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Abstract

A sequence of vertices (v1, . . . , vk) of a graph G is called a dominating closed neigh-

borhood sequence if {v1, . . . , vk} is a dominating set of G and N [vi] * ∪i−1

j=1
N [vj ] for

every i. A graph G is said to be k−uniform if all dominating closed neighborhood
sequences in the graph have equal length k. Brešar et al. [3] characterized k-uniform
graphs with k ≤ 3. In this article we extend their work by giving a complete character-
ization of all k-uniform graphs with k ≥ 4.
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1 Introduction

All graphs considered in this article are finite, simple, loopless and undirected. Given a
graph G, let G be the complement of G, and let V (G) and E(G) be the vertex set and the
edge set of G respectively. A vertex u is a neighbor of vertex v if they are adjacent. The open

neighborhood of v, NG(v), consists of all neighbors of v in G, and the closed neighborhood

of v, NG[v], is equal to NG(v) ∪ {v}. We simply write N(v) and N [v] for NG(v) and NG[v]
respectively when the graph G is clear from the context. A vertex v of G is called an
isolated vertex of G if N(v) = ∅ and it is called a dominating vertex of G if N [v] = V (G).
Two distinct vertices u and v are called true twins if N [u] = N [v] and they are called false

twins if N(u) = N(v). For a subset S of vertices of G, let N(S) = ∪v∈SN(v) and let G \ S
denote the subgraph induced by the vertices of V (G) \ S (if S = {u} is a singleton, we
simply write G \ u). Also, S is called a dominating set of G if S ∪ N(S) = V (G), that is,
every vertex in V (G) \ S is adjacent to some vertex in S. A total dominating set of a graph
G is a subset of vertices S such that N(S) = V (G), that is, every vertex in V (G) is adjacent
to some vertex in S. Note that every total dominating set of a graph G is also a dominating
set of G.
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The join of two graphs G and H, denoted by G ∨ H, has vertex set V (G ∨ H) =
V (G)∪V (H) and edge set E(G∨H) = E(G)∪E(H)∪{uv |u ∈ V (G) and v ∈ V (H)}. Let
∨tH denote the join of t copies of the graph H and tH denote disjoint union of t copies of
H. The complete graph, path graph and cycle graph on n vertices are denoted by Kn, Pn

and Cn respectively. Lastly, let Kp1,p2 denote the complete bipartite graph with partition
sizes p1 and p2, and let Kp1,...,pt denote the complete multipartite graph with t parts of sizes
p1, . . . , pt where t ≥ 2.

A sequence of k distinct vertices (v1, . . . , vk) in G is said to have length k and it is called
a dominating sequence (respectively total dominating sequence) of G if the corresponding
set {v1, . . . , vk} is a dominating set (respectively total dominating set) of G. A sequence
(v1, . . . , vk) is called a closed neighborhood sequence (abbreviated to CNS) if, for each i with
2 ≤ i ≤ k, we have

N [vi] * ∪i−1
j=1N [vj],

or equivalently, N [vi] \ ∪i−1
j=1N [vj ] 6= ∅. A sequence of vertices (v1, . . . , vk) of a graph G is

called an open neighborhood sequence (abbreviated to ONS) of G if N(v1) 6= ∅ and

N(vi) * ∪i−1
j=1N(vj)

for each i with 2 ≤ i ≤ k.
The study of neighborhood sequences was initially motivated by some domination games

in [5, 11, 12]. The total version of the domination game was introduced in [8] and recently
studied in [9, 10]. Variants of such sequences have connections to the minimum rank problem
and the so called zero forcing number of the graph [1, 13]. Such sequences are also called
legal sequences in the context of the domination games. Each vertex in a neighborhood
sequence dominates (or totaly dominates) a new vertex which is not dominated (or totally
dominated) by any of the preceding vertices.

The lengths of these sequences are also related to some other important graph parameters
which have been extensively studied in the literature. For example, the minimum length of a
dominating closed neighborhood sequence of a graph G is the well known domination number

γ(G) of G and the maximum length of a dominating closed neighborhood sequence of G is
called the Grundy domination number γgr(G) of G. For a graph G with no isolated vertices,
the minimum length of a total dominating sequence of G is called the total domination

number γt(G) of G. Note that every minimum total dominating sequence of a graph G
is indeed an open neighborhood sequence of G, so γt(G) is equal to the minimum length
of a total dominating ONS. If G has no isolated vertices, the maximum length of a total
dominating ONS is known as the Grundy total domination number γtgr(G) of G [4].

We say that a graph G is a uniform length dominating sequence graph if all dominating
closed neighborhood sequences have the same length. A graph G is called k-uniform if all
dominating closed neighborhood sequences of G have equal length k. In other words, a
graph G is k-uniform if and only if γ(G) = γgr(G) = k. Bres̆ar et al. [3] gave a charac-
terization of k-uniform graphs for k ∈ {1, 2, 3} (see Theorem 3.6 in [3]). In this article,
we complete the characterization of k-uniform graphs by finding all k-uniform graphs with
k ≥ 4 (Corollary 2.5).
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2 Characterization of k-uniform graphs for k ≥ 4

Brešar et al. [3] gave the following characterization of k-uniform graphs for k ≤ 3.

Theorem 2.1. [3] If G is a graph, then

• G is 1-uniform if and only if G is a complete graph;

• G is 2-uniform if and only if its complement G is the disjoint union of one or more
complete bipartite graphs;

• G is 3-uniform if and only if G is the disjoint union of a 1-uniform and a 2-uniform
graph.

Observe that if G is a 3-uniform graph with no true twins, then G is a friendship graph,
that is, the join K1 ∨ tK2 for some t ≥ 1. We use this characterization as the basis step
of our induction and extend it to k ≥ 4 by showing that every k-uniform graph is indeed a
disjoint union of 1-uniform and 2-uniform graphs. To prove our result we make use of the
following two observations.

Lemma 2.2. Let G be a k-uniform graph and v be any vertex of G. Then,

(i) the subgraph G \N [v] is (k − 1)-uniform;

(ii) if G has no true twins, then G \N [v] has no true twins.

Proof. (i) Let (v1, . . . , vr) be a dominating CNS of the subgraph G \ N [v]. It is clear that
(v1, . . . , vr, v) is a dominating CNS of G, as v /∈ ∪r

i=1N [vi] and NG\N [v][vi+1]\NG\N [v][vi] 6= ∅
implies that NG[vi+1] \ NG[vi] 6= ∅, for each i ∈ {1, . . . , r − 1}. Hence r = k − 1 and the
result follows.

(ii) Suppose on the contrary that G\N [v] has two true twins, say w1 and w2. There are
no true twins in G, so there is a vertex w′ ∈ N(v) such that w′ is adjacent to exactly one of
w1 and w2. Without loss of generality, suppose that w′w1 /∈ E(G) and w′w2 ∈ E(G). In any
graph, every sequence consisting of a single vertex can be extended to a dominating CNS
of the graph. So, there exist vertices w3, . . . , wk such that (w2, w3, . . . , wk) is a dominating
CNS of G\N [v] since it is a (k−1)-uniform graph. Note that NG\N [v][wi+1]\NG\N [v][wi] 6= ∅
implies that NG[wi+1] \NG[wi] 6= ∅, for each i ∈ {2, . . . , k − 1}. Now, (w1, w2, . . . , wk, v) is
a dominating CNS of G of length k + 1, as w′ ∈ NG[w2] \NG[w1] and v /∈ ∪k

i=1N [wi]. The
latter contradicts with G being k-uniform. Thus, G \N [v] has no true twins.

Remark 2.3. Let G be a graph with connected components G1, . . . , Gc. Then, G is k-
uniform if and only if each Gi is ki-uniform where k = k1 + · · ·+ kc and ki ≥ 1.

Theorem 2.4. If G is a k-uniform graph with k ≥ 3 and G has no true twins, then G is a
disjoint union of 1-uniform and 2-uniform graphs.
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Proof. We proceed by strong induction on k. For k = 3, the result follows from Theorem 2.1.
Let G be a k-uniform graph with no true twins where k ≥ 4. Let v be a vertex of G. By
Lemma 2.2, the subgraph G\N [v] is (k−1)-uniform and it has no true twins. It follows that
G \N [v] is a disjoint union of 1-uniform and 2-uniform graphs by the induction hypothesis.
By Theorem 2.1, every 2-uniform graph is either connected or disjoint union of two 1-uniform
graphs. Let G1, . . . , Gr be the 1-uniform connected components and H1, . . . ,Ht be the 2-
uniform connected components of the subgraph G \N [v], if any. Since G \N [v] has no true
twins, Gi

∼= K1 for each i ∈ {1, . . . , r} and Hi
∼= ∨tiK2 for some integer ti ≥ 2 for each

i ∈ {1, . . . , t} (note that ti ≥ 2 as Hi is connected). Note that k − 1 = r + 2t where r, t ≥ 0
by Remark 2.3. In the sequel, let V (Gi) = {vi} for each i ∈ {1, . . . , r}, and ui and u′i be
two nonadjacent vertices of Hi for each i ∈ {1, . . . , t}.

Now let us show that G is disconnected. Suppose on the contrary that G is connected.
Let Ai = N(vi)∩N(v) and Bi = N(V (Hi))∩N(v) for each i. Since G is connected, Ai and
Bi are nonempty for each i. Let us show that A1, . . . , Ar, B1, . . . , Bt are mutually disjoint.

• Ai ∩Aj = ∅ whenever i 6= j:

Without loss of generality, suppose on the contrary that there exists a vertex w in N(v)
such that w is adjacent to both v1 and v2. Then, (v,w, v3, . . . , vr, u1, u

′
1, . . . , ut, u

′
t) is a

dominating sequence of G which has length r+2t = k−1. By removing some vertices
from this sequence, if necessary, we obtain a subsequence of it which is a dominating
CNS of G with length at most k − 1. The latter contradicts with G being k-uniform.

• Bi ∩Bj = ∅ whenever i 6= j:

Without loss, suppose on the contrary that there exists a vertex w in N(v) such that
w is adjacent to both u1 and u2. Then, (v,w, u′1, u

′
2, u3, u

′
3, . . . , ut, u

′
t, v1, . . . , vr) is a

dominating sequence of G which has length r + 2t = k − 1. As in the previous case,
we can obtain a dominating CNS of length at most k − 1 which is a contradiction.

• Ai ∩Bj = ∅ for every i and j:

Without loss, suppose on the contrary that there exists a vertex w in N(v) such that w
is adjacent to both v1 and u1. In this case we obtain a contradiction again by finding
the dominating sequence (v,w, v2, . . . vr, u

′
1, u2, u

′
2, . . . , ut, u

′
t) of G with length k − 1.

If r ≥ 1, we consider removing the vertex v1 from G. The vertex v1 has no neighbor in
Ai or Bj for each i 6= 1 and j ∈ {1, . . . , t}, as Ai’s are mutually disjoint and Ai ∩ Bj = ∅
for every i and j. Also note that Ai’s and Bj ’s are nonempty. So, there is a walk between
every pair of vertices in G\N [v1] via v which makes the subgraph G\N [v1] connected. But
this is a contradiction because G \N [v1] is (k − 1)-uniform by Lemma 2.2 and hence must
be disconnected by the induction hypothesis.

If r = 0, then G\N [v] has t connected components all of which are 2-uniform graphs. So,
k−1 = 2t in this case. Now we may assume that k ≥ 5 since k is odd and k ≥ 4. First let us
show that u1 and u′1 have the same neighbors in N(v). Suppose on the contrary that there is
a vertex w in N(v) which is adjacent to exactly one of u1 and u′1. Without loss of generality,
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assume that wu1 ∈ E(G) and wu′1 /∈ E(G). By Lemma 2.2, the subgraph G \ N [u′1] is
(k − 1)-uniform and has no true twins. However, Bi’s are mutually disjoint, the vertex u1
has a neighbor in N(v) and u1 is the only vertex of H1 which belongs to G \N [u′1]. So, the
subgraph G \N [u′1] is connected and the latter contradicts with the induction hypothesis.
Now, the vertices u1 and u′1 must have the same neighbors in N(v) and hence, the vertex u1
is an isolated vertex of G \N [u′1]. Therefore, the subgraph (G \N [u′1]) \u1 must be (k− 2)-
uniform by Remark 2.3 and it has no true twins. As k−2 ≥ 3, the subgraph (G\N [u′1])\u1
is a disjoint union of 1-uniform and 2-uniform graphs by the induction hypothesis. This is
again a contradiction, as (G \N [u′1]) \ u1 is connected.

Thus, G is disconnected and the result follows by induction and Remark 2.3.

Let G′ be a graph obtained from another graph G by adding a new true twin vertex and
k be any positive integer. Then, observe that G′ is k-uniform if and only if G is k-uniform.
Thus, we obtain a characterization of all k-uniform graphs as an immediate consequence of
Theorem 2.4.

Corollary 2.5. Every k-uniform graph is a disjoint union of 1-uniform and 2-uniform
graphs.

3 Concluding remarks

Let us consider length uniformity for two types of open neighborhood sequences. Let G be a
graph with no isolated vertices. We say that G is open k-uniform if every dominating ONS
of G has length k. Also, we call a graph G total k-uniform if every total dominating ONS of
G has length k. Note that a graph G is total k-uniform if and only if γt(G) = γtgr(G) = k.

No graph has a total dominating sequence of length 1 by definition, so γt(G) ≥ 2 for
every graph G. In [4], it was shown that γt(G) = 2 if and only if G is a multipartite graph
(Theorem 4.4), and if G is a graph with γt(G) = 3, then γtgr(G) > 3 (Theorem 3.2). Hence,
these results immediately give a characterization of total k-uniform graphs with k ≤ 3.

Theorem 3.1. [4]

(i) There are no total k-uniform graphs with k ∈ {1, 3};

(ii) A graph is total 2-uniform if and only if it is a complete multipartite graph.

We also remark that in [6] it was shown that there are no graphs G with γtgr(G) = 3
(Proposition 3.9). So, this gives an alternative proof for the nonexistence of total 3-uniform
graphs. Recently, the authors in [7] studied the characterizations of total k-uniform graphs
with k ∈ {4, 6} in some graph classes.

Every total dominating sequence in a graph is also a dominating sequence. So, it is clear
that the minimum length of a dominating ONS is at most γt(G) and the maximum length
of a dominating ONS is at least γtgr(G). Also, if every dominating ONS has length k in a
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graph, then every total dominating ONS has length k too. Hence, every open k-uniform
graph is indeed a total k-uniform graph. Moreover, one can show that a longest dominating
ONS must be a total dominating sequence. To see this, consider a longest dominating ONS
(v1, . . . , vk). Suppose on the contrary that it is not a total dominating sequence. So there
is a vertex, without loss of generality, say v1, such that v1 is nonadjacent to every vertex in
{v2, . . . , vk}. Since graph has no isolated vertices, v1 has a neighbor w. Now (v1, . . . , vk, w)
is a dominating ONS which contradicts with (v1, . . . , vk) being longest such sequence. We
summarize all of this in the following.

Remark 3.2. Let G be any graph. Then,

(i) If G is an open k-uniform graph, then G is also total k-uniform.

(ii) The length of a minimum dominating ONS in G is at most γt(G);

(iii) The length of a maximum dominating ONS in G is equal to γtgr(G).

Note that the minimum lengths of a dominating ONS and a total dominating ONS in
a graph may be different. For example, in a complete graph G, the minimum length of a
dominating ONS is 1 whereas γt(G) is 2. In a path graph P5, the minimum length of a
dominating ONS is 2 whereas γt(P5) is 3.

Corollary 3.3. Let G be a graph, then

(i) There are no open k-uniform graphs with k ∈ {1, 3};

(ii) G is open 2-uniform if and only if G is a complete multipartite graph Kp1,··· ,pt where
pi ≥ 2 for each i = 1, . . . , t.

Proof. Theorem 3.1 and Remark 3.2 (i) imply that there are no open k-uniform graphs with
k ∈ {1, 3} and every open 2-uniform graph is a complete multipartite graph. Observe that
for a complete multipartite graph G = Kp1,··· ,pt, if pi = 1 for some i, then the graph has a
dominating vertex v, that is, a vertex v with N [v] = V (G). So G has a dominating ONS
of length 1 and it cannot be open 2-uniform. Thus, if G is open 2-uniform then pi ≥ 2 for
each i. Lastly, it is easy to check that if pi ≥ 2 for each i then G is open 2-uniform and the
result follows.

Note that the characterizations of open k-uniform and total k-uniform graphs may be
different in general. In fact, the structure of open k-uniform graphs is supposed to be more
restricted as it requires additional conditions.
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