Cut-edges and regular factors in regular graphs of odd degree

Alexander V. Kostochka*, André Raspaud ${ }^{\dagger}$, Bjarne Toft ${ }^{\ddagger}$, Douglas B. West ${ }^{\S}$, Dara Zirlin

June 15, 2018

Abstract

We study $2 k$-factors in ($2 r+1$)-regular graphs. Hanson, Loten, and Toft proved that every $(2 r+1)$-regular graph with at most $2 r$ cut-edges has a 2 -factor. We generalize their result by proving for $k \leq(2 r+1) / 3$ that every $(2 r+1)$-regular graph with at most $2 r-3(k-1)$ cut-edges has a $2 k$-factor. Both the restriction on k and the restriction on the number of cut-edges are sharp. We characterize the graphs that have exactly $2 r-3(k-1)+1$ cut-edges but no $2 k$-factor. For $k>(2 r+1) / 3$, there are graphs without cut-edges that have no $2 k$-factor, as studied by Bollobás, Saito, and Wormald.

1 Introduction

An ℓ-factor in a graph is an ℓ-regular spanning subgraph. In this paper we study the relationship between cut-edges and $2 k$-factors in regular graphs of odd degree. In fact, all our results are for multigraphs, allowing loops and multiedges, so the model we mean by "graph" allows loops and multiedges.

[^0]The relationship between edge-connectivity and 1-factors in regular graphs is well known. Petersen [9] proved that every 3-regular graph with no cut-edge decomposes into a 1-factor and a 2 -factor, noting that the conclusion also holds when all cut-edges lie along a path. Schönberger [11] proved that in a 3 -regular graph with no cut-edge, every edge lies in some 1 -factor. Berge [3] obtained the same conclusion for r-regular $(r-1)$-edge-connected graphs of even order. Finally, a result of Plesník [10] implies most of these statements: If G is an r-regular $(r-1)$-edge-connected multigraph with even order, and G^{\prime} is obtained from G by discarding at most $r-1$ edges, then G^{\prime} has a 1-factor. The edge-connectivity condition is sharp: Katerinis [7] determined the minimum number of vertices in an r-regular ($r-$ 2)-edge-connected graph of even order having no 1-factor. Belck [2] and Bollobás, Saito, and Wormald 4] (independently) determined all (r, t, k) such that every r-regular t-edgeconnected graph has a k-factor; Niessen and Randerath [8] further refined this in terms of also the number of vertices.

Petersen was in fact more interested in 2-factors. The result about 3-regular graphs whose cut-edges lie on a path implies that every 3 -regular graph with at most two cut-edges has a 2-factor. Also, there are 3-regular graphs with three cut-edges having no 2 -factor (communicated to Petersen by Sylvester in 1889). As a tool in a result about interval edgecoloring, Hanson, Loten, and Toft [6] generalized Petersen's result to regular graphs with larger odd degree.

Theorem 1.1 ([6]). For $r \in \mathbb{N}$, every $(2 r+1)$-regular graph with at most $2 r$ cut-edges has a 2-factor.

Petersen [9] also proved that every regular graph of even degree has a 2-factor. Thus when $k \leq r$ every $2 r$-regular graph has a $2 k$-factor. As a consequence, regular factors of degree $2 k$ become harder to guarantee as k increases. That is, a decomposition of a $(2 r+1)$ regular graph into a 2 -factor and $(2 r-1)$-factor is easiest to find, while decomposition into a $2 r$-factor and 1 -factor is hardest to find (and implies the others).

In this paper, we generalize Theorem 1.1 to find the corresponding best possible guarantee for $2 k$-factors. Limiting the number of cut-edges suffices when k is not too large.

Theorem 1.2. For $r, k \in \mathbb{N}$ with $k \leq(2 r+1) / 3$, every $(2 r+1)$-regular graph with at most $2 r-3(k-1)$ cut-edges has a $2 k$-factor. Furthermore, both inequalities are sharp.

Earlier, Xiao and Liu [14] proved a relationship between cut-edges and $2 k$-factors, showing that a $(2 k r+s)$-regular graph with at most $k(2 r-3)+s$ cut-edges has a $2 k$-factor avoiding any given edge. Their number of cut-edges in terms of degree and k is similar to ours, since $(2 k r+s)-1-3(k-1)=k(2 r-3)+s+2$, but their range of validity of k in terms of the degree of the full graph is more restricted than ours.

Our result is sharp in two ways. First, when $k \leq(2 r+1) / 3$ and there are $2 r+1-3(k-1)$ cut-edges, there may be no $2 k$-factor. Sylvester found examples of such graphs (forbidding 2 -factors in a regular graph of odd degree greater than 1 forbids all regular factors). We complete the Petersen-Sylvester investigation by describing all the extremal graphs without $2 k$-factors for general k.

Theorem 1.3. For $r, k \in \mathbb{N}$ with $k \leq(2 r+1) / 3$, $a(2 r+1)$-regular graph with exactly $2 r+1-3(k-1)$ cut-edges fails to have a $2 k$-factor if and only if it satisfies the constructive structural description stated in Theorem 3.2.

When $k>(2 r+1) / 3$, the condition in Theorem 1.2 cannot be satisfied, and in fact there are $(2 r+1)$-regular graphs that have no $2 k$-factor even though they have no cut-edges. A $2 k$ factor can instead be guaranteed by edge-connectivity requirements. The result of Berge [3] implies that $(2 r+1)$-regular $2 r$-edge-connected graphs have 1 -factors and hence factors of all even degrees, by the 2 -factor theorem of Petersen [9. Therefore, when $k>(2 r+1) / 3$ the natural question becomes what edge-connectivity suffices to guarantee a $2 k$-factor.

As mentioned earlier, this problem was solved by Bollobás, Saito, and Wormald [4], who determined all triples (r, t, k) such that every r-regular t-edge-connected multigraph has a k factor (the triples are the same for simple graphs). As noted by Häggkvist 5] and by Niessen and Randerath [8], earlier Belck [2] obtained the result (in 1950). Earlier still, Baebler [1] proved the weaker result that $2 k$-edge-connected $(2 r+1)$-regular graphs have $2 k$-factors.

The special case of the result of [4] that applies here (even-regular factors of odd-regular multigraphs) is that all $(2 r+1)$-regular $2 t$-edge-connected or $(2 t+1)$-edge-connected multigraphs have $2 k$-factors if and only if $k \leq \frac{t}{2 t+1}(2 r+1)$. The general construction given in 4], which covers additional cases, is quite complicated. Here we provide a very simple construction that completes our investigation and shows necessity of their condition for even-regular factors of odd-regular graphs. In particular, for $1 \leq t<r$ and $k>\frac{t}{2 t+1}(2 r+1)$ we present an easily described $(2 t+1)$-connected simple graph that has no $2 k$-factor.

Our results use the necessary and sufficient condition for the existence of ℓ-factors that was initially proved by Belck [2] and is a special case of the f-Factor Theorem of Tutte [12, 13]. When T is a set of vertices in a graph G, let $d_{G}(T)=\sum_{v \in T} d_{G}(v)$, where $d_{G}(v)$ is the degree of v in G. With $|T|$ for the size of a vertex set T, we also write $\|T\|$ for the number of edges induced by T and $\|A, B\|$ for the number of edges having endpoints in both A and B (when $A \cap B=\varnothing$). The characterization is the following.

Theorem 1.4 ([2, 12, 13]). A multigraph G has a ℓ-factor if and only if

$$
\begin{equation*}
q(S, T)-d_{G-S}(T) \leq \ell(|S|-|T|) \tag{1}
\end{equation*}
$$

for all disjoint subsets $S, T \subset V(G)$, where $q(S, T)$ is the number of components Q of $G-S-T$ such that $\|V(Q), T\|+\ell|V(Q)|$ is odd.

Since we consider only the situation where $\ell=2 k$, the criterion for a component Q of $G-S-T$ to be counted by $q(S, T)$ simplifies to $\|V(Q), T\|$ being odd.

2 Cut-edges and $2 k$-factors

In this section we generalize Theorem 1.1 to $2 k$-factors.
Theorem 2.1. For $r, k \in \mathbb{N}$ with $k \leq(2 r+1) / 3$, every $(2 r+1)$-regular multigraph with at most $2 r-3(k-1)$ cut-edges has a $2 k$-factor.

Proof. Let G be a $(2 r+1)$-regular multigraph having no $2 k$-factor, and let p be the number of cut-edges in G. We prove $p>2 r-3(k-1)$. By setting $\ell=2 k$ in Theorem 1.4, lack of a $2 k$-factor requires disjoint sets $S, T \subseteq V(G)$ such that $q(S, T)>2 k(|S|-|T|)+d_{G-S}(T)$.

Letting $R=V(G)-S-T$, the quantity $q(S, T)$ becomes the number of components Q of $G[R]$ such that $\|V(Q), T\|$ is odd. Thus $q(S, T)$ has the same parity as $\|R, T\|$. In turn, $\|R, T\|$ has the same parity as $d_{G-S}(T)$, since the latter counts edges from R to T once and edges within T twice. Hence the two sides of the inequality above have the same parity. We conclude

$$
\begin{equation*}
q(S, T) \geq d_{G-S}(T)+2 k(|S|-|T|)+2 . \tag{2}
\end{equation*}
$$

Say that a subgraph H of $G-T$ is T-odd if $\|V(H), T\|$ is odd. The components of $G-S-T$ that are T-odd are the components counted by $q(S, T)$. Each T-odd component contributes at least 1 to $d_{G-S}(T)$. Hence (2) cannot hold with $|S| \geq|T|$, and we may assume $|T|>|S|$.

Let q_{1} be the number of T-odd components having one edge to T and no edges to S; since that edge is a cut-edge, $q_{1} \leq p$. Let q_{2} be the number of T-odd components having one edge to T and at least one edge to S; note that $q_{2} \leq\|R, S\|$. Let q_{3} be the number of T-odd components having at least three edges to T; thus $q_{1}+q_{2}+3 q_{3} \leq d_{G-S}(T)$. Note also that $q(S, T)=q_{1}+q_{2}+q_{3}$. Summing the last inequality with two copies of the first two yields

$$
3 q(S, T)=3\left(q_{1}+q_{2}+q_{3}\right) \leq 2 p+2\|R, S\|+d_{G-S}(T) .
$$

Combining this inequality with (2) yields

$$
2 p+2\|R, S\|+d_{G-S}(T) \geq 3 d_{G-S}(T)+6 k(|S|-|T|)+6
$$

which simplifies to

$$
\begin{equation*}
\|R, S\| \geq 3-p+d_{G-S}(T)+3 k(|S|-|T|) . \tag{3}
\end{equation*}
$$

On the other hand, since G is $(2 r+1)$-regular,

$$
d_{G-S}(T)=(2 r+1)|T|-\|T, S\| \geq(2 r+1)|T|-[(2 r+1)|S|-\|R, S\|] .
$$

Using this inequality, (3), and $|T|-|S| \geq 1$, the given hypothesis $2 r+1-3 k \geq 0$ yields

$$
\|R, S\| \geq 3-p+(2 r+1-3 k)(|T|-|S|)+\|R, S\| \geq 3-p+(2 r+1-3 k)+\|R, S\| .
$$

This simplifies to $p \geq 2 r+1-3(k-1)$, as claimed.

3 Fewest cut-edges with no $2 k$-factor

To describe the extremal graphs, we begin with a definition. Keep in mind that here "graph" allows loops and multiedges.

Definition 3.1. In a $(2 r+1)$-regular graph G, the result of blistering an edge $e \in E(G)$ by a $(2 r+1)$-regular graph H having no cut-edge is a graph G^{\prime} obtained from the disjoint union $G+H$ by deleting e and an edge $e^{\prime} \in E(H)$ (where e^{\prime} may be a loop if $r>1$), followed by adding two disjoint edges to make each endpoint of e adjacent to one endpoint of e^{\prime}. The resulting graph G^{\prime} is $(2 r+1)$-regular.

Figure 1 illustrates blistering of one edge joining S and T in a 3-regular graph G with three cut-edges and no 2-factor to obtain a larger such graph G^{\prime}. The components of $G^{\prime}-S-T$ labeled Q_{i} are components counted by q_{i}, for $i \in\{1,2,3\}$.

Figure 1: A class of 3-regular graphs with three cut-edges and no 2-factor.

Theorem 3.2. For $k \leq(2 r+1) / 3$, a $(2 r+1)$-regular graph with $2 r+4-3 k$ cut-edges has no $2 k$-factor if and only if the vertex set $V(G)$ has a partition into sets R, S, T such that
(a) S and T are independent sets with $|T|>|S|$,
(b) all cut-edges join T to distinct components of $G[R]$,
(c) all edges incident to S lead to T (possibly via blisters that are components of $G[R]$),
(d) exactly $k(|T|-|S|)-1$ components of $G[R]$ are joined to T by exactly three edges each,
(e) each remaining component of R is $(2 r+1)$-regular, with no cut-edge, and
(f) if $k<(2 r+1) / 3$, then $|T|-|S|=1$.

Proof. Sufficiency: Let G be a graph G with $2 r+4-3 k$ cut-edges, and suppose that such a partition $\{R, S, T\}$ of $V(G)$ exists. Let q_{2} be the number of components of $G[R]$ that blister edges from S to T. Each cut-edge joins T to a T-odd component, by (b). The $k(|T|-|S|)-1$ components of $G[R]$ joined to T by three edges (according to (d)) are also T-odd, as are the q_{2} components of $G[R]$ arising as blisters. Hence $q(S, T) \geq 2 r+4-3 k+k(|T|-|S|)-1+q_{2}$. The number of edges joining S and T is $(2 r+1)|S|-q_{2}$, by (c). Using also (a), we have $d_{G-S}(T)=(2 r+1)(|T|-|S|)+q_{2}$. We compute

$$
\begin{aligned}
q(S, T)-d_{G-S}(T) & \geq(2 r+1-3 k)+2+(k-2 r-1)(|T|-|S|) \\
& =-(2 r+1-3 k)(|T|-|S|-1)+2 k(|S|-|T|)+2=2 k(|S|-|T|)+2
\end{aligned}
$$

where the last equality uses (f) and the restriction $k \leq(2 r+1) / 3$. Hence the given partition R, S, T satisfies (22), and G has no $2 k$-factor.

Necessity: Suppose that G has $2 r+1-3(k-1)$ cut-edges and no $2 k$-factor; we obtain the described partition of $V(G)$. The proof of Theorem 2.1 considers $(2 r+1)$-regular graphs with no $2 k$-factor and produces $p \geq 2 r+4-3 k$, where p is the number of cut-edges. To avoid having more cut-edges, we must have equality in all the inequalities used to produce this lower bound.

Recall that $q(S, T)$ counts the components Q of $G[R]$ with $\|V(Q), T\|$ odd. Also $q(S, T)=$ $q_{1}+q_{2}+q_{3}$, where q_{1}, q_{2}, q_{3} count the components having one edge to T and none to S, one edge to T and at least one to S, and at least three edges to T, respectively. Equality in the computation of Theorem 2.1 requires all of the following.

$$
\begin{gather*}
q_{1}=p \tag{4}\\
q_{2}=\|R, S\| \tag{5}\\
q_{1}+q_{2}+3 q_{3}=d_{G-S}(T) \tag{6}\\
(2 r+1)|S|=\|T, S\|+\|R, S\| \tag{7}\\
|T|-|S| \geq 1, \text { with equality when } k<(2 r+1) / 3 \tag{8}
\end{gather*}
$$

By (6), contributions to $d_{G}(T)$ not in $\|T, S\|$ are counted in $\|T, R\|$, so T is independent. By (7), all edges incident to S lead to T or R, so S is independent, proving (a). The first observation in proving Theorem 2.1 was $|T|>|S|$, and equality in the last step requires $|T|-|S|=1$ when $2 r+1>3 k$, as stated in (8) and desired in (f). By (4), the cut-edges join T to distinct components of $G[R]$, proving (b).

By (5) and (77), $q_{2}=0$ implies $(2 r+1)|S|=\|T, S\|$, making all edges incident to S incident also to T. Since $(2 r+1)|S|=\|T, S\|+q_{2}$, each component of $G[R]$ counted by q_{2} generates only one edge from R to S. Thus each such component blisters an edge joining S and T in a smaller such graph. This explains all the edges counted by $\|S, R\|$. Hence we view the edges incident to S as edges to T with possible blisters, proving (c).

We have accounted for $(2 r+1)|S|$ edges incident to T leading to S, including through q_{2} blisters. There are also p cut-edges leading to components of $G[R]$, where $p=2 r+1-3(k-1)$. This leaves $(2 r+1)|T|-(2 r+1)+3(k-1)-(2 r+1)|S|$ edges incident to T that are not cut-edges and join T to components of $G[R]$ not counted by q_{2}.

When $k<(2 r+1) / 3$ and $|T|-|S|=1$, this expression simplifies to $3(k-1)$. When $k=$ $(2 r+1) / 3$, it simplifies to $3[k(|T|-|S|)-1]$, which is valid for both cases. By ((6), all remaining edges incident to T connect vertices of T to T-odd components of $G[R]$ counted by q_{3}, using exactly three edges for each such component. Hence there are exactly $k(|T|-|S|)-1$ such components of $G[R]$, proving (d). This completes the description of the T-odd components.

Since we have described all edges incident to S and T, any remaining components of $G[R]$ are actually $(2 r+1)$-regular components of G without cut-edges, proving (e). They do not affect the number of T-odd components or the existence of a $2 k$-factor.

Theorem 3.2 can be viewed as a constructive procedure for generating all extremal examples from certain base graphs. Given r and k with $k \leq(2 r+1) / 3$, we start with a bipartite graph having parts T and $R \cup S$, where $|T|-|S| \geq 1$, with equality if $k<(2 r+1) / 3$. Also, vertices in $T \cup S$ have degree $2 r+1$, and R has $2 r+4-3 k$ vertices of degree 1 and $k(|T|-|S|)-1$ vertices of degree 3 . We expand the vertices of R to obtain a $(2 r+1)$-regular multigraph G. This is a base graph. We can then blister edges from S to T and/or add $(2 r+1)$-regular 2-edge-connected components.

The case $|T|=1$ and $|S|=0$ gives the graphs found by Sylvester. When $k>(2 r+1) / 3$, an inequality used in the proof of Theorem [2.1 is not valid. In this range no restriction on cut-edges can guarantee a $2 k$-factor; we present a simple general construction. As mentioned earlier, this is a sharpness example for the result of Bollobás, Saito, and Wormald [4] that every $(2 r+1)$-regular $2 t$-edge-connected or $(2 t+1)$-edge-connected multigraph has a $2 k$ factor if and only if $k \leq \frac{t}{2 t+1}(2 r+1)$. It is simpler than their more general construction.

Theorem 3.3. For $1 \leq t<r$ and $k>\frac{t}{2 t+1}(2 r+1)$, there is a $(2 t+1)$-connected $(2 r+1)$ regular graph having no $2 k$-factor.

Proof. Let $H_{r, t}$ be the complement of $C_{2 t+1}+(r-t+1) K_{2}$. That is, $H_{r, t}$ is obtained from the complete graph $K_{2 r+3}$ by deleting the edges of a $(2 t+1)$-cycle and $r-t+1$ other pairwise disjoint edges not incident to the cycle. Note that in $H_{r, t}$ the vertices of the deleted cycle have degree $2 r$, while the remaining vertices have degree $2 r+1$. Let G be the graph formed from the disjoint union of $2 r+1$ copies of $H_{r, t}$ by adding a set T of $2 t+1$ vertices and $2 r+1$ matchings joining T to the vertices of the deleted cycle in each copy of $H_{r, t}$ (see Figure 2).

Deleting $2 t$ vertices cannot separate any copy of $H_{r, t}$ from T, and any two vertices of T are connected by $2 r+1$ disjoint paths through the copies of $H_{r, t}$, so G is $(2 t+1)$-connected.

Suppose that G has a $2 k$-factor F. Every edge cut in an even factor is crossed by an even number of edges, since the factor decomposes into cycles. Hence F has at most $2 t$ edges joining T to each copy of $H_{r, t}$. On the other hand, since T is independent, F must have $2 k|T|$ edges leaving T. Thus $2 k(2 t+1) \leq 2 t(2 r+1)$.

Figure 2: $(2 r+1)$-regular, $(2 t+1)$-connected, no $2 k$-factor $((r, t, k)=(2,1,2)$ shown $)$.

References

[1] F. Baebler, Über die Zerlegung regulärer Streckenkromplexe ungerader Ordnung (German). Comment. Math. Helv. 10 (1937-38), 275-287.
[2] H.-B. Belck, Reguläre Faktoren von Graphen (German). J. Reine Angew. Math. 188 (1950), 228-252.
[3] C. Berge, Graphs and Hypergraphs (North-Holland, 1973). (translation and revision of Graphes et Hypergraphes, Dunod, 1970), p. 162.
[4] B. Bollobás, A. Saito, and N.C. Wormald, Regular factors of regular graphs. J. Graph Theory 9 (1985), 97-103.
[5] R. Häggkvist, Factors galore: Extending theorems of Petersen, Baebler, Belck and Gallai, lecture at "Combinatorics in Cambridge", August 4, 2003.
[6] D. Hanson, C.O.M. Loten, and B. Toft, On interval colourings of bi-regular bipartite graphs. Ars Combin. 50 (1998), 23-32.
[7] P. Katerinis, Maximum matchings in a regular graph of specified connectivity and bounded order. J. Graph Theory 11 (1987), 53-58.
[8] T. Niessen and B. Randerath, Regular factors of simple regular graphs and factor-spectra. Discrete Math. 185 (1998), 89-103.
[9] J. Petersen, Die Theorie der regulären graphs. Acta Math. 15 (1891), 193-220.
[10] J. Plesník, Connectivity of regular graphs and the existence of 1-factors. Mat. Casopis Sloven. Akad. Vied 22 (1972), 310-318.
[11] T. Schönberger, Ein Beweis des Petersenschen Graphensatzes. Acta Scientia Mathematica Szeged 7 (1934), 51-57.
[12] W.T. Tutte, The factors of graphs. Canad. J. Math. 4 (1952), 314-328.
[13] W.T. Tutte, A short proof of the factor theorem for finite graphs. Canad. J. Math. 6 (1954), 347-352.
[14] L. Xiao and Y. Liu, Even regular factor of regular graphs and number of cut edges. Southeast Asian Bull. Math. 31 (2007), 1019-1026.

[^0]: *University of Illinois at Urbana-Champaign, Urbana IL 61801, and Sobolev Institute of Mathematics, Novosibirsk 630090 , Russia: kostochk@math. uiuc.edu. Research supported in part by NSF grants DMS1600592 and grants 18-01-00353A and 16-01-00499 of the Russian Foundation for Basic Research.
 ${ }^{\dagger}$ Université de Bordeaux, LaBRI UMR 5800, F-33400 Talence, France: raspaud@labri.fr.
 \ddagger University of Southern Denmark, Odense, Denmark: btoft@imada.sdu.dk.
 ${ }^{\text {§ }}$ Zhejiang Normal University, Jinhua, China 321004 and University of Illinois at Urbana-Champaign, Urbana IL 61801: dwest@math. uiuc. edu. Research supported by Recruitment Program of Foreign Experts, 1000 Talent Plan, State Administration of Foreign Experts Affairs, China.

 『University of Illinois at Urbana-Champaign, Urbana IL 61801: zirlin2@illinois.edu.

