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Abstract

Zero forcing is a combinatorial game played on a graph where the goal is to start

with all vertices unfilled and to change them to filled at minimal cost. In the original

variation of the game there were two options. Namely, to fill any one single vertex

at the cost of a single token; or if any currently filled vertex has a unique non-filled

neighbor, then the neighbor is filled for free. This paper investigates a q-analogue of

zero forcing which introduces a third option involving an oracle. Basic properties of

this game are established including determining all graphs which have minimal cost 1

or 2 for all possible q, and finding the zero forcing number for all trees when q = 1.

1 Introduction

The zero forcing game is a combinatorial game played on a graph. The game involves filling
in the vertices of a graph by certain legal moves, the most important of which is the following
filling rule (sometimes known as the forcing rule or coloring rule): If a filled vertex has a
unique unfilled neighbor (and any number of filled neighbors), then the unfilled neighbor
becomes filled. The game is summarized as follows.

The Zero Forcing Game (or Z-Game) – All the vertices of the graph G

are initially unfilled and there is one player who has tokens. The player will
repeatedly apply one of the following two operations until all vertices are filled:

1. For one token, any vertex can be changed from unfilled to filled.

2. At no cost, the player can apply the filling rule.

The Z-Game number of a graph, denoted Z(G), is the minimum number of tokens needed
to guarantee that all vertices can be filled (this is sometimes referred to as the “zero forcing
number” or “fast-mixed search number”). Zero forcing was developed in the combinatorial
matrix theory community to give a bound for the minimum rank of a symmetric matrix
associated with a graph [1], zero forcing has also been developed independently for other
purposes (see [5] and references contained therein).

Theorem 1 ([1]). If A is a real-symmetric matrix with nonzero off-diagonal entries corre-
sponding to the edges of G, then nullity(A) ≤ Z(G).
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There have been many variations on the Z-Game, the one which will be considered here
is a q-analogue of zero forcing which introduces a new operation available to the player (see
[3]). This new operation allows the (potential) application of the filling rule on a smaller
part of the graph. For W ⊆ V (G), let G[W ] denote the induced subgraph of G on the
vertices W .

The q-Analogue of the Zero Forcing Game (or Zq-Game) – All the vertices
of the graph G are initially unfilled and there is one player who has tokens, and
one oracle. The player will repeatedly apply one of the following three operations
until all vertices are filled.

1. For one token, any vertex can be changed from unfilled to filled.

2. At no cost, the player can apply the filling rule.

3. Let the vertices currently filled be denoted by F , and U1, . . . , Uk be the
vertex sets of the connected components of G[V \ F ] (i.e., components of
unfilled vertices). If k ≥ q+1, the player can select at least q+1 of the Ui and
announces the selection to the oracle. The oracle selects a nonempty subset
of these components, {Ui1 , . . . , Uiℓ}, and announces it back to the player.
At no cost, the player can apply the filling rule on G[F ∪ Ui1 ∪ · · · ∪ Uiℓ ].

The Zq-Game number of a graph, denoted Zq(G), is the minimum number of tokens
needed to guarantee that all vertices can be filled, regardless of how the oracle responds. Due
to the “at least” part the following inequalities are obtained: Z0(G) ≤ Z1(G) ≤ · · · ≤ Z(G)
(think of Z(G) = Z∞(G) as never being able to appeal to the oracle).

The parameter Zq(G) also gives a bound related to maximum nullity.

Theorem 2 ([3]). If A is a real-symmetric matrix with nonzero off-diagonal entries cor-
responding to the edges of G and A has at most q negative eigenvalues, then nullity(A) ≤
Zq(G).

For the Z-Game it is known that the spending of tokens can all happen up front before
applying the filling rule. Hence, in the literature there is a focus on zero forcing sets. In
the Zq-Game it might be disadvantageous to spend all tokens up front, i.e., the oracle’s
response(s) may change the optimal spending pattern.

Example 1. Consider the graph T shown in Figure 1. For this graph Z(T ) = 4, e.g., tokens
must be spent on at least two of {1, 2, 3} and at least two of {6, 7, 8} and, having done so,
the filling rule can be used on the remaining vertices.

On the other hand, Z1(T ) = 3. To see this, initially spend on 1 and 6 and then apply the
filling rule for 4 and 5. At this point, hand the oracle 2 and 7. Whatever is returned will be
filled by the filling rule. Continue handing one unfilled vertex from each side to the oracle
until one side is completely filled. At this point, at most 1 more token must be spent to get
down to one unfilled vertex on the other side (and if the oracle had consistently returned
one side over the other this would be necessary). Finally, the filling rule may be applied to
fill in the last vertex.

Note if three tokens has been spent up front then there would exist a vertex with two
adjacent unfilled leaves. At this point the oracle could prevent these leaves from being filled.
So to achieve the optimal value, a delay in spending tokens is necessary.
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Figure 1: Z(T ) = 4 and Z1(T ) = 3.

In Example 1, the use of the response of the oracle allowed a reduction in spending on
one side of the graph by one.1 In particular, there is a need to shift from zero forcing sets
and into zero forcing strategies.

While there has been work on the combinatorial aspects of the Z-Game (see [5]), less is
known about the Zq-Game. This paper begins to address the situation. Section 2 considers
what happens when Zq(G) is small compared to q. Section 3 determines all connected graphs
G which have Zq(G) = 1 or 2. Section 4 gives an efficient method to compute Z1(G) on
trees. Finally, some concluding remarks and paths of future investigation are provided.

2 Small forcing number

In the Zq-Game, in order for the player to use the option involving an oracle, there is a
need to have sufficiently many components which are “far” from each other. Intuitively,
this means that a “fair amount” of tokens will already have been spent before the oracle
operation is useful. Lemma 1 makes this observation more precise.

Lemma 1. Consider the Zq-Game on a graph G. If at most q tokens have been spent, there
is no place on which the filling rule can be applied, and the oracle has not yet returned a set
of components on which filling can occur, then for any group of at least q + 1 components
announced to the oracle there is a nonempty subset which the oracle can respond with and
for which no filling occurs.

Proof. Let F = {f1, f2, . . . , fk} be the set of filled vertices that are adjacent to at least
one unfilled vertex. Based on the assumption that no forcing has occurred on components
returned by the oracle it follows that k ≤ q. This is because the number of such vertices
equals the number of tokens spent. (Note that it is not necessarily the case that the fi are
where the tokens have been spent, as it is possible that the filling rule was applied. However,
any such vertex used to apply the filling rule cannot be one of the fi.)

Now, let {C1, C2, . . . , Cℓ} with ℓ ≥ q + 1 be the connected components of G[V (G) \ F ]
that are handed to the oracle. Consider the incidence array A with rows corresponding to
the vertices fi, for 1 ≤ i ≤ k, and the columns corresponding to the connected components
Cj , for 1 ≤ j ≤ ℓ, where the i, j entry is

Ai,j =

{

1 if fi is adjacent to Cj ,
0 else.

1In terms of the linear algebraic philosophy of zero forcing, tokens were spent to probe and get additional

information about the possible structure of the null space of a matrix and using the information to obtain a

better bound on the nullity.
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Here adjacent means there is some vertex in Cj adjacent to vertex fi.
The interest lies in finding a set of columns in this array with the property that if the

corresponding components are returned then no filling rule can be used. Note that any
column with all 0s can be returned as none of the fi are adjacent to the component and so
no filling rule can be used. So, without loss of generality, assume that the columns are all
nonzero.

Repeat the following action as much as possible: If any row has row sum 1 then delete
that row and the corresponding column where the 1 entry occurred. Once this action is no
longer possible, whichever columns remain are the components the oracle will return.

To see why, note that for every remaining row (e.g., vertex fi) that it is adjacent to either
0 of the components or adjacent to 2 or more. In either situation the filling rule does not
apply. Further, for any row which was deleted, the remaining columns all had to have 0
entries as the only column with an entry of 1 was removed; hence those fi are not adjacent
to the components returned.

It remains to show that there is something available to hand back. For this, notice that
ℓ ≥ q + 1 > q ≥ k so when the row/column elimination algorithm is repeated not every
column will get deleted and if the array reduces down to one row there will be at least two
columns left. Further, if the array reduces to one row it must contain all ones. This is
because of the assumption that no column had all zeroes so the remaining columns had at
least one nonzero entry and the only entries which would have been removed to this point
have value zero.

By Lemma 1, if Zq(G) ≤ q, then there has to be a way to spend tokens without using
the oracle as the oracle can always return a set of components on which no filling rule can
be used. As a consequence, it must be possible to fill all vertices by spending tokens and
applying the filling rule, in other words, using only the methods allowed in the Z-Game.
This establishes Theorem 3.

Theorem 3. If Zk(G) ≤ k, then Zk(G) = Z(G).

Corollary 1. If Zk(G) = k, then Zk−1(G) = k.

Proof. By Theorem 3, Z(G) = k. Also, Zk−1(G) ≤ Zk(G) ≤ k. If Zk−1(G) ≤ k − 1, then
Z(G) = Zk−1(G) ≤ k − 1 by Theorem 3 , which is impossible.

The assumption in Theorem 3 cannot be changed to Zk(g) ≤ k + 1 as shown by the
following example.

Proposition 1. Let T be the tree on 3k + 4 vertices formed by taking k + 1 copies of K1,3

and gluing them together on a leaf. Then Z(T ) = k + 2 and Zk(T ) = k + 1.

Proof. The process begins by showing Z(T ) = k + 2 by establishing the path cover number
(for the Z-Game on a tree the path cover number is the zero forcing number [5]). Since there
are 2k + 2 leaves and each path covers at most 2 leaves so the graph has to have at least
k + 1 paths. If there are exactly k + 1 paths, then either the center vertex is not covered
by a path or a path covers the central vertex and then there is a leaf which is isolated and
so more than k + 1 paths would be needed to cover all leaves. Thus, at least k + 2 paths
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Figure 2: The graph from Proposition 1 with k + 1 = 4.

are needed to cover T . On the other hand such a path cover is easily found, e.g., take k + 1
paths of three vertices (each consisting of two pendant vertices and a degree 3 vertex in the
middle) and the path consisting of the center vertex.

By Theorem 3, Zk(T ) ≥ k + 1, since otherwise we would have Z(T ) ≤ k. It now suffices
to give a strategy where k + 1 tokens are spent and can fill all vertices. To do this, spend 1
token in a leaf in each copy of K1,3. Now, apply the filling rule to fill all the degree 3 vertices.
At this point there are k + 1 unfilled leaves which are handed to the oracle, whatever gets
returned gets filled. In particular, there is some filled degree 3 vertex whose leaf neighbors
are filled which, by the filling rule, fills the degree k + 1 vertex. Applying the filling rule
again to all remaining leaves fills the entire graph.

3 Graphs with Zq(G) equal to 1 or 2

When Zq(G) = 1 there are two possibilities, either q = 0 or q ≥ 1 (in the latter case
Zq(G) = Z(G). When q = 0, the oracle does not enter into the game as the filling rule
can be applied to each component independently (this is known as the positive semi-definite
Z-Game or the Z+-Game, see [4]). In particular, if G is a tree, then after spending one token
the filling rule can be applied to each component and fill the entire graph. On the other
hand, if the graph contains a cycle, then the filling propagation will stop on a component
which has a cycle. So Z0(G) = 1 if and only if G is a tree (see [2]).

When q ≥ 1, if only one token is needed to fill the entire graph, then it must be the case
that after the token is spent the filling rule works for the rest of the graph. Following the
propagation of the filling process, the structure must be a path (e.g., there is always at most
one unfilled neighbor of each vertex).

This establishes Theorem 4.

Theorem 4 ([2]). Let G be a connected graph. Then,

• Z0(G) = 1 if and only if G is a tree.

• Zq(G) = 1 for q ≥ 1 if and only if G is a path.

To understand the case when Zq(G) = 2 it is necessary to understand how the oracle can
respond in the Z1-game to impede progress of the player.

Definition 1. A fort in a graph G is a subset W ⊆ V (G) such that the induced subgraph
G[W ] has at most two connected components and every vertex outside of W has either zero
or two or more neighbors in W .
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Observation 1. Let W be a fort in a graph G. If at some point in a Z1-game every vertex
in W is unfilled, then the player cannot win without spending at least one more token.

The filling rule cannot proceed inW since each filled neighbor of a vertex inW is adjacent
to multiple vertices in W . If the player gives at least two components to the oracle then the
oracle either returns components containing nothing in W or containing all of W . In any
case no filling in W can occur so the player must spend at least one more token.

Note that this does not say that a token must be spent in every unfilled fort. It is possible
that unfilled components can be involved in multiple forts. In other words, as long as there
is an unfilled fort the oracle can stop the player from filling all vertices.

Proposition 2 describes a useful property for the Z1-Game on a tree.

Proposition 2. Consider the Z1-Game on a tree T . If any vertices are filled, then at no
cost the player can get to a point where either all vertices are filled or there is exactly one
filled vertex adjacent to two or more unfilled vertices.

Proof. If the conclusion does not hold, then either the filling rule can be applied or there
exists two unfilled disjoint subtrees which are not adjacent to a common filled vertex. In
the latter case, hand these components to the oracle, whatever is returned can have at least
one vertex filled. Continue until no more filling can occur and at this point the conclusion
holds.

We now have the tools to describe which trees have Z1(T ) = 2.

Definition 2. A comb graph is a tree with maximum degree three and all degree-three
vertices are on a single path. A pair of initial vertices of a comb graph are two vertices u, v
such that every degree-three vertex is an internal vertex on the unique path between u and
v.

vu

Figure 3: A comb graph and a pair of initial vertices u and v.

Lemma 2. Let G be a tree with Z1(G) = 2. Then it is a comb graph. Moreover, the two
tokens must be spent on a pair of initial vertices.

Proof. Since Z1(G) > 1, Theorem 4 says that G is not a path so G must have a vertex with
degree at least three.

Lemma 1 says that if only one token is spent then any use of the oracle can result in a
situation where no progress is made, thus only the filling rule can be applied or the second
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token can be spent. However, the operations of spending the second token and applying the
filling rule can be interchanged so it can be assumed, without loss of generality, that the two
tokens are spent initially. (In contrast to the previous example, here we can assume that we
spend both up front as we do not use the oracle to make progress.)

If the graph has a vertex x of degree at least four, then after spending the two tokens
there are at least two disjoint subtrees adjacent to x which contain no filled vertices, these
subtrees form a fort.

If not all degree three vertices are on the unique path joining the two initial filled vertices,
then there is a degree three vertex which contains two disjoint subtrees which contain no
filled vertices, these disjoint subtrees also form a fort.

Combining the previous two observations it can be concluded that G must be a comb
graph and that the two places where tokens were spent are initial vertices.

It remains to show that for any comb graph if tokens are spent on any pair of initial
vertices the entire graph can be filled. For this, appeal to Proposition 2. In particular, if not
all vertices are filled, then there would have to be a vertex neighboring two or more unfilled
disjoint subtrees. But this implies either the existence of a vertex of degree at least four or
a vertex of degree at least three not on the path joining the initial vertices; both of which
are impossible for the comb graph.

A zig-zag path is an outerplanar graph which is not a path and can be decomposed as a
pair of paths with at least one additional edge between the paths (for a precise definition,
see [6]). If spending at two vertices on a zig-zag path make the whole graph filled in the
Z-Game, then the corresponding ending vertices are the vertices which never have the filling
rule used to fill a neighbor.

Definition 3. A pick comb graph is a graph obtained from either combining a zig-zag path
and a comb by identifying the ending vertices of the zig-zag path to a pair of initial vertices
of the comb, and/or by connecting the ends of a path to a pair of initial vertices of the comb.

u

v

Figure 4: A pick comb graph.
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Theorem 5. Let G be a connected graph. Then we have the following.

• Z0(G) = 2 if and only if exactly one block of G has a cycle and G does not have K4 or
T3 as a minor.

• Z1(G) = 2 if and only if G is a zig-zag path, comb graph, or pick comb graph.

• Zq(G) = 2 for q ≥ 2 if and only if G is a zig-zag path.

Proof. The result for Z0(G) follows from [4]. When q ≥ 2, Zq(G) = 2 if and only if Z(G) = 2
by Theorem 3. Then, Z(G) = 2 if and only if G is a zig-zag path by [6, 7, 8]. All that remains
is to determine what happens for Z1(G).

By the definition of a pick comb graph, a zero forcing set can be found for the zig-zag
path (or just path) that, upon applying the filling rule, ends at initial vertices of the comb
graph. Using the oracle and the filling rule the remaining vertices can be filled as discussed
in Lemma 2. In particular, all pick comb graphs have Z1(G) ≤ 2. Moreover, if Z1(G) = 1,
then Z(G) = 1 and the graph would have to be a path. Thus, Z1(G) = 2 for all pick comb
graphs.

Conversely, suppose G is a graph with Z1(G) = 2. As in the proof of Lemma 2 assume
the first two actions of the player are to spend tokens and then apply the filling rule until no
more vertices can be filled. If all vertices have been filled, then the graph is a zig-zag path.
Now assume that there remain unfilled vertices.

At this point, let u and v be the two filled vertices which were not used by the filling rule
to fill another vertex. Let Y be the induced subgraph on the set of filled vertices. Then Y

consists of several possibilities:

• A pair of paths, possibly consisting of one vertex.

• A single path.

• A zig-zag path.

Let H be the graph obtained from G by removing all filled vertices except for u and v

and removing the edge {u, v}, if it exists. Since every vertex that performed a force is not
adjacent to any current unfilled vertex, {u, v} is a cut-set of G. Therefore, G = Y ∪H and
V (Y ) ∩ V (H) = {u, v}.

Now consider the structure of H . We can use {u, v} as a cut-set to partition the graph;
for this we look at the set of components that are in H − {u, v} where we then add back
copies of u and v in each resulting component where an adjacency occurred. Define L to be
the components of H that contain u but not v; R to be the components of H that contains
v but not u; and M to be the components of H that contain both u and v. Each component
in L and R has Z1 equal to 1, so is a path. If any of |L|, |R|, or |M | are at least two, then
these components can be used to form a fort which contradicts Z1(G) = 2.

Therefore, |L|, |R|, and |M | are each at most one. If |M | = 0, then at least one of L and
R must consist of at least two paths since there remain unfilled vertices so at least one of u
or v is adjacent to two or more unfilled vertices. But these correspond to a pair of unfilled
paths sharing a common filled vertex as a neighbor which forms a fort. This is impossible.
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Using a similar argument it can be concluded that |M | = |L| = |R| = 1. For the
remainder of the proof let M , L, and R denote these corresponding, single components.

If u has at least two neighbors in M , then V (M) ∪ V (R) \ {u, v} is a fort, so u is a leaf
in M . Similarly, v is also a leaf in M . Let u1 and u2 be the neighbor of u in L and in M ,
respectively. Whenever the player gives two components to the oracle, the oracle can either
return a component that does not contain u1 and u2, or return two components that contain
u1 and u2. In this way the vertex u cannot perform any force until u2 is filled. Let H ′ be
the graph obtained from H by removing u and the branch L. This means the vertex u has
no effect on any force that happens in H ′, and Z0(H

′) = 1 by using {v} as the zero forcing
set. Therefore, H ′ is a tree. Since u is a leaf on M and L is a path, the graph H is a tree.

Since H is a tree with Z1(H) = 2 then, by Lemma 2, H is a comb graph with u and v a
pair of initial vertices of H . Thus, G is a pick comb graph as desired.

4 Efficient computation of Z1(T ) for T a tree

Due to the nature of the Zq-Game, it is not immediately clear how to go about computing
Zq(G) for a given graph. An algorithm was presented in the paper introducing the Zq-Game
(see [3]), which runs over all 2|V (G)| subsets of the graph, only allowing for computation on
graphs of moderate size (see [3]). If S is an induced subgraph of G, then for any vertex v in
S, we let degS(v) denote the degree of v in the induced subgraph S.

We now give a method to compute Z1(T ) when T is a tree which can be determined in
polynomial time. We start with the following characterization for Z1(T ).

Theorem 6. Let T be a tree with |T | ≥ 3. Let PS(v) denote the set of maximal paths in
a tree S with v as one endpoint (i.e., paths with v as an endpoint and not contained in a
longer path). Then

Z1(T ) = 2 + max
v∈V (T )

(

max
S⊆T

v∈V (S)

(

min
P∈PS(v)

(

∑

w∈V (P )

(degS(w)− 2)

)))

. (1)

The proof will be split into two parts, namely establishing the right hand side as lower
and upper bound for Z1(T ).

4.1 Lower bound for Z1(T )

Fix a vertex v and a corresponding subtree S achieving the maximums in (1).
We modify the game by making the oracle more generous in the following ways:

• The oracle announces the vertex v and the subtree S to the player.

• The oracle announces that if any vertex in S is filled which is adjacent to a vertex in
T \S, then the corresponding vertex in T \S is filled as well as the entire corresponding
subtree in T \ S containing that vertex.

• The oracle fills in vertex v before the game begins (and any corresponding subtrees in
T \ S to which v is adjacent).
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• Whenever a token is spent the oracle will fill in all vertices in the unfilled subtree where
the token was spent off of the unique filled vertex which is adjacent to that subtree.
And then apply the filling rule if possible.

Note that all of these new options only offer an advantage to the player in filling the vertices.
So any lower bound in this modified version of the game is also a lower bound in the original
version.

Using the information above, we may assume the player does not spend a token in T \ S
as a better effect can be reached by spending in the vertex in S next to the corresponding
subtree in T \ S.

Label the initial vertex v as v0, and the game play proceeds as follows with the action of
the player and responses from the oracle:

• In the first degS(v0)− 1 rounds the player will fill a vertex and the oracle will then fill
in all vertices of the subtree with root at v0 containing the newly filled vertex, along
with any adjacent parts of T \ S.

After degS(v0) − 1 rounds, there is precisely one unfilled neighbor of v0, denote this
neighbor as v1, which, by the filling rule, can now be filled. Now consider vertex v1.

• Assume the process has taken us to vertex vi with i ≥ 1. The player will spend tokens
and the oracle will fill in all of the subtrees rooted at vi in which the token was spent,
along with any adjacent parts of T \ S.

This continues until vi has one unfilled neighbor (this occurs after spending degS(vi)−2
tokens), at which point the filling rule is applied and vertex vi+1 will be considered.

• Once a vertex vk in S is reached which is a leaf, all vertices have been filled and the
game ends.

(In the above analysis the reason degS(vi) is used and not degT (vi) is because anything
which is in T \ S is automatically filled.)

Due to the nature of the play of the oracle, the only option the player can ever use is
spending a token (e.g., all unfilled components always share a common vertex and all appli-
cations of the filling rule are done by the oracle). Moreover, the above places no restrictions
on where tokens are spent.

We now determine the cost to the player to win the altered game using the above strategy.
The sequence of vertices vi forms a maximal path starting at v0 and going to vk in S.
Moreover, the cost is given by

(degS(v0)− 1) + (degS(v1)− 2) + · · ·+ (degS(vk−1)− 2) = 2 +
k

∑

i=0

(degS(vi)− 2)

(the 2 in front comes from a combination of correcting the first term as well as accounting
for the leaf on the end of the path).

Finally, note that the player can choose the path in S by spending tokens in the subtrees
off the path. So the minimum number of tokens needed for the player to win is thus

2 + min
P∈PS(v)

(

∑

w∈V (P )

(degS(w)− 2)

)

.

10



The lower bound now follows.

4.2 Upper bound for Z1(T )

4.2.1 An important algorithm

The upper bound discussion begins with a recursive Algorithm 1 for which a tree T rooted
at v assigns a value, fT,v(w), to each vertex w.

Algorithm 1: Computation of fT,v(w) for all vertices w in tree T rooted at v

if w has no descendents then
fT,v(w) := 0

else
let u0, . . . , uk be the children of w;
let Ti be the subtree rooted at ui with all descendents of ui;
compute fTi,ui

(ui) for all i;
relabel (if needed) so fT0,u0

(u0) ≥ fT1,u1
(u1) ≥ · · · ≥ fTk,uk

(uk);
fT,v(w) := max{0 + fT0,u0

(u0), 1 + fT1,u1
(u1), . . . , k + fTk ,uk

(uk)}
end

The value fT,v(w) can be interpreted in the following way: In the Z1-Game on the tree
T rooted at v, given that the only unfilled vertices are those which are descendents of the
current vertex (w), then fT,v(w) is the minimal number of tokens needed to be spent by the
player to fill in the remaining vertices. The justification for this interpretation comes from
combining the following two observations.

Observation 2. If a vertex is a leaf, then no additional tokens are needed to be spent (i.e.,
everything has been filled).

Observation 3. If a vertex is not a leaf, and the minimum number of tokens for all subtrees
rooted at the children of the vertex have been determined, then the minimum number of tokens
for that vertex can be determined. This is done by arranging the values for the number of
tokens of the subtrees of the children in weakly decreasing order, e.g., c0 ≥ c1 ≥ · · · ≥ ck.
Then, the number of tokens for the vertex is max0≤i≤k{i+ ci}.

The reason this works is because as the player is at a vertex the oracle will allow them
to move down a level when it is more expensive to work in a particular subtree than to
work in any other available subtree. Filling a branch will cost one token (by interaction
with the oracle, see Proposition 2). So in the worst case scenario, the oracle will make the
player spend i tokens on the most expensive subtrees before going down, where i is chosen
to maximize i+ ci.

Two examples of the values for the same tree are given in Figure 5 (the difference being
the location of the roots). The dashed subtrees are those which will not be needed when
determining optimal cost at a vertex.
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Figure 5: Two examples of the assignment of minimum cost to vertices assigned to a tree
which differ by location of root.

4.2.2 Properties of the algorithm

The algorithm has several important properties, that when combined will establish the upper
bound for Theorem 6. Before proceeding, a simple computation shows for T = Pn that
fT,v(v) = 0 for the leaves and fT,v(v) = 1 for internal vertices.

Proposition 3. For a tree T on at least three vertices we have

fT,v(v) = 2 + max
S⊆T

v∈V (S)

(

min
P∈PS(v)

(

∑

w∈V (P )

(degS(w)− 2)

))

.

Proof. Using the language in Observation 3, if at any vertex w we have max{i+ ci} happen
for i < k, then prune off the subtrees corresponding to i + 1, . . . , k. (As an example, in
Figure 5 the parts to be pruned are shown with dashed lines). The resulting tree will be S.

Now, starting at the root v, to move down to a leaf degS(w) − 1 tokens must be spent
at the ends of the path and degS(w) − 2 spent on the interior of the path (if the “+2” is
incorporated then the costs can be degS(w) − 2 for all vertices on the path). The value
degS(w)− 2 corresponds to the “i” term present in “i+ ci”, in particular, the cost from the
algorithm of a vertex is found by minimizing the sum

∑

(degS(w)− 2) over all paths from
that vertex down to a leaf which is the right hand side of Equation 1.

Proposition 4. For a tree T on at least three vertices fT,v(v) + 1 ≥ maxw fT,w(w).

Proof. Observe that if u is a child of x, then fT,v(x) ≥ fT,v(u) (e.g., fT,v(u) is at least the
cost of any subtree off the vertex x). From this it can be seen that fT,v(x) is maximized
when x = v.

Fix a w in T which maximizes fT,w(w) and so that in the corresponding maximal S there
are at least two children of w. Such a w can be found by starting at an arbitrary w which
maximizes fT,w(w); then find a vertex x which is as far down in the tree as possible and has
fT,w(w) = fT,w(x) (possibly w = x); x is the desired vertex.

Finally, observe that fT,v(w) is found by looking over the subtrees of w in T rooted at v.
But this has exactly one less subtree than the computation when determining fT,w(w) and the
removal of one subtree can only decrease the value by at most one, e.g., fT,v(w) ≥ fT,w(w)−1.

Combining these ideas yields fT,v(v) ≥ fT,v(w) ≥ fT,w(w)−1, establishing the result.
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Proposition 5. If T is a tree on three or more vertices, then fT,v(v) is not constant on the
vertices of T .

Proof. If T is a path on n vertices with n ≥ 3, then fT,v(v) = 0 if v is a leaf, otherwise
fT,v(v) = 1. Thus, fT,v(v) is not constant, so we may assume T has at least a vertex of
degree three or more.

Define gu(v) = fTu
v ,v(v), where T u

v is the component of T −{u, v} that contains vertex v.
Then define a digraph Γ on the vertex set V (T ). For each edge uv ∈ E(T ), add an arc (u, v)
to Γ if gv(u) ≤ gu(v), and add an arc (v, u) to Γ if gu(v) ≤ gv(u), so Γ is doubly directed on
vertices {u, v} if gv(u) = gu(v).

Pick a strongly connected component of Γ that has no out neighbor, and let S be the
induced subgraph of T on this strongly connected component. Let u0 be a leaf of S or the
unique vertex of S if |V (S)| = 1. Since T has a vertex of degree at least 3, for each leaf
u and its unique neighbor v, gu(v) ≥ 1 and gv(u) = 0. Thus, u0 is not a leaf of T , and
NT (u0)\NS(u0) is not empty. Let M = fT,u0

(u0). We will find a vertex v ∈ NT (u0)\NS(u0)
such that fT,v(v) ≤ M − 1.

If v ∈ NS(u0), then gv(u0) = gu0
(v) by the definition of Γ, and

gv(u0) = max{0 + gu0
(w0), . . . , k + gu0

(wk)},

where w0, . . . , wk are the neighbors of u0 in T v
u0

with gu0
(w0) ≥ · · · ≥ gu0

(wk). Thus,
gu0

(v) ≥ gu0
(w0), so

fT,u0
(u0) = max{0 + gu0

(v), 1 + gu0
(w0), . . . , (k + 1) + gu0

(wk)}

= max{gu0
(v), 1 + gv(u0)} = 1 + gv(u0).

Therefore, gu0
(v) = gv(u0) = M − 1. On the other side, if v ∈ NT (u0) \NS(u0), then

gu0
(v) < gv(u0) ≤ fT,u0

(u0) = M,

so gu0
(v) ≤ M − 1. In summary, gu0

(v) ≤ M − 1 for all v ∈ NT (u0).
Now let v0, . . . , vd be the neighbors of u0 in T such that gu0

(v0) ≥ · · · ≥ gu0
(vd). Then

fT,u0
(u0) = max{0 + gu0

(v0), . . . , d+ gu0
(vd)}.

Let ℓ be the smallest index such that M = ℓ+ gu0
(vℓ). Then

gvℓ(u0) = max{0+gu0
(v0), . . . , (ℓ−1)+gu0

(vℓ−1), ℓ+gu0
(vℓ+1), . . . , (d−1)+gu0

(vd)} ≤ M−1.

Recall that gu0
(v) ≤ M − 1 for all v ∈ NT (u0), so ℓ ≥ 1. Since u0 is a leaf in S, vℓ is in

NT (u0) \NS(u0). It follows that gu0
(vℓ) < gvℓ(u0). Let w0, . . . , wk be the neighbors of vℓ in

T u0

vℓ
such that gvℓ(w0) ≥ · · · ≥ gvℓ(wk). Then

gu0
(vℓ) = max{0 + gvℓ(w0), . . . , k + gvℓ(wk)}

and
fT,vℓ(vℓ) = max{0 + gvℓ(u0), 1 + gvℓ(w0), . . . , (k + 1) + gvℓ(wk)}

= max{gvℓ(u0), 1 + gu0
(vℓ)} = gvℓ(u0) ≤ M − 1.

This completes the proof.
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Proposition 6. There is a strategy for the player to fill all vertices in a tree T on at least
three vertices using at most 1 + minv fT,v(v) = maxv fT,v(v) tokens.

Proof. That 1 + minv fT,v(v) = maxv fT,v(v) follows by combining the two preceding propo-
sitions. So we now only need to give a strategy for the player. The player spends the first
token at a vertex v which achieves minv fT,v(v) (this is the “+1”) and computes the values
fT,v(w) for all vertices w in the tree. Every subsequent token is spent by the following rule:

From the unique current filled vertex with unfilled children spend in a leaf which
is reached by going from the current vertex and always choosing a vertex which
is maximal for fT,v(w) among the unfilled children.

After spending each token the player then uses Proposition 2. This will result in having the
unique filled vertex with unfilled children ending up somewhere on that path where the most
“costly” subtree not previously filled has now been completely filled.

We analyze the response of the oracle (e.g., how the oracle will respond when using
Proposition 2). We can simplify the decision making by putting it into one of two options:

• Fill in the entire subtree where the token was spent (and stop).

• Fill in the subtrees where the token was not spent, go down one level, and then restart
the decision making process.

The oracle will choose the first option only when the cost to the player will be higher
if forced to go down into a different subtree. This is determined by looking at the costs of
filling in the subtrees (fT,v(w)) combined with the cost of filling in all of the subtrees which
will not be used. This is precisely the i+ ci expression coming from the algorithm.

In particular, the total cost after spending the first token will be fT,v(v).

4.2.3 Running the algorithm

When carrying out the algorithm for a specific vertex v we can work from the leaves to the
root and never need to visit any vertex more than one time, so is polynomial in the number
of vertices. Since we run the algorithm over all possible vertices we can then conclude that
the runtime to determine Z1(T ) is polynomial in the number of vertices of the tree.

This allows us to compute Z1(T ) for all small trees. In Table 1 the columns correspond
to a value of Z1(T ), the rows correspond to the number of vertices, and an entry is how
many trees on that number of vertices has that value for Z1(T ).

4.2.4 Another view of computing Z1(T )

As noted in Theorem 6 we have developed a recursive formulation for computing Z1(T ) for
a given tree T . As a matter of completeness, we offer a second viewpoint for computing
Z1(T ), which is also recursive in nature, but may be of general interest.

Suppose T is a tree that is not a path. Then let LT be the set of leaves of T , and let u1

and u2 be two distinct vertices in LT . Let U be the set of internal vertices of the unique path
in T from u1 to u2. Suppose v ∈ U and denote by S the tree obtained from T by deleting

14



k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11
n=3 1
n=4 1 1
n=5 1 1 1
n=6 1 3 1 1
n=7 1 5 3 1 1
n=8 1 10 7 3 1 1
n=9 1 17 17 7 3 1 1
n=10 1 35 39 19 7 3 1 1
n=11 1 63 95 45 19 7 3 1 1
n=12 1 126 228 118 47 19 7 3 1 1
n=13 1 240 559 298 125 47 19 7 3 1 1
n=14 1 479 1372 781 321 127 47 19 7 3 1
n=15 1 934 3387 2031 855 328 127 47 19 7 3
n=16 1 1867 8399 5372 2266 880 330 127 47 19 7
n=17 1 3687 20871 14223 6081 2344 887 330 127 47 19
n=18 1 7372 52010 38002 16353 6336 2369 889 330 127 47
n=19 1 14654 129792 101844 44312 17136 6416 2376 889 330 127
n=20 1 29304 324514 274449 120437 46721 17396 6441 2378 889 330

Table 1: The number of trees on n vertices with Z1(T ) = k.

the vertices of the two components in T − v that contain u1 or u2, respectively. As before
we let PS(v) denote the set of maximal paths in the tree S with v as one endpoint. Then

Z1(T ) = 2 + min
u1,u2∈LT

(max
v∈U

( min
P∈PS(v)

(
∑

w∈V (P )

(degS(w)− 2)))).

We omit the verification of this equation, as it resembles the proof that we used for the
previous interpretation. We also note here that it can be shown that for a given tree T on
n vertices Z1(T ) can be computed in O(n5) time.

5 Concluding remarks

Our main interest has been on the combinatorial aspects of the Zq-Game. Given the nature
of the need to find consistent strategies there is still much that is not known about this
game, including determining Zq(G) for many well-known families of graphs. In addition, we
list several problems here.

• As noted in the introduction the Z-Game works by looking at sets, and not strategies,
since all spending of tokens can occur at the start. There are some graphs for which
all spending in the Zq-Game can occur at the start, e.g., any graph where Zq(G) ≤ q.
Are there any family of graphs where Zq(G) > q and we can still spend all tokens at
the start?
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• We found an efficient way to compute Z1(T ) for a tree T without having to directly
run the game. Are there similar methods that work for other general graphs? (The
determination of Z(G) is believed to be NP, so the answer would be expected to be no
in general, but perhaps for some special subfamilies progress can be made.)

• For trees T we now have ways to compute Z0(T ) (always 1), Z1(T ) (see Theorem 6),
and Z∞(T ) (path cover number). Do there exist other “simple” combinatorial inter-
pretations that can be used to compute the q-analogue zero forcing number for trees
for other values of q?

• The original motivation for the study of the Zq-Game comes from its connection to
bound nullity of a matrix associated with a graph (and more generally the inertia).
We can see even for trees that the parameter associated with the Z1-Game can be
arbitrarily far off from the nullity for a graph. As an example, a complete binary tree
of depth d has Z1(T ) = d, but any matrix associated with the graph has nullity at most
2. Are there additional ways to modify the game to get improved bounds on nullity?
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