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Abstract

In this work, we introduce and study a new graph labelling problem standing as a combi-
nation of the 1-2-3 Conjecture and injective colouring of graphs, which also finds connections
with the notion of graph irregularity. In this problem, the goal, given a graph G, is to label
the edges of G so that every two vertices having a common neighbour get incident to different
sums of labels. We are interested in the minimum k such that G admits such a k-labelling.

We suspect that almost all graphs G can be labelled this way using labels 1,..., A(G).
Towards this speculation, we provide bounds on the maximum label value needed in general.
In particular, we prove that using labels 1,..., A(G) is indeed sufficient when G is a tree, a
particular cactus, or when its injective chromatic number xi(G) is equal to A(G).

1 Introduction

We deal with undirected graphs only. By a labelling ¢ of some graph GG, we mean a mapping
¢ : E(G) — L assigning labels to the edges of G (from a set L of labels). For every vertex v of
G, we can compute the sum of the labels on its incident edges, and assign this value as the colour
¢e(v) of v. Doing this task for all vertices, we end up with ¢y(v) being a vertex-colouring of G. A
natural question to ask is whether ¢ can always be designed so that ¢, has particular properties.

For instance, one can require ¢; to be a proper colouring, i.e., to verify c,(u) # c¢(v) for
every edge uv. This seems like a legitimate question, as proper colourings are perhaps the most
investigated type of vertex-colourings. We say that a labelling ¢ is proper if ¢, is a proper colouring.
A natural question is then: In general, what labels permit to design proper labellings? For a given
graph G, we denote by x»(G) the least & > 1 (if any) such that G admits proper k-labellings (i.e.,
labellings assigning labels from {1, ..., k}). Through inductive arguments, it is not complicated to
prove that xs(G) is defined for every connected graph G different from Ks; thus, in this context,
we say that G is nice whenever it has no component being K5. The leading conjecture regarding
the parameter xy is the well-known 1-2-3 Conjecture, raised in 2004 by Karoriski, Luczak and
Thomason [9].

Conjecture 1.1 (1-2-3 Conjecture [9]). For every nice graph G, we have x=(G) < 3.

Many results have been obtained towards the 1-2-3 Conjecture; see [I4] for a survey on this
topic. The best result we have to date is that xs=(G) < 5 holds for every nice graph G (see [§]).
Let us also mention that determining whether x5(G) < 2 holds for a given graph G is NP-hard in
general [0], but can be done in polynomial time when G is bipartite [16].
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There are several ways for interpreting the 1-2-3 Conjecture. On the one hand, the conjecture
states that for almost all graphs G, we should be able to “encode” a proper colouring via a labelling
assigning labels with small value, no matter whether x(G) (the chromatic number of G, i.e., the
least number of colours in a proper colouring of G) is large or not. On the second hand, we note
that, given a proper labelling ¢ of G, when replacing every edge e = uv with ¢(e) parallel edges
joining v and v, we end up with a multigraph H which is locally irreqular, i.e., for every edge uv
of H we have d(u) # d(v). So, in some sense, the 1-2-3 Conjecture states that nearly every graph
G can be turned into a locally irregular multigraph H with the same structure (i.e., two vertices
are adjacent in H if and only if they are adjacent in G) by just replacing every edge with at most
three parallel edges. As noted in [3], such concerns take place in a more general context where one
aims at defining what an irregular graph should be, where the notion of local irregularity can then
be perceived as an antonym of the notion of regularity.

In this work, we investigate how labellings can be used to generate other kinds of vertex-
colourings, namely injective colourings. For a graph G, an injective colouring is a vertex-
colouring where, for every vertex v, no two neighbours of v get the same colour. In other words,
every two distinct vertices are required to receive distinct colours as soon as there is a path of
length 2 joining them. Equivalently, an injective colouring of G can be seen as a proper colouring
of G?), the graph of the common neighbours of G (i.e., V(G®) = V(G) and there is an edge
joining v and v in G if and only if u and v have a common neighbour in G). The least number of
colours in an injective colouring of G is denoted by x;(G), which is called the injective chromatic
number of G.

Injective colourings were first introduced in [7], where the authors raised several fundamen-
tal properties of these colourings. In particular, greedy colouring arguments show that x;(G) <
A(G)(A(G) — 1) + 1 holds for every graph G, while there do exist graphs for which the injective
chromatic number reaches the upper bound (these graphs being exactly the incidence graphs of
projective planes). Also, we clearly always have A(G) < xi(G) by the very definition of injective
colouring. The authors of [7] also established that deciding whether x;(G) < k holds for a given
graph G is NP-hard for every k > 3. Several other results on the topic appeared later in the
literature, establishing mainly refined bounds for families of sparse graphs. We refer the interested
reader to e.g. the pointers given in [II] for more details.

We call a labelling ¢ of a graph G injective if ¢y is an injective colouring. We denote by xin(G)
the least k such that G admits injective k-labellings. As will be shown in later Section [3| let
us mention that, this time, xi=(G) is defined for every graph G. Studying injective labellings is
motivated by the reasons exposed earlier. In particular, we note that, given an injective labelling
{ of a graph GG, when replacing the edges of G by parallel edges as explained earlier, we here get a
multigraph H that is highly irregular (i.e., in which no vertex has two neighbours with the same
degree), which is another possible antonym to regularity that was considered in [I].

Similarly as for the parameter yys, our main concern is about how large can iy be in general.
It is easy to see that, contrarily to the parameter x5 (G), there is no absolute constant upper bound
on xix(G) for every graph G, which can be as large as A(G) (any star is an example). As will be
noted in upcoming Section |2} actually for every odd cycle G we even have yix(G) = A(G) + 1.
0dd cycles are however the only such graphs we came up with, and, though it might seem daring,
we would like to raise the following conjecture, which is our leading thread throughout this work.

Conjecture 1.2. For every graph G, we have xis(G) < A(G) + 1. Furthermore, the upper bound
1s attained only when G is an odd cycle.

This work is organised as follows. We start, in Section[2} by raising first observations on injective
labellings, and showing that Conjecture is true for some easy graph classes. In Section [3| we
establish bounds on xix(G) in terms of x;(G). In particular, our bounds show that Conjecture
holds for some graphs G verifying x;(G) = A(G). We then verify Conjecturefor more classes of
graphs in Section (trees, cacti, and subcubic graphs G with x;(G) = 3). In Section we establish
that determining xix(G) for a given bipartite graph G is an NP-hard problem. Conclusions and
perspectives are presented in Section [6]



2 First observations and warm-up results

We start off with the following observation on labellings in general, which will be useful for proving
one result later in this work.

Observation 2.1. Let G be a graph, and ¢ be a labelling of G. Then

Soo2we)= > ).

e€E(G) veV(G)
In particular, by any labelling ¢, the sum Zvev(G) ce(v) must be even.
Proof. This is because every edge label contributes to the colour of exactly two vertices. O

In the rest of this section, we provide some easy warm-up results towards Conjecture [I.2] First
of all, we note that, in a complete graph K,, with n > 3 vertices, every two vertices have common
neighbours. Thus x(K,,) = xi(K,). By an injective labelling of K,,, we must thus make sure that
all vertices get different colours. In other words, an injective labelling of K, is a proper labelling.
Since complete graphs K,, with n > 3 verify the 1-2-3 Conjecture [5], the following result holds,
which shows that xix(G) can be much lower than A(G) in general.

Theorem 2.2. For every n > 3, we have xix(K,) = 3.
We now consider complete bipartite graphs K, ,,, which also easily verify Conjecture @
Theorem 2.3. For every n,m > 1 with n < m, we have Xis;(Knm) < m = A(K, n).

Proof. Let (U, V') denote the bipartition of K, ,,, where U = {ug, ..., up—1}and V = {vg, ..., vm-1}.
Consider the following m-labelling ¢ of K, ,,. We first consider voug and assign it label 1. We then
consider vju; and assign it label 2. We go on like this for every ¢« < n — 1, and assign label i + 1
to v;u,. For v, (if any), we “go back” to ug and assign label n + 1 to v,ug. For v,41 (if any), we
assign label n + 2 to v,y1u;. And so on: for every vertex v; with i € {n,...,m — 1}, we assign
label 7 4+ 1 to v;%; mod n- Finally, we assign label m to all remaining edges of K, .

Clearly, the maximum label value assigned by ¢ is exactly m. We claim that ¢ is injective. First
of all, since K, ,, is bipartite and complete, we only need to guarantee that all u;’s get different
colours by ¢y, and similarly for all v;’s. By construction of ¢, we note that for every vertex v;, we
have ¢¢(v;) =i+ 1 mod m. Thus, no two v;’s get the same colour. Now we note that due to the
labelling scheme, we have ¢¢(u;) > ¢¢(u;) whenever j > 4. This is because, by how the procedure
goes, labels 1,...,m — 1 are assigned only once in such a way that whenever one of these labels
is assigned to an edge incident to some wu;, then a strictly larger larger is assigned to an edge
incident to every w; with j > 4. Thus also no two u;’s can have the same colour, and £ is indeed
injective. O

In the next result, we prove Conjecture for paths.
Theorem 2.4. For every path G, we have xix(G) = A(G) < 2.

Proof. If G has length 1, then assigning label 1 to its unique edge results in an injective 1-labelling
of G. So let us now focus on the general case. Let us denote by wvi,...,v, the consecutive
vertices of G, where n > 3. Since n > 3, note that y;x(G) > 1. Consider the 2-labelling ¢
assigning labels 1,1,1,2,2,2,1,1,1,2,2,2,... to the consecutive edges of G, from one end-edge
to the other. Note that ¢ is injective (essentially because every two edges v;v;i1,Vit3Vita at
distance 4 get different labels, and a situation where v;;1v;12 gets the same label as v;13v;14
while v;49v;43 gets the same label as v;v;41 never occurs; this leads the consecutive colours to be
1,2,2,3,4,4,3,2,2,3,4,4,3,...), except in two cases:

e When the length of G is 2, in which case ¢;(v1) = 1 = ¢¢(v3). In that case, assigning labels 1,2
to the edges yields an injective labelling.

e When the length of G is congruent to 4 modulo 6, in which case we get c¢(v,) = 2 = co(vp—2).
Note however that this conflict is unique. Here, assigning 1,1,2,2,2,1,1,1,2,2,2,1,1,1,...
to the consecutive edges of G instead results in an injective 2-labelling. O



We now prove Conjecture for cycles. We start off by considering even cycles, i.e., cycles
with even length.

Theorem 2.5. For every even cycle G, we have xix(G) = 2 = A(G).

Proof. We denote by vg,...,v,_1 the consecutive vertices of G, where n is even. Obviously, we
have xix(G) > 1. Let us show that xin(G) = 2.

e First assume G has length 4k. We produce a 2-labelling ¢ where, as going along the consecu-
tive vertices, the colours by ¢, are 3,3,2,2,3,3,2,2,3,.... Note that any labelling with this
property is indeed injective. To get £, we consider the set of edges F' = {v;v;11 : i = 0 mod 4}
of GG, assign label 2 to all edges of F', and assign label 1 to all remaining edges. It is then
easy to see that, due to the value of n, the colouring ¢, assigns the desired colours (we have
ce(v;) =31if i =0,1mod 4, and ¢;(v;) = 2 otherwise). Note that by turning all 1’s by ¢ into
2’s and wice versa, we would as well obtain an injective 2-labelling where the resulting vertex
colours alternate between pairs of 2’s and pairs of 4’s.

e Now assume G has length 4k + 2. Let G’ be the cycle obtained from G by contracting the
edges v1ve and vovs. Note that G” has length 4k. Thus, it admits an injective 2-labelling ¢'.
Actually, applying the arguments we used in the previous case above, we can assume that vg
and vz (resulting from the contractions) have colour 3, v,_1 and vs4 have colour 2, and the
edge vovs in G’ is labelled 2 (which implies that both v,_jv9 and vsvy are labelled 1). We
extend £’ to a 2-labelling ¢ of G by just, in G, assigning label 2 to all of vgv1, v1ve and vavs.
This way, every vertex v; in V(G) \ {v1,va} verifies ¢¢(v;) = ¢p(v;). Furthermore, we have
ce(v1) = ¢o(va) = 4, and only these two vertices have colour 4. Then it is easy to see that ¢
is an injective 2-labelling of G. O

Let us now consider odd cycles, i.e., cycles with odd length.
Theorem 2.6. For every odd cycle G, we have xix(G) =3 = A(G) + 1.

Proof. Let us first prove that xin(G) > 2. Suppose this is wrong, and let G be an odd cycle
admitting an injective 2-labelling ¢. Since all vertices of G have degree 2, their possible colours
by ¢ are 2, 3 and 4. Furthermore, for a vertex to have colour 2, its two incident edges must be
labelled 1, while, for a vertex to have colour 4, its two incident edges must be labelled 2. This
means that G has no edge uv such that ¢;(u) = 2 and ¢(v) = 4. So a vertex with colour 2 must
neighbour vertices with colour 2 or 3, and a vertex with colour 4 must neighbour vertices with
colour 4 or 3. Since no vertex can have its two neighbours having the same colour by ¢y, this means
that the vertices of G with colour 2 induce a matching, and similarly for the vertices with colour 4.
If we denote by n; the number of vertices with colour i, then we have that ns and n4 are even,
while n3 must be odd since nj +ng +n3 = |V(G)| is odd. We then get a contradiction, because the
sum of the colours by c¢;, which is 2ny + 3n3 4+ 4ny, is odd, which is impossible by Observation

Let us now prove that ;= (G) = 3. We denote by vg,...,v,_1 the consecutive vertices of G,
where n is odd. If n = 3, then it is easy to see that we must assign different labels to all edges,
and the claim holds. Now consider G a general odd cycle with n > 5 vertices. Let G’ be the cycle
obtained by contracting the edge vivo; note that G’ has length n — 1. By Theorem there is
then an injective 2-labelling ¢’ of G’ which we would like to extend to an injective 3-labelling ¢ of
G. Since ¢/ cannot assign label 1 only, we may suppose that ¢'(vovy) = 2 (calling vs the vertex
resulting from the contraction). Also, as can be checked from the proof of Theorem we may
assume that ¢y (vg) = cp(ve) = 4 (either G’ has length 4k and we can flip labels as explained
earlier, or G’ has length 4k + 2 in which case a pair of adjacent vertices with colour 4 is created
in the proof above). We extend ¢’ to G by assigning label 2 to vov; and label 3 to vive. This way
we get ¢p(vo) =4, ce(v1) =5 and ¢¢(vy) = 5. Since ¢¢(vg) = ¢ (vo) and all vertices different from
vy and ve have the same colour by ¢ and ¢ (which is at most 4), no conflict arises between vy and
another vertex. Similarly, v; and v are the only two vertices with colour 5, and they do not share
any neighbour since n > 5. Thus, £ is an injective 3-labelling of G. O



3 Bounding x;»(G) above by a function of y;(G)

We here show how injective colourings can help to design injective labellings. Towards Conjec-
ture this is particularly useful for graphs G where x;(G) is close to A(G).

3.1 On switching odd and even walks

Our proofs will repeatedly modify labels along walks with certain length, that are well known to
exist under certain circumstances. This approach is actually a rather common one for designing
distinguishing labellings, see e.g. [2, 4, [l @] 10, 15, 16]. Recall that for two (not necessarily
different) vertices w,v of a graph, a (u,v)-walk (or walk, for short) is a path from u to v with
possible vertex and edge repetitions. Let us emphasize that a (u,v)-walk is not the same as a
(v, u)-walk; in our proofs below, it is actually important which vertex is the starting point of the
walk, and which vertex is the ending point. A (u,u)-walk is called a closed walk. A walk is said
even if its length is even, while it is said odd otherwise.

Lemma 3.1. Let G be a connected non-bipartite graph, and u and v be two (not necessarily
distinct) vertices of G. Then G has both even (u,v)-walks and odd (u,v)-walks.

Proof. Since G is not bipartite, it has an odd cycle C. Then consider, in GG, a walk P from u
to a vertex w of C, and a walk P’ from w to v. Possibly, w € {u,v}. Then (u, P,w, P',v) and
(u, P,w,C,w, P’ v) are two (u,v)-walks of G with different length parity. O

Lemma 3.2. Let G be a connected bipartite graph, and u and v be two (not necessarily distinct)
vertices of G. Then:

e if u and v belong to different partite sets, then all (u,v)-walks are odd;
e otherwise, i.e., u and v belong to the same partite set, then all (u,v)-walks are even.
Proof. This follows trivially from the bipartition of G. 0

When designing labellings, a common approach is by repeatedly considering pairs of vertices
u,v and switching labels along the edges of a (u,v)-walk P. Let ¢ be a {0,...,k — 1}-labelling
of a graph G. For some number «, by a-switching P we mean modifying the labels assigned to
the edges of P, traversing it from u to v, in the following way: we apply 4+« to the label of the
first edge, —« to the label of the second edge, +« to the label of the third edge, —« to the label
of the fourth edge, and so forth, where the operations are understood modulo k. This switching
operation has the following properties:

Observation 3.3. Let G be a graph and £ be a {0, ..., k—1}-labelling of G. Let P be a (u,v)-walk
of G, and let £ be the labelling of G obtained from £ by a-switching P for some a. Then:

o for every inner vertex w of P, we have cy(w) = ¢o(w) mod k;
e if P is even, then cp(u) = co(u) + a mod k and cp (v) = cp(v) — @ mod k;
e if P is odd, then cp(u) = co(u) + @ mod k and cp (v) = c¢(v) + o mod k.

Proof. The first item is because for every inner vertex w of P, we have ¢p(w) = ¢;(w) +a—a. The
two last items are deduced from the length of P, and the fact that, when a-switching, we alternate
between additions and subtractions (by «) as going from u to v. O

In the next series of results, we show how an initial vertex-colouring of a graph can serve as a
layout for designing labellings with specific colouring properties.

Lemma 3.4. Let G be a connected non-bipartite graph, and (Vo,...,Vi_1) be a vertex-colouring
(with no specific properties) of G with k £ 2 mod 4. Then G admits a k-labelling ¢ such that, for
every i € {0,...,k — 1} and every vertex v € V;, we have co(v) =i mod k.

Proof. Aiming at colours modulo k, note that we can equivalently look for £ being a {0,...,k—1}-
labelling (since labels 0 and k are equivalent modulo k). We distinguish a few cases:



e Assume an even number z > 0 of the V;’s are odd (i.e., of odd cardinality), and that at least
y > 1 of the V;’s are even (i.e., of even cardinality). Free to relabel the indexes, we can
assume that Vo, Vzq,..., Vk_2_; are even while V1,..., Ve Vj_2,... Vi are odd. Note
that this relabelling is correct (i.e., every colour class is relabelled, and no two colour classes
get relabelled the same way) due to our assumption on k. We start from ¢ assigning 0 to
all edges of G. Note that all vertices of Vj are then good, i.e., for every v € Vy we have
¢¢(v) = 0 mod k, while every other vertex is bad, i.e., for every v € V; with ¢ # 0 we have
ce(v) # i mod k. Our goal is to make all these bad vertices good, and, for that, we modify ¢
by a-switching some walks joining bad vertices.

Consider two bad vertices u and v of Vz 4 (if any; however, due to its cardinality, if this set
is not empty, then it has at least two vertices). Let P be an odd (u, v)-walk of G; such exists
by Lemma since G is not bipartite. Now (§ + 1)-switch P; by Observation all bad
vertices different from w and v remain bad (with colour 0 modulo k), while the colour of u
and v becomes § + 1 modulo k. Thus, u and v become good and all other vertices remain
bad. By repeating this argument for pairs of bad vertices of Vz1,...,Vi_2_1 (where, for
two vertices of V;, odd walks should be i-switched), we can make all their vertices good.
Recall in particular that all those V;’s have an even number of vertices.

Quite similarly, by switching odd walks joining vertices of V1, ..., Ve, Vi—z,..., Vi1, we can
make sure that the only remaining bad vertices are vy,..., vz, vp_2,...,v5_1, where v; € V;
for every i € {1,...,5,k— 5,...,k — 1}. That is, there remain x bad vertices, one in each of
Viyoooy Ve, Vg2, ..., V1. We make them good in pairs. To achieve this, we consider each
two bad v; and vg_;, an even (v;, vg—;)-walk P joining them, and we i-switch P. This way, by
Observation the colour of v; is altered by ¢ modulo k (which then becomes ¢ modulo k),
while the colour of vg_; is altered by —i modulo k (which then becomes k — ¢ modulo k).
Also, all other bad vertices remain of colour 0 modulo k. Once every pair of remaining bad
vertices has been considered, we then end up with the desired ¢.

e Assume an odd number x > 1 of the V;’s are odd, and there are y > 0 even V;’s. In that case,
we relabel the indexes of the V;’s so that Vp, Vi,..., VmTq, Vk_mTq, ..., Vk—1 are odd, while
V%H,...,Vk_
we start from ¢ assigning 0 to all edges of G so that all vertices of V|, are good. Now, note
that, omitting V{, the number of odd V;’s is even. Quite similarly as in the previous case,
we can then make all vertices good, by first making good pairs of vertices from the even V;’s,

and then making good pairs of vertices from the remaining even number of odd V;’s.

1_, are even. Again, this relabelling is correct. As in the previous case,

r—
2

e The last case to consider is when all V;’s are odd, and there are an even number of them.
Recall that & # 2 mod 4; thus & = 0 mod 4. This means that g is even. In that case, we
proceed as follows. We start from ¢ assigning label 0 to all edges, so that all vertices of V}
are good. Just as in the previous cases, we then switch weights along odd walks until we
get to the point when the remaining bad vertices are vy,...,vx_1, where v; € V; for every
1 €{l,...,k—1}. Asin the first case above, by then l-switching an odd (v1,vk_1)-walk,
then 2-switching a (vg, vg—2)-walk, and so on, we get to the point where, due to the value of
k, only v k is bad. Recall that v k has colour 0 modulo k, and g is even. We here consider

an odd (v E,Vk )-walk containing v k, which we 7-switch. By Observation this alters the

colour of Uk by %, which then becomes good. O

When G is not bipartite and the provided vertex-colouring (Vp, ..., Vi_1) verifies kK = 2 mod 4,
there are cases where, depending on the parity of the V;’s, the same conclusion can be reached.

Lemma 3.5. Let G be a connected non-bipartite graph, and (Vo,...,Vi_1) be a vertex-colouring
(with no specific properties) of G with k = 2 mod 4. If not all V;’s are odd, then G admits a k-
labelling ¢ such that, for every i € {0,...,k—1} and every vertex v € V;, we have ¢y(v) =i mod k.

Proof. If some of the V;’s are even, then we note that some arguments used in the proof of
Lemma [3.4] apply the same way, and we can deduce ¢ in a similar manner. O



For the proof of Lemma to work, it is important that the layout vertex-colouring has
convenient parity properties, and that the graph has odd walks joining any pair of vertices. The
latter point is why the situation is a bit more troublesome for bipartite graphs. However, we note
that the switching operation can be employed to get a result close to Lemma [3.4] for any graph.

Lemma 3.6. Let G be a connected graph, and (Vy, ..., Vi_1) be a vertex-colouring (with no specific
properties) of G. Let v* be any vertex of G, where v* € V,, for some x € {0,...,k —1}. Then G
admits a k-labelling £ such that, for every i € {0,...,k — 1} and every vertex v € V; different from
v*, we have ¢;(v) =i mod k.

Proof. Again, we can equivalently assume that ¢ assigns labels in {0,...,k — 1}. Start from £
assigning label 0 to all edges. Then repeatedly consider a vertex v # v*, consider any (v, v*)-walk
P, and, assuming v € V;, just i-switch P. By Observation [3.3] this makes v good, and all vertices
different from v* that have not been treated yet remain bad with colour 0 modulo k. Once all
vertices have been treated this way, the only remaining bad vertex is v*. O

3.2 Upper bounds on y;s(G)

We now show how to apply the previous results to deduce upper bounds on x;x(G) being functions
of xi(G). We start off with the nicest case.

Theorem 3.7. Let G be a connected non-bipartite graph with x;(G) # 2 mod 4. Then, xix(G) <
xi(G).

Proof. Let (Vp,...,Vk_1) be an injective k-colouring of G, where k = x;(G). Applying Lemma [3.4]
on that vertex-colouring, we get that there exists a k-labelling ¢ of G where, for every vertex v € V;,
we have ¢;(v) =i mod k. Since (V, ..., Vk_1) is injective, it is easy to see that ¢ is as well. O

We now deal with the remaining two cases. That is, we establish an upper bound, function of
Xi(G), on xix(G) whenever G is not bipartite and x;(G) = 2 mod 4, and when G is bipartite.

Theorem 3.8. Let G be a connected non-bipartite graph with x;(G) =2 mod 4. Then, xin(G) <
Xi(G) + 1.

Proof. Let (Vp,...,Vk—1) be an injective k-colouring of G, where k = x;(G). Recall that k =
2 mod 4. If some of the V;’s are even, then Lemma [3.5] applies. So the remaining case is when
all V;’s are odd; in that case, we note that none of the labelling schemes described in Lemma [3.4]
applies (in particular, because % is not even). In that situation, we relabel the colour classes as
(V1,..., Vi), and we aim at designing an injective {0, ..., k}-labelling ¢ where, for every vertex v
lying in part V;, we have ¢;(v) =i mod k + 1.

Quite similarly as in the proof of Lemma by switching odd walks we can reach a situation
where all vertices but vy, ..., v, are good, where v; € V; for every i € {1,...,k}. To make these
last k vertices good, we switch even walks as follows. We first consider an even (v, v )-walk of G
(which exists by Lemma , which we 1-switch. By Observation this makes both vy and vy
good (modulo £+ 1). We then consider an even (ve, vi—1)-walk which we 2-switch, thereby making
vg and vg_1 good. We go on that way, considering an even (v;, v;—;41)-walk which we i-switch, for
every i € {1,..., g} Note that this is well defined since k is even. This eventually makes all v;’s
good, and thus ¢ an injective {0, ..., k}-labelling of G. O

Theorem 3.9. For every bipartite graph G, we have xis(G) < xi(G) + 1.

Proof. We may assume that G is connected. Let (U, V') denote the bipartition of G. Let (Vp, ..., Vi)
be an injective colouring of G with Vi empty, where k = x;(G). We aim at designing an injective
{0,. .., k}-labelling £ of G where, for most vertices v, we have ¢y(v) =4 mod k + 1 (where v € V;).
An important thing to note is that only vertices in the same partite set of G can be joined by a
path of length 2. This means that we can focus our attention on making sure that the vertices in
U have a desired colour by ¢, and independently do the same with the vertices in V. The problem
here is that, unlike in the non-bipartite case, we do not have odd walks joining vertices in a same
partite set.



Since only vertices from a same partite set can be joined by a path of length 2, either | Uf:o Un
Vi| >k or | U?:o VNV;| > k. Let us thus assume that U contains at least one vertex from each V;,
i.e., |U| > k. Using Lemma we can reach a {0, ..., k}-labelling ¢ where, for every vertex v € V;
but some v* in UNVy, we have ¢;(v) = ¢ mod k+1. If ¢o(v*) =0 mod k+1 or ¢;(v*) = k mod k+1,
then we are done; so assume this is not the case. By the initial injective colouring, recall that there
is no vertex in Vj, and thus no vertex v with ¢¢(v) = k mod k 4+ 1. To fix the colour of v*, we
proceed as follows. Consider a vertex v € Vi,_; NU, and 1-switch a (v, v*)-walk. This makes the
colour of v* decrease by 1 (modulo k + 1), while now ¢;(v) = k mod k + 1, which raises no conflict
since no other vertex has this property. If now ¢,(v*) = 0 mod k+ 1, then we are done. Otherwise,
we repeatedly consider another vertex v € U N Vj_1 (if any) and l-switch a (v, v*)-path, until
hopefully v* gets colour 0 modulo k£ + 1. Note that vertices that originally were in Vj_; raise no
conflict as long as their colour is £k — 1 or k modulo k£ + 1, since no two of them are joined by a
path of length 2.

If we reach the point where there is no more vertex v with ¢¢(v) =k — 1 mod k + 1, but v* still
does not have colour 0 modulo k£ + 1, then we repeat this process with the vertices having colour
k—2. That is, at this point no vertex has colour £—1 modulo k4 1. So we can again freely consider
vertices v € V € U N Vj_a, and 1-switch a (v, v*)-walk to decrease the colour of v* by 1, while
making the colour of v being £ — 1 modulo k 4 1. If at some point v* gets a desired colour, then
we are done. Otherwise, we get to the point where no more vertex has colour & — 2 modulo &k + 1,
and we can then consider the vertices with colour k — 3, and so on. Since |U| > k, by repeating
this process we can make v* reach the desired colour, so that all vertices that originally were in
a same V; have the same colour (i or ¢ + 1) modulo k + 1, except possibly for one class V, whose
some vertices have colour x modulo k + 1 while the others have colour  + 1 modulo k + 1. O

4 Other classes of graphs verifying Conjecture (1.2

In this section, we verify Conjecture for a few more classes of graphs with injective chromatic
number close to the maximum degree. We consider trees, cacti, and some subcubic graphs.

4.1 Trees
We start by verifying Conjecture |1.2]in the case of trees. Recall that trees T verify x;(T) < A(T).

Observation 4.1. For every tree T, we have x;(T) < A(T).

Proof. This can be proved by induction. The base case is that of a star 7', in which case an
injective A(T)-colouring is obtained by assigning a distinct colour to all leaves, and any colour to
the center. In the general case of a tree T', consider a leaf v with unique neighbour u. An injective
A(T)-colouring of T'— v (obtained by induction) can then be extended to v easily, since the only
colours that cannot be assigned to v are those assigned to the neighbours of v in T"— v. Since u
has at most A(T) — 1 neighbours in T' — v, there is at least one open colour for v. O

Regarding proving Conjecture [I.2] for trees, a surprising fact is that simple counting arguments
fail to make a straight induction scheme work. Also, trees are bipartite, and this is one of those
conditions where our results from Section [3]do not give the result we want immediately. The proof
we give actually makes use of Lemma [3.6]

Theorem 4.2. For every tree T, we have xix(T) < A(T).

Proof. Set A = A(T). If T is a star, then the A-labelling assigning a different label to every
edge is clearly injective. So we can assume that T is not a star. Let T be rooted at any vertex
r with degree at least 3, and consider a vertex v # r whose all sons uq,...,uq are leaves (where
1<d<A-1). Let w denote the parent of v. Recall that w has degree at least 2, since T is not
a star.

Let " =T — {uy,...,uq}t. Let (Vg,...,Va_1) be an injective A-colouring of 7", which exists
by Observation Free to relabel the indexes, we may assume that w € V;. Now, by Lemma |3.6
there is a labelling ¢/ of T’ where v* = v is potentially the only vertex that does not verify



ce(v) = x mod A (where v € V). Since w € V5 and d(w) > 2, note that ¢ (w) > A+ 1. We want
to extend ¢’ to an injective A-labelling ¢ of T, by correctly assigning a label to each of vuy, ..., vug.
When assigning a label a to vu; by ¢, the colour of u; becomes a. Since the labels we assign are
1,..., A, the colour of u; will necessarily be at most A. Furthermore, the only vertices joined with
u; via a path of length 2 are the other u;’s and w, while w was shown to have colour at least
A + 1. Thus, from the point of view of the u;’s, no conflict can arise as long as every two of the
vu;’s are assigned distinct labels by £. Now, when labelling the vu;’s, we also affect the colour of
v. However, by how ¢/ was obtained, note that v cannot be involved in a conflict as soon as its
colour gets congruent to x modulo A.

Following these arguments, ¢ can be obtained from ¢’ by assigning distinct labels to vuq, ..., vug
so that the sum of the assigned labels is  — ¢y (v) modulo A, which is possible to achieve since
1 <d < A—1and we are assigning labels in {1,...,A}. To see this is true, consider for instance
the following procedure. Start from each vu; being labelled ¢. Then repeatedly increment the label
of vug until its label becomes A. So far, we have already generated A — d + 1 sums. Then, for

each successive value of i = d—1,..., 1, increment the label of vu; once. This generates d — 1 more
sums. In total, we have thus generated A sums, and at each step it can be noted that no two of
the vu;’s are assigned a same label. O
4.2 Cacti

We partially extend the previous result to the class of cacti, where, recall, a cactus is a graph
in which every two cycles intersect on at most one vertex. We say that a cactus is even if it is
bipartite, while it is odd otherwise.

Observation 4.3. For every cycle G, we have x;(G) < 3.

Proof. If G = Cyy; is even, then we are done by applying colours ag, ag, a1, a1, 2, o, ..., Q—1, 1
(where the «;’s belong to {1,2,3}) to the consecutive vertices of C' in such a way that, modulo k,
we have «; # ;11 for every i € {0,...,k — 1}. Such a pattern exists when three colours are used.
If G = C;41 is odd, then we can basically consider such an injective 3-colouring for Cyy4o where
g # g, and contract a vertex with colour o; while keeping the colours of the other vertices. This
yields an injective 3-colouring of G. O

Note that in cacti with maximum degree at least 3 as well, the injective chromatic number is
very close to the lower bound.

Lemma 4.4. Let G be a cactus with mazimum degree A > 3. Then:
e if G is even, then xi(G) = A;
o if G is odd, then xi(G) € {A, A+ 1}.
Furthermore, there exist odd cacti G with mazimum degree A > 3 verifying xi(G) = A+ 1.

Proof. We prove the claim for even cacti first. The proof is by induction. Since the claim can be
checked by hand when G is small, we focus on the general case. If G has a leaf v with unique
neighbour u, then we note that an injective A-colouring of G — v (obtained by induction, or by
Observation can be extended to v, thus to G, since we have A colours in hand and we just
need to assign to v a colour different from the colours of the at most A — 1 other neighbours of u.
Thus G is just made of cycles joined by (possibly length-0) paths, every two of these cycles sharing
at most one vertex. There is thus, in G, a cycle C whose all vertices but one, say u, have degree 2
in G. This is what we call an end-cycle. Let v be a vertex of C' which is as far as possible from wu.
Then v has degree 2 with two neighbours v, vo of degree 2.

We deduce an injective A-colouring of G — v by induction. Assume first C' has even length at
least 6. Since vy has degree 1 in G — v, its colour must only be different from the colour assigned to
the unique other vertex adjacent to its unique neighbour. Thus, we can recolour vy, if necessary,
to make sure that v; and vo have different colours. This ensures that this colouring remains valid
in G, and we are left with finding an open colour for v. By our choice of v, it can be checked
that at most two colours are forbidden at v since |C| > 6; here we are done since we are colouring



the graph with at least three colours. When C has length 4, then we note that, by the injective
A-colouring of G — v, it already holds that v; and vy have different colours. Thus the colouring
is valid in G as well. Then the previous arguments apply just the same for finding an open colour
for v.

We now focus on odd cacti. Let us proceed by induction again. We note that all arguments
used in the previous case also apply here. The only difference here is that |C| might be odd. If
|C| > 5, then we note that the arguments used earlier when |C| > 6 apply here. So the remaining
case is when C' is a triangle (v, vy, vs,v). Here, we consider G’ = G — {v1,v2}. By induction, there
is an injective (A 4 1)-colouring of G’. When extending this colouring to v; and ve, we need to
make sure that the assigned colours are different from the at most A — 2 other neighbours of v,
and also from the colour of v since v, v; and vy form a triangle. This argument also implies that v,
and vo must be assigned different colours. Since we have A + 1 colours in hand, we can correctly
extend the colouring to v; and ve, thus to an injective (A + 1)-colouring of G.

Regarding the very last part of the statement, we note that a cactus G with even maximum
degree A verifies x;(G) = A 4+ 1 as soon as G has a fan verter, which we define as a vertex with
degree A to which are attached A/2 triangles. As will be remarked later, there are actually other
types of structures that force the injective chromatic number of a cactus with maximum degree A
to be A 4 1. O

We now prove upper bounds on x;x(G) for cacti G. We start by proving Conjecture for
even cacti with maximum degree at least 3.

Theorem 4.5. For every even cactus G with mazimum degree A > 3, we have
xis (@) < xi(G) = A.

Proof. Recall that for such an even cactus, we have x;(G) = A, by Lemma If G has no cycle,
then G is a tree in which case the result follows from Theorem Thus, let us assume that G
is not a tree. Since A > 3, we have also that G is not a cycle. We now consider a cycle C of G
obtained as follows. While G has vertices with degree 1, we keep on removing them. Since G has
cycles, the process finishes with the remaining graph G~ having minimum degree at least 2. In
G, we consider a cycle C' whose all vertices but at most one, say v*, have degree 2 (while v* has
degree at least 3). Back in G, this cycle C is a kind of end-cycle: v* is the vertex of C' which is
the closest to all other cycles of G, if any. At every vertex v of C' different from v*, there is a tree
attached, possibly reduced to v, which we denote by T,. In what follows below, we consider that
every T, is rooted at v. In particular, all vertices of C' might actually be of degree more than 2.

For every vertex r € 