set S = V (G)−{v, x}. Then S is not a dominating set of
G (as it does not contain x but it is a dominating set in H). Moreover, it is
straightforward to verify that S is not matched up with any dominating set of
G above. It follows that d(H, n−2) > d(G, n−2), and so D(H, x) > D(G, x)
for x > 0.

We will now apply this lemma to show the following.

Corollary 2.3 Let G be a graph on n ≥ 3 vertices and m ≥ ⌈n
2
⌉ edges. If

G has an isolated vertex, then there exists a graph H of same order and size

with no isolated vertices such that D(H, x) > D(G, x) for x > 0.

Proof Let G′ be the graph such that G = G′ ∪ rK1 where r ≥ 1 is the
number of isolated vertices in G. Then G′ has n − r vertices and m ≥
⌈n
2
⌉ edges. We will now show ∆(G′) ≥ 2. Suppose not – that is, suppose

∆(G′) < 2. Then the sum of all the degrees of vertices in G′ is at most n− r.
Furthermore,

n− r ≥
∑

v∈G′

deg(v) = 2m ≥ 2
⌈n

2

⌉

≥ n.

This is a contradiction as r ≥ 1. Thus there indeed exists a vertex v ∈ G′

with degree two or more. Let u ∈ N(v) and H be the graph constructed in
Lemma 2.2 by removing the edge uv from G and adding an edge from u to
an isolated vertex. By Lemma 2.2, D(H, x) > D(G, x) for x > 0 and H has
one less isolated vertex. Hence by iterating this process we will find a graph
with no isolated vertices which is more optimal than G.

Using the previous result, we can now prove that optimal sparse graphs
exist. Two non-isomorphic graphs can have the same domination polynomial,
thus for a fixed n and m, it is possible for two graphs from Gn,m to both be
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optimal. If G ∈ Gn,m is the only optimal graph in Gn,m we call it the unique

optimal graph.

Corollary 2.4 For a given n ≥ 2 and m = ⌈n
2
⌉, the unique optimal graph is

mK2 if n is even and (m− 2)K2 ∪K1,2 if n is odd.

Proof Let G be a graph on n vertices andm = ⌈n
2
⌉ edges. By Corollary 2.3,

if G has an isolated vertex, there exists a graph H with n vertices, m edges,
and no isolated vertices which is more optimal than G. Depending on parity
of n, as m = ⌈n

2
⌉ there is only one graph with no isolated vertices: mK2 if

n is even and (m− 2)K2 ∪K1,2 if n is odd. Hence these graphs must be the
unique optimal graphs in their class Gn,m.

Theorem 2.5 Fix m ≥ 1 and let n = 2m + r, r ≥ 0. Then the unique

optimal graph is mK2 ∪ rK1. That is, for n ≥ 2 and m <
⌈

n
2

⌉

a unique

optimal graph exists.

Proof We will induct on r. When r = 0, we know by Corollary 2.4 that
mK2 is the unique optimal graph. Suppose that Gm,r = mK2∪rK1 is optimal
for 1 ≤ r ≤ t. We will show that for r = t + 1 that mK2 ∪ (t + 1)K1 is the
unique optimal graph.

Let H be a graph on m edges and n = 2m+ (t+ 1) vertices. The graph
H has at least one isolated vertex. Let H = H ′ ∪ K1. Then D(H, x) =
xD(H ′, x). Now for x > 0, if H ′ is not isomorphic to Gm,r−1, then for x > 0,

D(Gm,r, x) = xD(Gm,r−1, x) > xD(H ′, x) = D(H, x),

and we are done.

To contrast, we will now show that optimal graphs need not exist. To do
so, we will need the following lemmas regarding the minimum degree of G.

Lemma 2.6 [1] Let G be a graph of order n then

d(G, n− j) =

(

n

j

)

for all j ≤ δ(G)
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Lemma 2.7 Let G be a graph with n vertices. Then

d(G, n− δ(G)− 1) =

(

n

δ(G) + 1

)

− |{N [v] : deg(v) = δ(G)}|.

Proof Clearly
(

n

δ(G)+1

)

− d(G, n − δ(G) − 1) counts the largest subsets of
V which do not dominate G. A subset S ⊆ V is a dominating set if and
only if for every vertex v ∈ V , N [v] ∩ S 6= ∅. Therefore the maximum non-
dominating subsets of V are {V − N [v] : deg(v) = δ(G)}. As |{V − N [v] :
deg(v) = δ(G)}| = |{N [v] : deg(v) = δ(G)}| we get our result.

Theorem 2.8 Let ⌈n
2
⌉ < m ≤ n− 1. Then for n ≥ 4 an optimal graph does

not exist of order n and size m.

Proof To reach a contradiction suppose there exists an optimal graph G
with n vertices with n−r edges where 1 ≤ r < ⌊n

2
⌋. Consider the domination

number of G. By Observation 2.1, there is no graph with the same order and
size of G but of smaller domination number. Let H = (r− 1)K2 ∪K1,n−2r+1.
As H has n vertices, n − r edges and γ(H) = r, it follows that γ(G) ≤ r.
Furthermore γ(G) is bounded below by the number of components in G. As
G has n vertices and n − r edges, G has at least r components. Therefore
γ(G) ≥ r, and so γ(G) = r. It follows that G must be a disjoint union of r
graphs, each with an universal vertex. As G has n − r edges, G must be a
forest consisting of r star graphs.

Again by Observation 2.1, there is no graph F with the same order and
size of G but with d(F, r) > d(G, r). Let F = (r − 1)K2 ∪ K1,n−2r+1 and
note that d(F, r) = 2r−1. Thus d(G, r) ≥ 2r−1. Now d(G, r) is the number
of minimum dominating sets in G, and thus is equal to the product of the
number of minimum dominating sets for each of its r components. However
the only star graph with more than one minimum dominating set is K2,
which has two. Now m > ⌈n

2
⌉ implies G 6∼= rK2, so G has at most (r − 1)

K2 components. It follows that n − 2r + 1 ≥ 3 and d(G, r) ≤ 2r−1. So
d(G, r) = 2r−1 and G ∼= F = (r − 1)K2 ∪ K1,n−2r+1 as the last component
must also be a star.

We will now show that a star graph is not optimal, and hence G, which has
a star component, cannot optimal. Consider Pn. By Lemma 2.7, d(Pn, n −
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2) =
(

n

2

)

−2, while d(K1,n−1, n−2) =
(

n

2

)

− (n−1), and hence d(Pn, n−2) >
d(K1,n−1, n − 2) for n ≥ 4. Thus by Observation 2.1, a star graph is not
optimal for n ≥ 4. This contradiction implies that there is no optimal graph
on n vertices and n− 1 edges for n ≥ 4. Thus there cannot exist an optimal
graph of order n and size ⌈n

2
⌉ < m ≤ n− 1.

Now, we will show that there also does not exist dense graphs that are
optimal.

Lemma 2.9 [2] Let G be a graph of order n. Then

d(G, 1) = |{v ∈ V (G)|deg(v) = n− 1}|.

The join of two disjoint graphs G and H , written G ∨ H is the graph
formed from there disjoint union by adding in all edges uv where u is a
vertex of G and v is a vertex of H (if G and H are not disjoint, one merely
uses disjoint isomorphic copies).

Lemma 2.10 [2] Let G be a graph of order n. Then

D(Kr ∨G, x) = ((1 + x)r − 1)(1 + x)n +D(G2, x).

Lemma 2.11 If a graph G of order n and size m ≥ n − 1 is optimal then

G is of the form Kr ∨H, the join of Kr and H, where 0 ≤ r ≤ n and H is

optimal on n− r vertices and at most n− r − 2 edges.

Proof By Lemma 2.9 and Observation 2.1 we wish to maximize the number
of degree n−1 vertices. Let r be the maximum number of degree n−1 vertices
G could have with m edges and n vertices. Clearly 0 ≤ r ≤ n, G = Kr ∨H ,
and H has n − r vertices. Furthermore H has no degree n− r − 1 vertices,
otherwise such vertices would be degree n−1 in G. Therefore H has at most
n− r − 2 edges.

Finally we show H is optimal on n−r vertices and mH ≤ n−r−2 edges.
Let H ′ be any another graph of equal order and size to H . As G is optimal,
D(G, x) = D(Kr ∨H, x) ≥ D(Kr ∨H ′, x) for all x > 0. By Lemma 2.10,
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D(Kr ∨H, x) = ((1 + x)r − 1)(1 + x)n−r +D(H, x)

D(Kr ∨H ′, x) = ((1 + x)r − 1)(1 + x)n−r +D(H ′, x)

Thus D(H, x) ≥ D(H ′, x) for all x > 0 and H is optimal.

Theorem 2.12 For n ≥ 6 vertices and n− 1 ≤ m <
(

n

2

)

− 6 there does not

exist an optimal graph for the domination polynomial.

Proof To show a contradiction suppose a graph G of order n and size m
is optimal. By Lemma 2.11, G is the join of Kr and H for some r ≥ 0 and
optimal graph H with n− r vertices and at most n− r−2 edges. Let mH be
the number of edges in H ; then m = mH +

(

r

2

)

+ r(n− r) ≥
(

r

2

)

+ r(n− r).
Let MG = {NG[v] : degG(v) = δ(G)}. Thus it is sufficient to give another
graph G′, of equal order and size, with |MG| > |MG′ | as Lemma 2.7 and
Observation 2.1 imply D(G′, x) > D(G, x) for arbitrarily large values of x.

We consider the following three cases: mH < ⌈n−r
2
⌉, mH = ⌈n−r

2
⌉, and

mH > ⌈n−r
2
⌉.

Case 1 : mH < ⌈n−r
2
⌉.

In this case, H is an optimal graph on n − r vertices and less than ⌈n−r
2
⌉

edges. Using Theorem 2.5, H must be the following optimal graph

H = mHK2 ∪ (n− r − 2mH)K1.

Note that n− r− 2mH > 0, so δ(G) = r. Furthermore no two vertices of
degree r are adjacent. Therefore

|MG| = |{v ∈ V : deg(v) = r}| = n− r − 2mH .

As n−1 ≤ m <
(

n

2

)

−6 andm ≥
(

r

2

)

+r(n−r), it follows that 1 ≤ r < n−4
and hence |H| = n− r > 4. Let u be a vertex of minimum degree in G, v be
any other vertex inH , and x be a universal vertex in G. Further, let G′ be the
graph formed by replacing the edge vx in G with the edge uv. The graphs
G and G′ have the same size, order and δ(G′) ≥ δ(G). If δ(G′) > δ(G),
then d(G′, n − r − 1) =

(

n

r+1

)

>
(

n

r+1

)

− (n − r − 2mH) and hence we get a
contradiction. Thus δ(G′) = δ(G) = r. Every vertex in G′, other than x and
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u, has the same degree as they did in G. Furthermore degG′(x) = n− 2 > r
and degG′(u) = degG(u) + 1 = r + 1. Therefore G′ has n − r − 2mH − 1
vertices of degree r. Since |MG′ | ≤ |{v ∈ V : degG′(v) = r}|, |MG| > |MG′|.

Case 2 : mH = ⌈n−r
2
⌉.

H has n−r vertices and is optimal. By Corollary 2.4, H = mHK2 is uniquely
optimal if n − r is even and H = (mH − 2)K2 ∪K1,2 is uniquely optimal if
n− r is odd. Also δ(G) = r + 1, regardless of parity.

Case 2a: n− r is even.

Then n − r ≥ 6 and without loss of generality let G = Kr ∨H where
H = mHK2 with mH ≥ 3. Note that the vertices of degree r + 1 are
exactly the vertices of H and each degree r + 1 vertex in H shares its
closed neighbourhood with its only neighbour in H . Therefore |MG| =
mH .

Let u1, u2, v1, v2 and x be vertices in G such that x is a universal ver-
tex in G and u1, u2 and v1, v2 each induce K2 components in H . Note
NG[u1] = NG[u2] ∈ MG and NG[v1] = NG[v2] ∈ MG. Let G′ be the
graph formed by replacing the edges xu1, xu2, xv1 and xv2 with v1u1,
v1u2, v2u1 and v2u2. Note the degree of u1, u2, v1 and v2 have all in-
creased from G to G′, degG′(x) = degG(x)− 4 = n− 5 ≥ r+1, and the
closed neighbourhood of every other vertex is unchanged. Therefore
MG′ ⊆ MG ∪ {NG′[x]} − {NG[u1], NG[v1]} and hence |MG| > |MG′|.

Case 2b: n− r is odd.

Then n − r ≥ 5 and without loss of generality let G = Kr ∨H where
H = (mH − 2)K2 ∪ K1,2 with mH − 2 ≥ 1. Let u1, u2, v and x be
vertices in G such that x is a universal vertex in G, u1, u2 induce a
K2 component in H and v is a leaf in the K1,2 component of H . Note
NG[u1] = NG[u2] ∈ MG and NG[v] ∈ MG. Let G′ be the graph formed
by replacing the edges xu1 and xu2 with vu1, vu2. The degree of u1 and
u2 remain r+1 and NG′[u1] = NG′[u2] ∈ MG′ . Furthermore degG′(x) =
degG(x) − 2 = n − 3 > r + 1 and degG′(v) = degG(v) + 2 = r + 3 so
NG′ [v] /∈ MG′ . As the closed neighbourhood of every other vertex is
unchanged, |MG| > |MG′ |.

Case 3 : mH > ⌈n−r
2
⌉.
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By Lemma 2.11, H is an optimal graph on n−r vertices and mH > ⌈n−r
2
⌉

edges, where mH ≤ n − r − 2 < n − r − 1. As in case 1, n − r ≥ 5. By
Theorem 2.8, there is no optimal graph on n − r vertices and mH > ⌈n−r

2
⌉

edges. Thus this case is a contradiction.

Clearly for m =
(

n

2

)

and m =
(

n

2

)

− 1, unique optimal graphs exist, since
there is only one graph in each case, but we now show for other dense graphs
optimal graphs do not exist.

Theorem 2.13 Let G be a graph on n ≥ 6 vertices and m =
(

n

2

)

− k,
2 ≤ k ≤ 6 Then an optimal graph does not exist.

Proof By Observation 2.1 we know that ane optimal graph for values of x
close to 0 will have the most number of universal vertices. For k = 2, 3, 4, 5, 6
we will show that the graph Hk which is Kn with a matching of size k
removed is optimal for larger values of x. It is easy to see that D(Hk, x) =
(1 + x)n − 1− 2kx. Note that d(Hk, i) =

(

n

i

)

for i ≥ 2.

• For k = 2 consider the graph G which is Kn with the edges of a P3

removed. The domination polynomial for this graph is D(G, x) = (1 +
x)n−1−(x2+3x). This is the unique graph of order n and m =

(

n

2

)

−2
with n− 3 universal vertices.

• For k = 3 let G be a Kn with the edges of a K3 removed, which has a
domination polynomial of D(G, x) = (1 + x)n − 1 − (3x2 + 3x). The
graph G is the unique graph with n− 3 universal vertices.

• For k = 4 there are two graphs of order n and size m = m =
(

n

2

)

− k
on with n − 4 universal vertices, G, namely Kn with the edges of a
C4 removed and Kn with the edges of a K3 with a leaf removed. We
can compute that D(G, x) = (1 + x)n − 1− (2x2 + 4x) and D(G′, x) =
(1+x)n−1− (x3+3x2+4x). It is easy to see that D(G, x) ≥ D(G′, x)
for x ≥ 0.

• For k = 5 consider the graph G which is Kn with the edges of a K4

with an edge removed. The domination polynomial for this graph is
D(G, x) = (1+ x)n − 1− (2x3 +6x2 +4x). This is the unique graph of
order n and m =

(

n

2

)

− 5 with n− 4 universal vertices.
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• Lastly, for k = 6 consider the graph G which is Kn with the edges of a
K4 removed. The domination polynomial for this graph is D(G, x) =
(1 + x)n − 1 − (4x3 + 6x2 + 4x). This is the unique graph of order n
and size m =

(

n

2

)

− 6 with n− 4 universal vertices.

Clearly for all the above described graphs d(G, i) =
(

n

i

)

for i = 4, . . . n,
but d(G, i) <

(

n

2

)

for some i ∈ {2, 3}. For the largest value of i where
d(G, i) <

(

n

i

)

it is the case that d(Hk, i) =
(

n

i

)

, therefore by Observation 2.1
Hk is optimal for arbitrarily large values of x, hence an optimal graph does
not exist.

Corollary 2.14 For graphs of order n ≥ 6,

• mK2 ∪ rK1 where r = n− 2m is uniquely optimal when m < ⌈n
2
⌉.

• mK2 is uniquely optimal when n is even and m = ⌈n
2
⌉.

• (m− 2)K2 ∪K1,2 is uniquely optimal when n is odd and m = ⌈n
2
⌉.

• No optimal graph exists for ⌈n
2
⌉ < m <

(

n

2

)

− 1.

• Kn − e is uniquely optimal for m =
(

n

2

)

− 1, for e ∈ E(G).

• Kn is uniquely optimal for m =
(

n

2

)

.

In fact, via some calculations, Corollary 2.14 can been seen to hold for n < 6
as well, with the exception of K1 ∨ 2K2 which is the unique optimal graph
on five vertices and six edges.

3 Conclusion

In [8] the domination reliability polynomial was defined as follows. For a
given graph G we assume that vertices are independently operational with
probability p ∈ [0, 1]; the domination reliability Drel(G, p) of G is the prob-
ability that the operational vertices form a dominating set of the graph. As
for all-terminal reliability, the existence of optimal reliability polynomials is
an open area of study. Noting that Drel(G, p) = (1 − p)n ·D(G, p

1−p
), from

Corollary 2.14 we obtain a complete characterization of values of n and m
for which optimal graphs exist for domination reliability.

11



Corollary 3.1 For n ≥ 6 and m ≤ ⌈n
2
⌉ uniquely optimal graphs exist for

domination reliability. For ⌈n
2
⌉ < m <

(

n

2

)

− 1 optimal graphs do not exist

for domination reliability. For
(

n

2

)

− 1 ≥ m ≥
(

n

2

)

uniquely optimal graphs

exist for domination reliability.

On another note, we can ask what graphs are the least-optimal (a graph
H ∈ Gn,m is least-optimal if f(H, x) ≤ f(G, x) for all graphs G ∈ Gn,m and
all x ≥ 0). While, of course, for m = n − 1 or n there are least-optimal
graphs (as there is only a single graph in each such class), we can show that,
in general, such graphs need not exist.

Theorem 3.2 Let G be a graph on n ≥ 7 vertices and m =
(

n

2

)

− k, 2 ≤
k ≤ n

2
edges. Then a least-optimal graph does not exist.

Proof By Observation 2.1 we know that the least optimal graph for values
of x close to 0 will have the least number of universal vertices. For k = 2
there are only two possible graphs and so by Theorem 2.13 an least optimal
graph does not exist. Thus we can assume k ≥ 3.

Let Gk be Kn with the edges of a matching of size k removed. This is
the unique graph of order n and size m =

(

n

2

)

− k, 2 ≤ k ≤ n
2
that has

n− 2k non-universal vertices, that is, it is least optimal for values of x near
0. The domination polynomial for this graph is D(Gk, x) = (1+x)n−1−2kx.
Consider the graph H , which is Kn with the edges of a Pk+1 removed. The
domination polynomial for this graph isD(H, x) = (1+x)n−1−(k+1)x−(k−
2)x2. Since D(Gk, x) ≤ D(H, x) holds if and only if (−k+1)x+(k−2)x2 ≤ 0,
which is true precisely when x ≤ k−1

k−2
, so outside this range (i.e. when

x ∈ (k− 1)/(k− 2),∞)), H is less optimal. Thus a least-optimal graph does
not exist.

An open problem is to characterize the values of n and m such that least
optimal graphs exist.
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