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Abstract

In this paper, we consider a general degree sum condition sufficient to imply the existence
of k vertex-disjoint chorded cycles in a graph G. Let σt(G) be the minimum degree sum of
t independent vertices of G. We prove that if G is a graph of sufficiently large order and
σt(G) ≥ 3kt− t+1 with k ≥ 1, then G contains k vertex-disjoint chorded cycles. We also show
that the degree sum condition on σt(G) is sharp. To do this, we also investigate graphs without
chorded cycles.

Keywords: Vertex-disjoint chorded cycles, Minimum degree sum, Degree sequence, Biconnected
components.

1 Introduction

The study of cycles in graphs is a rich and an important area. One question of particular
interest is to find conditions that guarantee the existence of k vertex-disjoint cycles. Let G be a
graph. Corrádi and Hajnal [2] first considered a minimum degree condition to imply a graph must
contain k vertex-disjoint cycles, proving that if |G|≥ 3k and the minimum degree δ(G) ≥ 2k, then
G contains k vertex-disjoint cycles. For an integer t ≥ 1, let

σt(G) = min

{

∑

v∈X

degG(v) : X is an independent vertex set of G with |X|= t.

}

,

and σt(G) = ∞ when the independence number is t− 1 or less. Enomoto [3] and Wang [12] inde-
pendently extended the Corrádi and Hajnal result, requiring a weaker condition on the minimum
degree sum of any two non-adjacent vertices. They proved that if |G|≥ 3k and σ2(G) ≥ 4k − 1,
then G contains k vertex-disjoint cycles. In 2006, Fujita et al. [5] proved that if |G|≥ 3k + 2 and
σ3(G) ≥ 6k − 2, then G contains k vertex-disjoint cycles, and in [7], this result was extended to
σ4(G) ≥ 8k − 3. Recently, Ma and Yan [11] proved a conjecture from [7] by showing that if G has
sufficiently large order and σt(G) ≥ 2kt− t+ 1, then G contains k vertex-disjoint cycles.

A chord of a cycle is an edge between two non-consecutive vertices of the cycle. An extension
of the study of vertex-disjoint cycles is that of vertex-disjoint chorded cycles. We say a cycle is
chorded if it contains at least one chord. In 2008, Finkel [4] proved the following result on the
existence of k vertex-disjoint chorded cycles which can be viewed as an extension of the Corrádi
and Hajnal result.

Theorem 1 (Finkel [4]). Let k ≥ 1 be an integer. If G is a graph of order at least 4k and δ(G) ≥ 3k,
then G contains k vertex-disjoint chorded cycles.

In 2010, Chiba et al. [1] extended the above result by using the σ2(G) condition.

E-mail addresses: bradley.elliott@emory.edu (B.Elliott), rg@emory.edu (R.J.Gould), hirohata@ece.ibaraki-
ct.ac.jp (K.Hirohata).
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Theorem 2 (Chiba, Fujita, Gao, Li [1]). Let k ≥ 1 be an integer. If G is a graph of order at least

4k and σ2(G) ≥ 6k − 1, then G contains k vertex-disjoint chorded cycles.

Recently, Theorem 2 was extended as follows.

Theorem 3 ([8]). Let k ≥ 1 be an integer. If G is a graph of order at least 8k+5 and σ3(G) ≥ 9k−2,
then G contains k vertex-disjoint chorded cycles.

The last result was further extended to σ4(G) in [9].

Theorem 4 ([9]). Let k ≥ 1 be an integer. If G is a graph of order n ≥ 11k+7 and σ4(G) ≥ 12k−3,
then G contains k vertex-disjoint chorded cycles.

In this paper, we prove the following result in Section 4.

Theorem 5. For k ≥ 1 and t ≥ 1, if G is a graph of order n ≥ (10t − 1)(k − 1) + 12t + 13 and

σt(G) ≥ 3kt− t+1, then G contains k vertex-disjoint chorded cycles. Further, this degree condition

is sharp.

Remark. To see the sharpness of the degree condition of Theorem 5, for n sufficiently large order,
consider the complete bipartite graph B = K3k−1,n−3k+1. Then σt(B) = t(3k − 1). Further, it is
not possible to construct k vertex-disjoint chorded cycles in B, as any chorded cycle must use three
vertices from the partite set of order 3k − 1.

All graphs considered here are simple and undirected finite. For terms not defined here see [6].
Let G be a graph. Let H be a subgraph of G, and let S ⊆ V (G). For u ∈ V (G), the set of neighbors
of u in G is denoted by NG(u), and we denote degG(u) = |NG(u)| and NH(u) = NG(u) ∩ V (H).
For u ∈ V (G) − S, NS(u) = NG(u) ∩ S. Furthermore, NG(S) =

⋃

w∈S NG(w) and NH(S) =
NG(S) ∩ V (H). Let A,B be two vertex-disjoint subgraphs of G. Then NG(A) = NG(V (A)) and
NB(A) = NG(A)∩V (B). The subgraph ofG induced by S is denoted by 〈S〉. LetG−S = 〈V (G)−S〉
and G −H = 〈V (G) − V (H)〉. If S = {u}, then we write G − u for G − S. If there is no fear of
confusion, then we use the same symbol for a graph and its vertex set. For two disjoint graphs G1

and G2, G1 ∪G2 denotes the disjoint union of G1 and G2. Let Q be a path or a cycle with a given
orientation and x ∈ V (Q). Then x+ denotes the first successor of x on Q and x− denotes the first
predecessor of x on Q. If x, y ∈ V (Q), then Q[x, y] denotes the path of Q from x to y (including x
and y) in the given direction. The reverse sequence of Q[x, y] is denoted by Q−[y, x]. We also write
Q(x, y] = Q[x+, y], Q[x, y) = Q[x, y−] and Q(x, y) = Q[x+, y−]. If Q is a path (or a cycle), say
Q = x1, x2, . . . , xt(, x1), then we assume that an orientation of Q is given from x1 to xt. If P is a
path connecting x and y, then we denote the path P with an orientation from x to y as P [x, y]. The
reverse sequence of P [x, y] is denoted by P−[y, x]. For X ⊆ V (G), let degH(X) =

∑

x∈X degH(x).
If H = G, then we denote degG(X) = degH(X). If G is one vertex, that is, V (G) = {x}, then we
simply write x instead of G. For an integer r ≥ 1 and two vertex-disjoint subgraphs A,B of G, we
denote by (d1, d2, . . . , dr) a degree sequence from A to B such that degB(vi) ≥ di and vi ∈ V (A)
for each 1 ≤ i ≤ r. In this paper, since it is sufficient to consider the case of equality in the
above inequality, when we write (d1, d2, . . . , dr), we assume degB(vi) = di for each 1 ≤ i ≤ r. For
X,Y ⊆ V (G), E(X,Y ) denotes the set of edges of G connecting a vertex in X and a vertex in Y .
A cycle of length ℓ is called a ℓ-cycle. For a graph G, comp(G) is the number of components of G.
Let R be a graph. If G has no induced subgraph isomorphic to R, then G is called R-free.

2



2 Graphs with No Chorded Cycles

In this section, we examine some useful properties of graphs that contain no chorded cycles.
Our ultimate goal is to show they contain large independent sets of small degree sum. This will be
important in our proof later.

Lemma 1. Let T be a tree of order n ≥ 2. Then the following statements hold.

(i) T has at least n/2 + 1 vertices of degree at most 2.

(ii) T contains an independent set I of order at least n/4 with each vertex of I having degree at

most 2 in T .

Proof. Let {v1, . . . , vb} be the set of branch vertices in T . Let ℓ be the number of leaves in T and
s be the number of stem vertices. Clearly ℓ+ s+ b = n. Since T has n− 1 edges, the degree sum
of T is

2(n− 1) = ℓ+ 2s+
b

∑

i=1

degT (vi) ≥ ℓ+ 2(n − ℓ− b) + 3b,

which implies ℓ ≥ b+ 2. Consequently,

ℓ+ s ≥ (b+ 2) + s = (b+ s) + 2 = (n− ℓ) + 2

2ℓ+ s ≥ n+ 2

ℓ+
s

2
≥

n

2
+ 1.

If L is the set of all leaves and stems in T , then

|L|= ℓ+ s ≥ ℓ+
s

2
≥

n

2
+ 1.

Thus (i) holds.
Since T is bipartite, one of the partite sets contains at least half the vertices of L. Thus T

contains an independent subset I ⊂ L with |I|≥ |L|/2 ≥ n/4, and (ii) holds.

Lemma 2. If H is a non-chorded graph of order n, then H contains an independent set I of order

at least n/12 with each vertex of I having degree at most 2 in H.

Before proving Lemma 2, we state and prove some helpful propositions.

Definitions. A biconnected graph is a non-separable graph. Note that any two vertices (two edges)
of a biconnected graph lie on a common cycle. A non-chorded graph is a graph not containing any
chorded cycles. A leaf is a vertex of degree 1. A stem is a vertex of degree 2. A branch is a vertex
of degree at least 3.

Proposition 1. Every non-chorded biconnected graph H of order at least four is triangle-free.

Proof. Suppose H contains a triangle on vertices a, b, c. Since H is connected, without loss of
generality, we can say a has some neighbor d ∈ V (H) − {b, c}. Since H is biconnected, edges ab
and ad must lie on a common cycle in H. Let C be such a cycle. If C contains edge bc, then ac is
a chord on the cycle, a contradiction. If C does not contain bc, then 〈C ∪ c〉 contains a cycle with
chord ab, a contradiction.
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Proposition 2. Let k ≥ 1 be an integer. If H is a non-chorded biconnected graph of order at least

four, then E(H) can be decomposed into

• a cycle C = F0, and

• if C is not a hamiltonian cycle in H, then a sequence of paths P1, . . . , Pk (each with at least

two edges) where the endpoints of Pi are ai, bi (ai 6= bi),

such that there exists a sequence of subgraphs F1, . . . , Fk of H, where for all 1 ≤ i ≤ k,

(i) Fi = Pi ∪ Fi−1,

(ii) V (Pi) ∩ V (Fi−1) = {ai, bi},

(iii) Fi is a non-chorded biconnected graph, and

(iv) Fk = H.

Proof. Let C be a cycle in H. Note that H is triangle-free by Proposition 1, and in particular, C is
not a triangle. Let F0 = C and let E1 = E(H)\E(F0). If C is a hamiltonian cycle in H, then since
H is non-chorded, E1 = ∅. For each i ≥ 1, if Ei 6= ∅, do the following: Select any f ∈ E(Fi−1) and
any ei ∈ Ei. Since H is biconnected, there exists a cycle Ci in H containing f and ei. Let Pi be
a path in Ci containing ei so that the endpoints of Pi are in V (Fi−1). Note that |E(Pi)|≥ 2. Call
these endpoints ai, bi, and assume that V (Pi) ∩ V (Fi−1) = {ai, bi}. Let Fi = Pi ∪ Fi−1. Since H
is non-chorded biconnected, the graph Fi is also non-chorded biconnected. Let Ei+1 = Ei \E(Pi).
Let k + 1 be the minimum index so that Ek+1 is empty. Then Fk = H.

Proposition 3. Let k ≥ 1 be an integer. Let C = F0 be any cycle of order at least four, let

P1, . . . , Pk be a sequence of paths (each with at least two edges) such that for each 1 ≤ i ≤ k, Pi is a

path from ai to bi (ai 6= bi), and let F1, . . . , Fk be a sequence of graphs such that for each 1 ≤ i ≤ k,

(i) Fi = Pi ∪ Fi−1,

(ii) V (Pi) ∩ V (Fi−1) = {ai, bi}, and

(iii) Fi is a non-chorded biconnected graph.

Then for each 1 ≤ i ≤ k, there exists some vertex v ∈ Pi(ai, bi) such that degFk
(v) = 2. Further,

there exist two distinct vertices x, x′ ∈ V (C) \
⋃k

i=1 V (Pi) such that degFk
(x) = degFk

(x′) = 2.

Proof. Suppose for a contradiction that for some 1 ≤ ℓ ≤ k, degFk
(v) ≥ 3 for all v ∈ Pℓ(aℓ, bℓ). Let

Pℓ : v0 = aℓ, v1, . . . , vt−1, vt = bℓ, and let F = Fℓ−1 \ {v0, vt}. Note that since Fk is non-chorded
biconnected graph of order at least four, Fk is triangle-free by Proposition 1.

Claim 1. For each 1 ≤ i ≤ t− 2, there exists a path Si in Fk from vi to vj for some i+ 2 ≤ j ≤ t
such that Si(vi, vj) ∩ V (Pℓ) = ∅ and V (Si) ∩ V (F ) = ∅.

Proof. We prove Claim 1 by induction. Since degFk
(v) ≥ 3 for all v ∈ Pℓ(aℓ, bℓ), there exists a

neighbor ui of vi with ui 6∈ {vi−1, vi+1} for each 1 ≤ i ≤ t−2. Since Fk is biconnected, there exists a
path Si in Fk starting with vi, ui, . . . , terminating at vj with i 6= j such that Si(vi, vj)∩V (Pℓ) = ∅.

First we prove the case where i = 1. Suppose V (S1) ∩ V (F ) 6= ∅. Then there exists a vertex
w ∈ V (S1) ∩ V (F ) such that S1(v1, w) ∩ V (F ) = ∅. Since Fℓ−1 is biconnected, there exists a
cycle C1 ⊆ Fℓ−1 containing v0 and w. We assume that an orientation of C1 is given from v0 to
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w. Suppose vt ∈ V (C1), so vt ∈ C1(v0, w) or vt ∈ C1(w, v0). Without loss of generality, we may
assume that vt ∈ C1(v0, w). Then

Pℓ[v1, vt], C
−

1 [vt, v0], C
−

1 [v0, w], S
−

1 [w, v1]

is a cycle with chord v0v1, a contradiction (see Figure 1).

v0

vt

v1w

S1

PℓC1

Fℓ−1

v0

vt

v1w

S1

Pℓ
C1

Fℓ−1

C2

Figure 1: Figure 2:vt ∈ C1(v0, w) C−

2 (vt, v0) ∩ C1(v0, w) = ∅

Thus vt 6∈ C1(v0, w). Similarly vt 6∈ C1(v0, w), hence vt 6∈ V (C1). Since Fℓ−1 is biconnected,
there exists a cycle C2 in Fℓ−1 containing v0 and vt. We assume that an orientation of C2 is given
from v0 to vt. Without loss of generality, we may assume that w 6∈ C−

2 (vt, v0). If C−

2 (vt, v0) ∩
V (C1) = ∅, then

Pℓ[v1, vt], C
−

2 [vt, v0], C
−

1 [v0, w], S
−

1 [w, v1]

is a cycle with chord v0v1, a contradiction (see Figure 2). Thus we may assume that C−

2 (vt, v0) ∩
V (C1) 6= ∅. Let z be a vertex such that z ∈ C−

2 (vt, v0) ∩ V (C1) and C−

2 (vt, z) ∩ V (C1) = ∅. By
assumption, z 6= w. If z ∈ C1(v0, w), then

Pℓ[v1, vt], C
−

2 [vt, z], C
−

1 [z, v0], C
−

1 [v0, w], S
−

1 [w, v1]

is a cycle with chord v0v1, a contradiction. Otherwise, z ∈ C−

1 (v0, w), and similarly

Pℓ[v1, vt], C
−

2 [vt, z], C1[z, v0], C1[v0, w], S
−

1 [w, v1]

is a cycle with chord v0v1, a contradiction. Thus V (S1)∩ V (F ) = ∅. Next suppose j ∈ {0, 2}, that
is, vj ∈ {v0, v2}. If j = 0, then

Pℓ[v1, vt], C2[vt, v0], S
−

1 [v0, v1]

is a cycle with chord v0v1, a contradiction. If j = 2, then similarly, we can find a cycle with chord
v1v2, a contradiction.

For induction, assume that Claim 1 is true for i− 1. Thus there exists a path Si−1 in Fk from
vi−1 to vj′ for some i+1 ≤ j′ ≤ t satisfying the conditions of Claim 1. Suppose that every path Si

starting at vi, ui, . . . passes through some vertex x ∈ V (F ) ∪ Si−1(vi−1, vj′) before reaching any vj
with i 6= j. Then select a vertex x such that Si(vi, x) ∩ (V (F ) ∪ Si−1(vi−1, vj′)) = ∅. First suppose
x ∈ V (F ). Since Fℓ−1 is connected, there exists a path Q1 in Fℓ−1 from x to v0. Then

Pℓ[v0, vi−1], Si−1[vi−1, vj′ ], P
−

ℓ [vj′ , vi], Si[vi, x], Q1[x, v0]

5



is a cycle with chord vi−1vi, a contradiction. Next suppose x ∈ Si−1(vi−1, vj′). Since Fℓ−1 is
connected, there exists a path Q2 in Fℓ−1 from vt to v0. Then

Pℓ[v0, vi−1], Si−1[vi−1, x], S
−

i [x, vi], Pℓ[vi, vt], Q2[vt, v0]

is a cycle with chord vi−1vi, a contradiction. Thus Si is a path from vi to vj not containing any
vertex in V (F ) ∪ Si−1(vi−1, vj′). If j ≥ i + 2, then Claim 1 holds. Thus we may assume that
j ≤ i+ 1. Suppose j ≤ i− 2. Then

Pℓ[vj , vi−1], Si−1[vi−1, vj′ ], P
−

ℓ [vj′ , vi], Si[vi, vj ]

is a cycle with chord vi−1vi, a contradiction. If j = i− 1, then using the above path Q2,

Pℓ[v0, vi−1], S
−

i [vi−1, vi], Pℓ[vi, vt], Q2[vt, v0]

is a cycle with chord vi−1vi, a contradiction. If j = i+ 1, then similarly, we can find a cycle with
chord vivi+1, a contradiction. Thus for each 1 ≤ i ≤ t− 2, there exists a path Si in Fk from vi to
vj for some i+ 2 ≤ j ≤ t satisfying the conditions of Claim 1.

By Claim 1, there exists a path St−2 from vt−2 to vt such that St−2(vt−2, vt) ∩ V (Pℓ) = ∅ and
V (St−2) ∩ V (F ) = ∅. Since degFk

(vt−1) ≥ 3 by our assumption, there exists a neighbor ut−1 of
vt−1 with ut−1 6∈ {vt−2, vt}. Since Fk is biconnected, there exists a path St−1 in Fk starting with
vt−1, ut−1, . . . , terminating at vj with j 6= t − 1 such that St−1(vt−1, vj) ∩ V (Pℓ) = ∅. Since Fℓ−1

is biconnected, there exists a cycle C1 containing v0 and vt. We assume that an orientation of C1

is given from v0 to vt. Suppose that every path St−1 starting at vt−1 passes through some vertex
x ∈ V (F ) ∪ St−2(vt−2, vt) before reaching vj with j 6= t − 1. Then we take a vertex x such that
St−1(vt−1, x) ∩ (V (F ) ∪ St−2(vt−2, vt)) = ∅. First suppose x ∈ V (F ). Since Fℓ−1 is biconnected,
two vertices v0 and x must lie on a common cycle C2 in Fℓ−1. We assume that an orientation of
C2 is given from v0 to x. Then we may assume that vt 6∈ C2(x, v0). Thus

Pℓ[v0, vt−2], St−2[vt−2, vt], P
−

ℓ [vt, vt−1], St−1[vt−1, x], C2[x, v0]

is a cycle with chord vt−2vt−1, a contradiction. Next suppose x ∈ St−2(vt−2, vt). Then

Pℓ[v0, vt−2], St−2[vt−2, x], S
−

t−1[x, vt−1], Pℓ[vt−1, vt], C1[vt, v0]

is a cycle with chord vt−2vt−1, a contradiction. Thus St−1 is a path from vt−1 to vj not containing
any vertex in V (F ) ∪ St−2(vt−2, vt). If j ≤ t− 2, then

Pℓ[vj , vt−2], St−2[vt−2, vt], P
−

ℓ [vt, vt−1], St−1[vt−1, vj ]

is a cycle with chord vt−2vt−1, a contradiction. If j = t, then

Pℓ[v0, vt−1], St−1[vt−1, vt], C1[vt, v0]

is a cycle with chord vt−1vt, a contradiction. Thus, for each 1 ≤ i ≤ k, there exists some vertex
v ∈ Pi(ai, bi) such that degFk

(v) = 2.
Next consider F1 = P1 ∪ C. We assume that an orientation of C is given from a1 to b1. Then

C[a1, b1], P
−

1 [b1, a1] is a cycle in Fk. By the above result, there exists some vertex x ∈ C(b1, a1)
with degFk

(x) = 2. Similarly, since P1[a1, b1], C[b1, a1] is a cycle in Fk, there exists some vertex
x′ ∈ C(a1, b1) with degFk

(x′) = 2. This completes the proof of Proposition 3.
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Proposition 4. Every non-chorded biconnected graph H of order n has at least (n− 2)/3+2 stem

vertices.

Proof. Let C and P1, . . . , Pk be a cycle and paths satisfying the conclusions of Proposition 2. Then
by Proposition 3, there exist at least k + 2 stem vertices in H. Also, since H is biconnected,
every vertex in H is either a stem vertex or a branch vertex. Now consider the endpoints of Pi

for each 1 ≤ i ≤ k. By Proposition 2, there exist at most 2k branch vertices in H. Thus there
exist at least n− 2k stem vertices in H. Consequently, the number of stem vertices in H is at least
max{k + 2, n − 2k}, which is always at least (n− 2)/3 + 2.

Definition. A biconnected component in a graph is a maximal biconnected subgraph. In this
paper, we do not consider a single edge to be a biconnected component, and we handle these
edges separately. Every cycle in a graph is contained in exactly one biconnected component. The
following intuitive proposition is shown in [10].

Proposition 5 (Harary, Prins [10]). If B1, B2 are distinct biconnected components in a graph, then

E(B1) ∩ E(B2) = ∅.

Proposition 6. Let k ≥ 1 be an integer, and let H be a non-chorded connected graph containing

k biconnected components. Then E(H) can be decomposed into

• a sequence of non-chorded biconnected components B1, . . . , Bk, and

• a sequence of edge-disjoint paths P2, . . . , Pℓ (some of which might be just a single vertex) with
ℓ ≥ k, where the endpoints of Pi are ai, bi for each 2 ≤ i ≤ ℓ,

so that there exists a sequence of induced subgraphs F1, F2, . . . , Fℓ of H with the following properties:

(i) F1 = B1,

(ii) for each 2 ≤ i ≤ k, Fi = Fi−1 ∪ Pi ∪ Bi, V (Pi) ∩ V (Fi−1) = {ai}, V (Pi) ∩ V (Bi) = {bi}, and
V (Fi−1) ∩ V (Bi) = ∅ unless ai = bi, in which case V (Fi−1) ∩ V (Bi) = {ai},

(iii) for each k + 1 ≤ i ≤ ℓ, Fi = Fi−1 ∪ Pi, V (Pi) ∩ V (Fi−1) = {ai}, degH(bi) = 1, |Pi|≥ 2, and

(iv) Fℓ = H.

Proof. Since H is non-chorded, every biconnected component in H must be non-chorded. Choose
any biconnected component inH to be F1 = B1 (satisfying (i)). We claim that |V (B)∩V (Fi−1)|≤ 1
for any biconnected component B in H \ E(Fi−1) and for each 2 ≤ i ≤ k. For some 2 ≤ i ≤ k,
suppose that there exists a biconnected component B in H \ E(Fi−1) with |V (B) ∩ V (Fi−1)|≥ 2.
Then for some u, v ∈ V (B) ∩ V (Fi−1), there exists a path Q1 from u to v in Fi−1 and a path Q2

from u to v in B such that Q1 ∪Q2 forms a cycle Q. This cycle Q is in H. Thus Q is contained in
some biconnected component B′. Since Q1 is in Fi−1, it is edge-disjoint from B, Q is not in B and
B′ 6= B. But B and B′ share some edge of Q2, contradicting Proposition 5. Thus the claim holds.

First suppose that there exists a biconnected componentB inH\E(Fi−1) with V (B)∩V (Fi−1) =
{v} for some vertex v. In this case, let Bi = B, Pi = v, and Fi = Fi−1 ∪ Pi ∪Bi, with ai = bi = v.
Next suppose that all biconnected components in H \ E(Fi−1) are vertex-disjoint from Fi−1. Let
Bi be a biconnected component in H \ E(Fi−1) such that a path from Bi to Fi−1 in H is edge-
disjoint from every other biconnected component in H \ E(Fi−1), and let this path be Pi. Since
H is connected, such a Bi, Pi exist. Let Fi = Fi−1 ∪ Pi ∪ Bi, V (Pi) ∩ V (Fi−1) = {ai}, and
V (Pi) ∩ V (Bi) = {bi}. Thus (ii) is satisfied.
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Clearly Fk is a connected graph containing all the cycles in H, and H \ E(Fk) is a forest.
Then there exists no path P in H \ E(Fk) with both endpoints in V (Fk), otherwise Fk ∪ P would
contain a cycle not in Fk. If E(H) \ E(Fi−1) 6= ∅, then do the following: Select some edge
e ∈ E(H) \ E(Fi−1) that is incident to a leaf vertex v in H. Let Pi be a path from v = bi to
V (Fi−1) with V (Pi) ∩ V (Fi−1) = {ai}. Let Fi = Fi−1 ∪ Pi. Since Pi contains edge e, |Pi|≥ 2, and
since v = bi is a leaf in H, degH(bi) = 1, satisfying (iii).

Since H is finite, there exists some ℓ ≥ k for which E(H) \ E(Fℓ) = ∅, satisfying (iv).

Now we finally prove Lemma 2.

Proof of Lemma 2. If H is acyclic, then applying Lemma 1 (ii) to each connected component of
H gives the result. Thus we may assume that H has at least one cycle. Hence H contains a bicon-
nected component. Let B1, . . . , Bk and P2, . . . , Pℓ be a decomposition of E(H) into biconnected
components and paths as described by the conclusion of Proposition 6 with the corresponding
subgraphs F1, . . . , Fℓ in H. For each Bi, 1 ≤ i ≤ k, let Li = {v ∈ V (Bi) : degBi

(v) ≤ 2}. By
Proposition 4, each Li has order at least (|Bi|−2)/3 + 2. Let S = {v ∈ V (H) : degH(v) ≤ 2}. We
will show that |S|≥ |H|/6. First, let Si = {v ∈ V (Fi) : degFi

(v) ≤ 2} for each 1 ≤ i ≤ k, and we
claim the following.

Claim 1. For each 1 ≤ i ≤ k, |Si|≥ |Fi|/5 + 2.

Proof. First suppose i = 1. Then recall F1 = B1. If |B1|≥ 5, then |S1|= |L1|≥ (|B1|−2)/3 + 2 ≥
|F1|/5 + 2. If |B1|≤ 4, then B1 is a 3-cycle or a 4-cycle, since these are the only biconnected
components on at most 4 vertices. Then clearly |S1|≥ |F1|/5 + 2.

Next suppose 2 ≤ i ≤ k. Then recall Fi = Fi−1 ∪ Pi ∪Bi, and assume by inductive assumption
that Fi−1 contains a set Si−1 of vertices of degree at most 2, where |Si−1|≥ |Fi−1|/5 + 2. We have
the following two cases.

Case 1. For some 2 ≤ i ≤ k, |Pi|= 1.
Then ai = bi. By Proposition 6 (ii) V (Fi−1) ∩ V (Bi) = {ai}. Thus |Fi|= |Fi−1|+|Bi|−1. While

ai may have degree 2 in each of Fi−1, Bi separately, it has degree greater than 2 in Fi. Thus

|Si| ≥ (|Si−1|−|{ai}|) + (|Li|−|{ai}|)

≥

(

|Fi−1|

5
+ 2

)

+

(

|Bi|−2

3
+ 2

)

− 2

=
|Fi−1|+|Bi|−1

5
+

2|Bi|+23

15

=
|Fi|

5
+

2|Bi|+23

15
. (1)

If |Bi|≥ 4, then, by (1), we have |Si|≥ |Fi|/5 + 2. Thus we may assume that |Bi|≤ 3. Then Bi is a
3-cycle and |Li|= 3, in which case the inequality is easily shown.

Case 2. For some 2 ≤ i ≤ k, |Pi|≥ 2.
Then ai 6= bi. By Proposition 6 (ii)
V (Fi−1) ∩ V (Bi) = ∅. Thus

|Fi| = |Fi−1|+|Bi|+|Pi|−|{ai, bi}|

= |Fi−1|+|Bi|+|Pi|−2.
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Note that degPi
(v) ≤ 2 for each 1 ≤ i ≤ ℓ and every vertex v ∈ V (Pi). While ai, bi may have degree

2 in each of Fi−1, Bi or Pi separately, they have degree greater than 2 in Fi. Thus

|Si| ≥ (|Si−1|−|{ai}|) + (|Li|−|{bi}|) + (|Pi|−|{ai, bi}|)

≥

(

|Fi−1|

5
+ 2

)

+

(

|Bi|−2

3
+ 2

)

+ |Pi|−4

=
|Fi−1|+|Bi|+|Pi|−2

5
+

2|Bi|+12|Pi|−4

15

=
|Fi|

5
+

2|Bi|+12|Pi|−4

15
. (2)

Note that |Pi|≥ 2. If |Bi|≥ 5, then, by (2), we have |Si|≥ |Fi|/5 + 2. Thus we may assume that
|Bi|≤ 4. Then Bi is a 3-cycle or a 4-cycle, and |Li|= 3 or 4. In either case, the inequality is again
easily shown.

In particular, Claim 1 shows

|Sk|≥ |Fk|/5 + 2. (3)

Let t = |Sk ∩
⋃ℓ

i=k+1 ai|. Enumerate the components T1, T2, . . . , Tw of
⋃ℓ

i=k+1〈V (Pi)〉, and note
that w ≥ t. Clearly

t ≤ |Sk|. (4)

Claim 2. We have |S|≥ |H|/6.

Proof. Each component Ti, 1 ≤ i ≤ w, is a tree, so by Lemma 1 (i), it has at least |Ti|/2+1 vertices
of degree at most 2. Each component contains exactly one vertex v ∈ V (Fk), while the rest are in
H −Fk, and this one vertex v may have degree at least 2 in Fk, so the number of vertices of degree
at most 2 in H − Fk is

|S ∩ (H − Fk)|≥
w
∑

i=1

|Ti|

2
=

w
∑

i=1

(

|Ti|−1

2
+

1

2

)

=
|H|−|Fk|

2
+

w

2
≥

|H|−|Fk|+t

2
.

Also |S ∩ Fk|= |Sk|−t. Then

|S|= |S ∩ Fk|+|S ∩ (H − Fk)|≥ |Sk|−t+
|H|−|Fk|+t

2
=

|H|−|Fk|−t

2
+ |Sk|. (5)

Combining (3), (4) and (5) gives

|S|≥
|H|−|Fk|+|Sk|

2
≥

|H|

2
−

2|Fk|

5
+ 1.

Since |S|≥ |Sk|, by (3),

|S|≥
|Fk|

5
+ 2.

Thus |S|≥ max {|H|/2− 2|Fk|/5 + 1, |Fk |/5 + 2}, which is at least |H|/6 for all values of |Fk|.

We claim that 〈S〉 is a forest or H is a cycle. Suppose 〈S〉 is not a forest. Then 〈S〉 contains
a cycle C. If H = C, then the claim holds. Thus H 6= C, that is, V (H) \ V (C) 6= ∅. Note that
degH(v) ≤ 2 for each v ∈ S. Since H is connected by the assumption, we get a contradiction. Thus
the claim holds. If 〈S〉 is a forest, then it is bipartite. Since |S|≥ |H|/6 by Claim 2, there exists an
independent subset I ⊆ S of order at least (|H|/6)/2 = n/12. If H is a cycle, then clearly Lemma
2 also is true. This completes the proof of Lemma 2.
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3 Other Lemmas

In this section, we state several known lemmas that will be used in the proof of our main result.
Note that a minimal set of r vertex-disjoint cycles C1, . . . , Cr is a set with |

⋃r
i=1 Ci| as small as

possible.

Lemma 3 ([8]). Let r ≥ 1 be an integer, and let C = {C1, . . . , Cr} be a minimal set of r vertex-

disjoint chorded cycles in a graph G. If |Ci|≥ 7 for some 1 ≤ i ≤ r, then Ci has at most two chords.

Furthermore, if the Ci has two chords, then these chords must be crossing.

Lemma 4 ([8]). Let r ≥ 1 be an integer, and let C = {C1, . . . , Cr} be a minimal set of r vertex-

disjoint chorded cycles in a graph G. Then degCi
(x) ≤ 4 for any 1 ≤ i ≤ r and any x ∈ V (G) −

⋃r
i=1 V (Ci). Furthermore, for some C ∈ C and some x ∈ V (G)−

⋃r
i=1 V (Ci), if degC(x) = 4, then

|C|= 4, and if degC(x) = 3, then |C|≤ 6.

Lemma 5 ([8]). Suppose there exist at least five edges connecting two vertex-disjoint paths P1 and

P2 with |P1 ∪ P2|≥ 7. Then there exists a chorded cycle in 〈P1 ∪ P2〉 not containing at least one

vertex of 〈P1 ∪ P2〉.

4 Proof of Theorem 5

Suppose Theorem 5 does not hold. We first consider the case where k = 1. Then n ≥ 12t+ 13
and σt(G) ≥ 2t+1. Noting ⌈n/12⌉ ≥ t+2, by Lemma 2, G contains an independent set I of order
t with each vertex of I having degree at most 2 in G. Then degG(I) ≤ 2t, a contradiction. Thus
we assume k ≥ 2. Let G be an edge-maximal counter-example. If G is complete, then G contains
k vertex-disjoint chorded cycles. Thus we may assume G is not complete. Let xy 6∈ E(G) for some
x, y ∈ V (G), and define G′ = G + xy, the graph obtained from G by adding the edge xy. By the
edge-maximality of G, G′ is not a counter-example. Thus G′ contains k vertex-disjoint chorded
cycles C1, . . . , Ck. Without loss of generality, we may assume xy 6∈

⋃k−1
i=1 E(Ci), that is, G contains

k − 1 vertex-disjoint chorded cycles. Over all sets of k − 1 vertex-disjoint chorded cycles, choose
C1, . . . , Ck−1, where C =

⋃k−1
i=1 Ci and H = G− C , such that:

(A1) |C | is as small as possible,

(A2) subject to (A1), comp(H) is as small as possible, and

(A3) subject to (A1) and (A2), the number of K4’s in C is as large as possible.

We may also assume H does not contain a chorded cycle, otherwise, G contains k vertex-disjoint
chorded cycles, a contradiction. Theorem 5 holds by Theorems 1-4 for all t ≤ 4. Thus we also
assume t ≥ 5.

Claim 1. H has an order at least 12t+ 13.

Proof. Suppose this claim fails to hold, that is, suppose |H|≤ 12t+12. First we prove the following
subclaim.

Subclaim 1. For each 1 ≤ i ≤ k − 1, |Ci|≤ 10t− 1.

Proof. Suppose Subclaim 1 fails to hold, that is, |Ci|≥ 10t for some 1 ≤ i ≤ k − 1. Without loss
of generality, let |C1|≥ |C2|≥ · · · ≥ |Ck−1|. In fact, let |C1|= st+ r ≥ 10t ≥ 50, with s ≥ 10 and
0 ≤ r ≤ t− 1.
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Subclaim 1.1. For s ≥ 10, the cycle C1 contains s vertex-disjoint sets X1,X2, . . . ,Xs each with t
independent vertices such that degC1

(
⋃s

i=1Xi) ≤ 2st+ 4.

Proof. For any st vertices of C1, their degree sum in C1 is at most 2st+ 4, since by Lemma 3, C1

has at most two chords. Thus, it only remains to show that C1 contains s vertex-disjoint sets of
t independent vertices each. Recall |C1|= st + r ≥ 10t. Start anywhere on C1 and label the first
st vertices of C1 with labels 1 through s in order, starting over again with 1 after using label s. If
r ≥ 1, then label the remaining r vertices of C1 with the labels s+1, . . . , s+ r. The labeling above
yields s vertex-disjoint sets of t vertices each, where all the vertices labeled with 1 are one set, all
the vertices labeled with 2 are another set, and so on. Given this labeling, any vertex in C1 has a
different label than the vertex that precedes it on C1 and the vertex that succeeds it on C1. Let
C0 be the cycle obtained from C1 by removing all chords. Then the vertices in each of the sets are
independent in C0. Thus, the only way vertices in the same set are not independent in C1 is if the
endpoints of a chord of C1 were given the same label. Note any vertex labeled i is distance at least
s ≥ 10 in C0 from any other vertex labeled i. Thus, if a vertex and the neighbor preceding it on
C1 or the neighbor succeeding it on C1 have their labels exchanged, then the vertices in each of the
classes are independent in C1.

Case 1. No chord of C1 has endpoints with the same label.

Then there exist s vertex-disjoint sets of t independent vertices each in C1.

Case 2. Exactly one chord of C1 has endpoints with the same label.

Recall C1 contains at most two chords, and if C1 contains two chords, then these chords must be
crossing. Since |C1|≥ 50, even if C1 contains two chords, each chord has an endpoint such that one
of the endpoint’s neighbors in C1 is not an endpoint of the other chord. Choose such an endpoint
of the chord whose endpoints were assigned the same label, and exchange the label of this vertex
for its non-endpoint neighbor. The vertices in each of the resulting classes are still independent in
C1, and now no chord of C1 has endpoints with the same label. Thus there exist s vertex-disjoint
sets of t independent vertices each in C1.

Case 3. Two chords of C1 each have endpoints with the same label.

In this case, note two chords are crossing. Suppose an endpoint of one chord of C1 is adjacent
to an endpoint of the other chord on C1. Now exchange the labels of these adjacent endpoints.
Then the vertices in each of the resulting classes are still independent in C1, and now no chord
of C1 has endpoints with the same label. Thus there exist s vertex-disjoint sets of t independent
vertices each in C1.

Next suppose no endpoint of one chord of C1 is adjacent to an endpoint of the other chord on
C1. Let x1x2, y1y2 be the two distinct chords of C1. Since the two chords are crossing, without loss
of generality, we may assume x1, y1, x2, y2 are in that order on C1, and the label of x1 is 1. Then
the label of x+1 is 2. Now we exchange the labels of x1 for x+1 , that is, the label of x1 is 2 and the
label of x+1 is 1. Next we exchange the labels of y2 for y−2 . Note y2 6= x−1 by our assumption that
no endpoint of one chord of C1 is adjacent to an endpoint of the other chord on C1. Thus, the
vertices in each of the resulting classes are independent in C1, and no chord of C1 has endpoints
with the same label. Hence there exist s vertex-disjoint sets of t independent vertices each in C1,
completing the proof of Subclaim 1.1.

Recall that, by assumption, |H|≤ 12t+12 and |C1|≥ 50. Let X1,X2, . . . ,Xs be as in Subclaim
1.1, and let X =

⋃s
i=1 Xi. Further, note that degC1

(v) ≤ 2 for every v ∈ V (H) or a shorter chorded
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cycle would exist by Lemma 4, contradicting (A1). Thus

|E(H,C1)|≤ 2(12t + 12). (1)

First suppose that k = 2. Then C1 is the only cycle in C . By Subclaim 1.1,

|E(C1,H)| ≥ degG(X )− degC1
(X )

≥ s(3kt− t+ 1)− (2st+ 4)

= s(6t− t+ 1)− (2st+ 4)

= 3st+ s− 4,

but since s ≥ 10 and t ≥ 5, we see that 3st+ s− 4 ≥ 30t+6 > 2(12t+12), contradicting (1). Thus
we may assume that k ≥ 3. Then, by Subclaim 1.1 and (1),

|E(X ,C − C1)| = degG(X )− degC1
(X )− degH(X )

≥ s(3kt− t+ 1)− (2st+ 4)− 2(12t + 12)

= 3kst− 3st+ s− 24t− 28. (2)

Since s ≥ 10, we have 3st ≥ 30t = 24t+ 6t. Thus

24t ≤ 3st− 6t. (3)

By (2) and (3), we have

3kst− 3st+ s− 24t− 28 ≥ 3kst− 3st+ s− (3st− 6t)− 28

= 3st(k − 2) + s+ 6t− 28

≥ 3st(k − 2) + 12.

Thus |E(X , C ′)|> 3st for some C ′ in C − C1. Let h = max{degC′(v) : v ∈ X}. Let v∗ ∈ X with
degC′(v∗) = h. Since |X |= st, if h ≤ 3, then |E(X , C ′)|≤ 3st, a contradiction. Thus we may assume
that h ≥ 4. By the maximality of C1, |C

′|≤ |C1|= st+r. It follows that h = degC′(v∗) ≤ |C ′|≤ st+r.
Recall s ≥ 10, t ≥ 5 and 0 ≤ r ≤ t− 1. Then

|E(X − {v∗}, C ′)| ≥ (3st+ 1)− degC′(v∗) ≥ (3st+ 1)− (st+ r)

= 2st+ 1− r ≥ 2st+ 1− (t− 1)

= 2st− t+ 2

≥ 97. (4)

Since h = degC′(v∗) ≥ 4, let v1, v2, v3, v4 be neighbors of v∗ in that order on C ′. These vertices par-
tition C ′ into four intervals C ′[vi, vi+1) for each 1 ≤ i ≤ 4, where v5 = v1. By (4), there exist at least
97 edges from C1−v∗ to C ′. Thus some interval clearly receives at least 25 of these edges. Without
loss of generality, say C ′[v4, v1) is such an interval. Then, by Lemma 5, 〈(C1 − v∗) ∪ C ′[v4, v1)〉
contains a chorded cycle not containing at least one vertex of 〈(C1 − v∗) ∪ C ′[v4, v1)〉. Also,
v∗, C ′[v1, v3], v

∗ is a cycle with chord v∗v2, and it uses no vertices from C ′[v4, v1). Thus we have two
shorter vertex-disjoint chorded cycles in 〈C1 ∪C ′〉, contradicting (A1). Hence Subclaim 1 holds.

Now as n ≥ (10t − 1)(k − 1) + 12t + 13 and |C |≤ (10t − 1)(k − 1) by Subclaim 1, we have
|H|≥ 12t+ 13, a contradiction. This completes the proof of Claim 1.
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By Claim 1, |H|≥ 12t+13. Noting ⌈|H|/12⌉ ≥ t+2, by Lemma 2, there exists an independent
set I∗ of order t + 2 in H such that the degree in H of each vertex of I∗ is at most 2. We now
select an independent set I of order t from I∗ as follows. If H is connected, we select any subset I
of order t. If H is not connected, then each component has a longest path with endpoints of degree
at most 2 in H (or else the component contains a chorded cycle). If two of these endpoints are in
I∗, we select at least two of them, say s1 and s2, from different components of H to be in I. Note
that each of s1 and s2 is not a cut-vertex for its component. If s1 and s2 (one or both) are not
in I∗, then they might have adjacencies in I∗. We can remove the at most two adjacencies of say
s1 from I∗, and place s1 in I∗. We can do the same for s2 if necessary. Then I∗ still contains at
least t independent vertices with degree at most 2 in H. We select a subset I of order t in I∗ that
contains both s1 and s2. Note that

degC (I) = degG(I)− degH(I)

≥ (3kt− t+ 1)− 2t

= 3kt− 3t+ 1

= 3t(k − 1) + 1.

Therefore, there exists a cycle C in C such that I sends at least 3t + 1 edges to C. Thus,
by Lemma 4, since no vertex of H sends more than four edges to a cycle of C , we see that the
degree sequence D of edges from I to C is of the form (4, 4, 4, 4, . . .), (4, 4, 4, . . .), (4, 4, 3, . . . , 3, 2)
or (4, 3, . . . , 3). Note that if D = (4, 4, 4, . . .), then D = (4, 4, 4, 3, . . .), that is, D contains at least
one 3, or D = (4, 4, 4, 2, 2) for t = 5. Further, since any of these degree sequences contains at least
one 4, by Lemma 4 we see that |C|= 4. In fact, C induces a K4, otherwise, the vertex of degree 4
along with a triangle in C would produce a K4, contradicting (A3). Let C = w1, w2, w3, w4, w1.

If D has at least two 4’s and at least two 3’s, then it is simple to construct two vertex-disjoint
chorded 4-cycles from C and these vertices of I, as the two vertices of degree 3 are adjacent to
the ends of an edge of C and the two vertices of degree 4 are adjacent to the ends of a different
independent edge of C. This produces two vertex-disjoint chorded cycles, implying G contains k
vertex-disjoint chorded cycles, a contradiction. Thus we have only to consider the two cases where
D = (4, 4, 4, 2, 2) and D = (4, 3, . . . , 3).

First consider D = (4, 4, 4, 2, 2). Let z1 be a vertex of I with degree 2 to C and z2, z3, z4 be the
vertices of I with degree 4. Without loss of generality, we may assume that w1, w2 ∈ NC(z1). Then
z1, w2, z2, w1, z1 is a cycle with chord w1w2. Also, z3, w3, z4, w4, z3 is a second cycle with chord
w3w4, implying G contains k vertex-disjoint chorded cycles, a contradiction.

Next consider D = (4, 3, . . . , 3). Let degC(z0) = 4 and degC(zi) = 3 for each 1 ≤ i ≤ 4. First
we prove that

H has no component with one vertex of degree 4 and at least three vertices of degree 3. (5)

Suppose not, that is, H has a component H0 containing zi for each 0 ≤ i ≤ 3. SinceH0 is connected,
there exists a path P from z0 to zi for some 1 ≤ i ≤ 3. Without loss of generality, we may assume
that i = 1 and P contains neither z2 nor z3. Since degC(zi) = 3 for each i ∈ {2, 3}, we may assume
that w1, w2 ∈ NC(zi). Then z2, w2, z3, w1, z2 is a cycle with chord w1w2. Since degC(z1) = 3,
without loss of generality, we may assume that w3 ∈ NC(z1). Then P [z0, z1], w3, w4, z0 is a second
cycle with chord z0w3, a contradiction. Thus (5) holds.

Therefore, we assume that H is not connected, that is, comp(H) ≥ 2. Let H1,H2, . . . ,Hcomp(H)

be the components of H. Note that it is sufficient to consider the case where each component

13



of H has at least one vertex contained in the degree sequence D = (4, 3, . . . , 3). Without loss of
generality, for each i ∈ {1, 2}, we may assume that si ∈ V (Hi) and degC(s1) ≥ degC(s2). Recall,
for each i ∈ {1, 2}, si is not a cut-vertex for Hi.

Case 1. For each i ∈ {1, 2}, degC(si) = 3.

In this case, without loss of generality, we may assume that si = zi for each i ∈ {1, 2}.

Subcase 1. Suppose comp(H) = 2.

Without loss of generality, we may assume that z0 ∈ V (H1). By (5), we may assume that
z4 ∈ V (H2). For each i ∈ {1, 2}, since degC(si) = 3, we may assume that w1, w2 ∈ NC(si). Then
C ′ = s1, w2, s2, w1, s1 is a 4-cycle with chord w1w2. Since degC(z4) = 3, without loss of generality,
we may assume that w3 ∈ NC(z4). Since degC(z0) = 4, w4 ∈ NC(z0). Then there exists a path
z0, w4, w3, z4 connecting H1 and H2. Replacing C in C by C ′, we consider the new H ′. Note that
Hi − si is connected for each i ∈ {1, 2}. Then comp(H ′) ≤ comp(H)− 1. This contradicts (A2).

Subcase 2. Suppose comp(H) ≥ 3.

Subcase 2.1. For some i ∈ {1, 2}, z0 ∈ V (Hi).

Without loss of generality, we may assume that z0 ∈ V (H1), and z4 ∈ V (H3) by our assumption
that each component ofH has at least one vertex contained in the degree sequence D = (4, 3, . . . , 3).
By the same arguments as Subcase 1, we can reduce the number of components of H, a contradic-
tion.

Subcase 2.2. For some i ∈ {1, 2, . . . , comp(H)} − {1, 2}, z0 ∈ V (Hi).

Without loss of generality, we may assume that z0 ∈ V (H3). Now consider the cycle C ′ as
in Subcase 1. If z3 ∈ V (Hi) for some i ∈ {1, 2, . . . , comp(H)} − {3}, then we apply the same
arguments as Subcase 1. Thus we may assume that z3 ∈ V (H3). Since degC(z3) = 3, without loss
of generality, we may assume that w3 ∈ NC(z3). Since H3 is connected, there exists a path P from
z0 to z3. Then P [z0, z3], w3, w4, z0 is a second cycle with chord z0w3, a contradiction.

Case 2. Suppose degC(s1) = 4 and degC(s2) = 3.

In this case, note that s1 = z0. Without loss of generality, we may assume that s2 = z1.

Subcase 1. Suppose comp(H) = 2.

Subcase 1.1. For some 2 ≤ i ≤ 4, zi ∈ V (H1).

Without loss of generality, we may assume that z2 ∈ V (H1). Since degC(z2) = 3 and degC(s2) =
3, NC(z2) ∩NC(s2) 6= ∅. Without loss of generality, we may assume that w1 ∈ NC(z2) ∩ NC(s2).
Since degC(s1) = 4, C ′ = s1, w2, w3, w4, s1 is a 4-cycle with chord s1w3. Replacing C in C by C ′,
we consider the new H ′. Note that H1 − s1 is connected. Then comp(H ′) ≤ comp(H) − 1. This
contradicts (A2).

Subcase 1.2. For each 2 ≤ i ≤ 4, zi ∈ V (H2).

Since degC(s2) = 3, without loss of generality, we may assume that wi ∈ NC(s2) for each
1 ≤ i ≤ 3. If w4 ∈ NC(zi) for some 2 ≤ i ≤ 4, then we apply the same arguments as Subcase 1.1.
Thus we may assume that NC(s2) = NC(zi) for each 2 ≤ i ≤ 4. Then C ′ = s2, w1, w4, w2, s2 is a
4-cycle with chord w1w2. Replacing C in C by C ′, we consider the new H ′. Note that H2 − s2 is
connected. Since w3 ∈ NC(s1) ∩NC(z2), comp(H ′) ≤ comp(H)− 1. This contradicts (A2).
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Subcase 2. Suppose comp(H) ≥ 3.

Without loss of generality, we may assume that z2 ∈ V (H3) by our assumption that each
component of H has at least one vertex contained in the degree sequence D. By the same arguments
as Subcase 1.1, we can reduce the number of components of H, a contradiction.

This completes the proof of Theorem 5.

5 Conclusion

We believe that Lemma 2 may be improved to guarantee a larger independent set of low-degree
vertices in every non-chorded connected graph. In particular, we conjecture the following.

Conjecture 1. If H is a non-chorded connected graph of order n, then H contains an independent

set I of order at least n/6 with each vertex of I having degree at most 2 in H.

This 1/6 proportion of vertices would be best possible, as we demonstrate with two examples
G1 and G2.

First, define the graph H with 6 vertices to be the graph containing a 5-cycle x1, x2, x3, x4, x5, x1
and where the sixth vertex x6 is adjacent to x2 and x5. To form G1, take k copies of H called
H1,H2, . . . ,Hk. Let xji ∈ V (Hj) with 1 ≤ i ≤ 6 and 1 ≤ j ≤ k, and let xj6x

j+1
1 ∈ E(G1) for

each 1 ≤ j ≤ k − 1. Aside from H1 and Hk, each copy of H has exactly two vertices of degree
2, and only one of these can be included in the independent set I. Each of H1 and Hk have two
independent vertices of degree 2, so |I|= n/6 + 2.

Second, construct G2 by starting with a triangle, and for each of its vertices, connect it by an
edge to a new triangle. Then for each vertex of degree 2 in this graph, connect it by an edge to a
new triangle. Repeat this process k times. In G2, every vertex of degree 2 is adjacent to another
vertex of degree 2, so only one of each pair can be in I. By adding a triangle adjacent to each
vertex of degree 2 in the pair, we can increase the size of I by 1, and we have added 6 vertices.
That means the limit

lim
k→∞

|I|

n
=

1

6
,

so no larger proportion than 1/6 of the vertices of G2 can be in I.

We also note the following easy-to-prove facts about graphs with no chorded cycles. We did
not use these facts in our proof of Theorem 5 but they may be of interest to the reader.

Fact 1. If G is a graph of order n with no chorded cycles, then there exists an ordering of the

vertices of G such that each vertex has at most two neighbors preceding it in this ordering. Further

G is a tripartite graph.

Fact 2. If G is a graph of order n containing no chorded cycles, then |E(G)|≤ 2n− 4.
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