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A SIZE CONDITION FOR DIAMETER TWO ORIENTABLE

GRAPHS

GARNER COCHRAN, ÉVA CZABARKA, PETER DANKELMANN,

AND LÁSZLÓ SZÉKELY

Abstract. It was conjectured by Koh and Tay [Graphs Combin. 18(4) (2002),
745–756] that for n ≥ 5 every simple graph of order n and size at least

(

n

2

)

−

n+ 5 has an orientation of diameter two. We prove this conjecture and hence
determine for every n ≥ 5 the minimum value of m such that every graph of
order n and size m has an orientation of diameter two.

diameter and oriented diameter and orientation and oriented graph and
distance and size

1. Introduction

This paper is concerned with the diameter of orientations of graphs. Given a
graph G, an orientation OG of G is a digraph obtained from G by assigning a
direction to every edge of G. The distance between two vertices u and v in a graph
or digraph H , denoted by dH(u, v), is the minimum length of a (u, v)-path in H ;
it is infinite if there is no such path. The diameter of H is the largest of the
distances between all pairs of vertices, it is denoted by diam(H). The well-known
Robbin’s Theorem [10] states that a connected graph has an orientation of finite
diameter if and only if it is bridgeless. The oriented diameter of a graph is the
minimum diameter of an orientation of G. Chvátal and Thomassen [2] showed
that there is a function f such that every bridgeless graph of diameter d has an
orientation of diameter at most f(d). The determination of the exact values of
this function appears extremely difficult. Chvátal and Thomassen [2] showed that
every bridgeless graph of diameter two has an orientation of diameter at most six,
and that this value is attained by the Petersen graph, so f(2) = 6. Already the
value f(3) is not known. Egawa and Iida [4] and, independently, Kwok, Liu and
West [9] showed that the oriented diameter of a bridgeless graph of diameter three
is at most 11. In [9] an example of a graph of diameter 3 and oriented diameter
9 was given. Hence 9 ≤ f(3) ≤ 11. It was shown by Bau and Dankelmann [1]
that every bridgeless graph of order n and minimum degree δ has an orientation of
diameter at most 11n

δ+1 + O(1). Surmacs [11] improved this bound to 7n
δ+1 + O(1).

An upper bound on the oriented diameter terms of maximum degree was given by
Dankelmann, Guo and Surmacs [3].

Chvátal and Thomassen [2] further showed that the problem of deciding whether
a given graph has an orientation of diameter two is NP-complete. Even for complete
multipartite graphs the problem which such graphs have an orientation of diameter
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two has not been solved completely, see [6, 7]. Hence it is desirable to have sufficient
conditions that guarantee that a given graph has an orientation of diameter two.

In this paper we relate the existence of an orientation of diameter two of a graph
of given order to its size. Füredi, Horák, Pareek and Zhu [5] gave an asymptotically
sharp lower bound on the number of edges in a graph of given order that admits
an orientation of diameter two. The purpose of this paper is to determine for every
n ≥ 5 the minimum value m(n) such that every simple graph of order n and size
at least m(n) has an orientation of diameter two.

For n ≥ 5, the graph Gn, obtained from a complete graph on n− 1 vertices by
adding a new vertex v and edges joining v to three vertices in the complete graph,
does not have an orientation of diameter two. Indeed, suppose to the contrary that
Gn has an orientation On of diameter two. Then v has either two in-neighbors
and one out-neighbor, or vice versa. We may assume the former. Let u be the
out-neighbor and y1, y2 be the two in-neighbors of v in On. Since every vertex is at
distance at most two from v in On, for every vertex w ∈ V (Gn) − {u, v} the edge
uw is oriented from u to w. Hence, if x ∈ V (Gn) − {u, v, y1, y2} any (x, u)-path
in On goes through v and has thus length at least three, a contradiction to On

having diameter two. Hence Gn has no orientation of diameter two. It follows that
m(n) ≥ m(Gn)+ 1 =

(

n
2

)

−n+5 for n ≥ 5. This was observed by Koh and Tay [8],

who conjectured that this construction is best possible, and so m(n) =
(

n
2

)

− n+ 5
for n ≥ 5. It is the aim of this paper to show that this conjecture is true by proving
the following theorem.

Theorem 1.1. Let G be a simple graph of order n, where n ≥ 5, and size at least
(

n
2

)

− n+ 5. Then G has an orientation of diameter two.

Our proof of Theorem 1.1 consists of a sequence of lemmata. An outline of the
proof is as follows. We suppose to the contrary that the theorem is false and that
G is a counterexample of minimum order, and among those, minimum size. Our
proof focuses on the complement G of G, defined as the graph on the same vertex
set as G, where two vertices are adjacent in G if and only if they are not adjacent
in G.

In Section 3 we give some sufficient conditions for graphs to have an orientation
of diameter two, and we present several graphs that have an orientation of diameter
two. In Section 4 we present some properties of the graphG that will be useful later;
in particular we show that each component of G contains neither three independent
vertices nor two non-adjacent vertices that share more than one neighbour. These
results, together with some results in Section 5 on the components of G that are
trees, will be used in Section 6 to show that the components of G are short paths,
and possibly an additional component that is one of four types of graphs on at
most 6 vertices. In Section 7 we complete the proof by showing that the presence
of any of these four types of graphs either allows us to apply certain reductions to
the graph G to obtain a smaller counterexample G′, or that G is one of the graphs
in the list of graphs with an orientation of diameter two presented in Section 3, so
G is not a counterexample. Finally, we conclude the proof by dealing with the case
that all components of G are trees.



A SIZE CONDITION FOR DIAMETER TWO ORIENTABLE GRAPHS 3

2. Notation

All graphs and digraphs in this paper have neither loops nor multiple edges, i.e.
they are unoriented or oriented simple graphs. Let G be a graph of order n = n(G)
and size m = m(G). We define G1 = (V1, E1) to be a subgraph of G2 = (V2, E2)
when V1 ⊆ V2 and E1 ⊆ E2. We denote this as G1 E G2. We define the excess of G
by ex(G) = m(G) − n(G). We find it convenient to consider G and G as obtained
by colouring the edges of a complete graph on n vertices either red or blue, with
the edges of G being the red, and the edges of G as blue edges. Accordingly, we
usually denote G as R, and G as B. We denote the vertex set common to R and
B by V . If W ⊆ V , then the red and blue subgraph induced by W in R and B,
respectively, is denoted by R[W ] and B[W ].

Let u, v be vertices of a graph G or digraph OG. If uv ∈ E(G) then we say that
u and v are adjacent in G and that u is a neighbor of v. The set of all neighbors
of v is the neighborhood of v in G, denoted by NG(v). The closed neighborhood
NG[v] of v in G is defined as NG(v) ∪ {v}. If −→uv is a directed edge of OG, then we
say that v is an out-neighbor of u and that u is an in-neighbor of v. The degree of
vertex v in G is the number of neighbors of v, it is denoted by degG(v).

By Kn, Pn, Cn, and Ka,b we mean the complete graph on n vertices, the path on
n vertices, the cycle on n vertices, and the complete bipartite graph whose partite
sets have a and b vertices, respectively. If G and H are graphs, then G ∪H is the
disjoint union of G and H . If a is a positive integer, then aG is the disjoint union
of a copies of G, so the edgeless graph on n vertices is denoted by nK1.

If U and W are disjoint subsets of V then U → W indicates that for all x ∈ U
and y ∈ W that are adjacent in R we orient the edge xy as −→xy, i.e., from x to y.
We write u → W instead of {u} → W , and similarly U → w and u → w instead of
U → {w} and {u} → {w}.

If A,B are sets of vertices in H , then their distance, dH(A,B), is defined as
the Hausdorff distance minu∈A,v∈B dH(u, v). dH(u,B) and dH(A, v) are defined
analogously.

As usual, [n] = {1, 2, 3, . . . , n} and for a set A and k ∈ N,
(

A
k

)

is the collection
of k-element subsets of A.

Definition 2.1. Let k, ℓ ∈ Z
+. A (k, ℓ)-dumbbell, denoted by Dk,ℓ, is a graph of

order k + ℓ obtained from the disjoint union of two complete graphs Kk and Kℓ by
adding an edge joining a vertex of Kk to a vertex of Kℓ. A short (k, ℓ)-dumbbell,
denoted by Sk,ℓ, is a graph of order k + ℓ − 1 obtained from the disjoint union of
two complete graphs Kk and Kℓ by identifying a vertex of Kk and a vertex of Kℓ.
A (k, ℓ)-dumbbell is proper if it not a tree, i.e., if max(k, ℓ) ≥ 3. A short (k, ℓ)-
dumbbell is proper if it is neither complete, nor a tree, nor a dumbbell, i.e., if
min(k, ℓ) ≥ 3.

Note that a (k, ℓ)-dumbbell is a tree if and only if max(k, ℓ) ≤ 2, The dumbbells
that are trees are paths Pi on 2 ≤ i ≤ 4 vertices. A short (k, ℓ)-dumbbell is a
dumbbell or a complete graph if and only if min(k, ℓ) ≤ 2.

3. Sufficient conditions for a diameter two orientation

In this section we present a few sufficient conditions for the existence of a diam-
eter two orientation of a graph. Using these conditions we obtain a list of several
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graphs that have diameter two orientations. This list will be used extensively in
later sections.

Definition 3.1. Let W ⊆ V . An orientation OW of R[W ] is good if there exists
a partition of W into two sets U1 and V1, which we call the partition classes of W
(or of OW ), such that
(i) dOW

(x, y) ≤ 2 whenever x and y are both in U1 or both in V1.
If in addition
(ii) every vertex in U1 has an in-neighbor and an out-neighbor in V1 and vice versa,
then OW is a non-trivial good orientation. If R[W ] has a (non-trivial) good orien-
tation, then we sometimes say simply that W has a (non-trivial) good orientation.

The following lemma is based on a construction of digraphs of diameter two with
no 2-cycles having close to the minimum number or edges by Füredi, Horák, Pareek
and Zhu [5].

Lemma 3.1. Let a, b ∈ N with 2 ≤ a ≤ b ≤
(

a
⌊a/2⌋

)

. If R[W ] contains Ka,b as

a spanning subgraph, then R[W ] has a non-trivial good orientation. If R[W ] is
isomorphic to K1,1, then R[W ] has a good orientation.

Proof. Any orientation of K1,1 is vacuously good, so it suffices to show that Ka,b

has a non-trivial good orientation for all 2 ≤ a ≤ b ≤
(

a
⌊a/2⌋

)

.

Let the partite classes of Ka,b be U1 = {x1, . . . , xa} and V1 = {y1, . . . , yb} and

set c = ⌊a
2 ⌋ − 1. Consider an injection f : [b] →

(

[a]
c+1

)

such that for i ∈ [a] ⊆ [b]

we have f(i) = {i, . . . , i + c}, where numbers in f(i) are taken modulo a. Such
an injection exists by the conditions on a, b and c. Orient the edge yixj as −−→yixj if
j ∈ f(i), and as −−→xjyi otherwise. For i 6= k, i, k ∈ [b], both f(i)\ f(k) and f(k)\ f(i)
are nonempty, ensuring a directed path of length 2 in both directions between yi
and yk.

Now take i, k such that 1 ≤ i < k ≤ a. If k− i ≤ c, let ℓ ∈ [a] such that ℓ ≡ k+ c
mod a; we have that i ∈ f(i) \ f(k) an ℓ ∈ f(k) \ f(i). If k − i > c, let ℓ = i + c;
we have that k ∈ f(k) \ f(i) and ℓ ∈ f(i) \ f(k). This ensures a directed path of
length 2 in both directions between xi and xk. So Ka,b has a good orientation.

As every vertex yi ∈ V1 has ⌊a
2 ⌋ in-neighbors and ⌈a

2 ⌉ out-neighbors in U1, it
has at least one of each. For each xi ∈ U1, the arc −−→yixi exists, and the arc −−−−→xiyi−1

exists. Hence Ka,b has a non-trivial good orientation. �

Definition 3.2. Let ℓ ≥ k be positive integers. We define Kℓ ⊞Kk as the disjoint
union of Kℓ and Kk together with a set of edges M⋆ that match every vertex of Kk

to a vertex of Kℓ.

Lemma 3.2. Let a, b ∈ N with 3 ≤ a ≤ b ≤ 2a. If R[W ] contains Ka,b as a
spanning subgraph with partite sets X and Y such that B[Y ] E Ka ⊞ Kb−a, then
R[W ] has a non-trivial good orientation.

Proof. Let W = X ∪ Y where X = {x1, . . . , xa}, Y = {y1, . . . , yb}. It suffices to
prove that R[W ] has a non-trivial good orientation when the edges of B are the
union of the edges of the complete graphs on X , {y1, . . . , ya} and {ya+1, . . . , yb}
together with the edges {yiya+i : i ∈ [b− a]}.

We will provide an appropriate orientation of the red edges.
For i ∈ [a], orient the edges xiyi as

−−→xiyi. For i, j ∈ [a], where i 6= j, orient the
edges xiyj as −−→yjxi. Note that, as a > 2, this already ensures that for all i, j ∈ [a],
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there is a path of length at most two from xi to xj and from yi to yj , and vertices
in {x1, . . . , x1, y1, . . . , ya} have both an in-neighbor and an out-neighbor in R.

For i ∈ [b− a], orient the edges xiya+i as
−−−−→ya+ixi. For i, j ∈ [b − a], i 6= j, orient

the edges xiya+j as −−−−→xiya+j . This ensures that for all i, j ∈ [b − a] and j ∈ [a] \ {i}
there is an oriented path of length at most two from ya+i to ya+j and from ya+i to
yi (through xi); and all vertices of W have an in-neighbor and an out-neighbor in
R.

For i ∈ [a] \ [b − a] and j ∈ [b − a], orient the edges xiya+j as −−−−→xiya+j. This
ensures that for all j ∈ [b− a] and k ∈ [a] there is an oriented path from yk to ya+j

(through an xℓ where ℓ ∈ [a] \ {k, j}).
Finally, for i, j ∈ [b − a], with i 6= j, orient the edges ya+iyj as −−−−→ya+iyj . The

resulting orientation of R[W ] is non-trivially good. �

Corollary 3.1. For a vertex set W ⊆ V , if B[W ] is a disjoint union of paths and
the components of B[W ] can be partitioned into sets X and Y such that |X | = a
and |Y | = b for some 3 ≤ a ≤ b ≤ 2a, then R[W ] has a non-trivial good orientation.

Proof. Let B[W ] be the disjoint union of paths which can be partitioned into sets
X and Y such that |X | = a and |Y | = b where 3 ≤ a ≤ b ≤ 2a. Then R[W ]
has Ka,b as spanning subgraph with partite sets X and Y . Moreover, Y can be
partitioned into two sets Ya and Yb−a of cardinality a and b − a respectively, such
that B[Y ] contains at most one edge joining a vertex in Ya to a vertex in Yb−a.
Hence, B[Y ] E Pb E Ka ⊞Kb−a. �

Lemma 3.3. Assume that V can be partitioned into two disjoint sets W and Z so
that there is no edge in B joining a vertex in W to a vertex in Z. Furthermore,
assume that R[W ] has a non-trivial good orientation, and one of the following holds
for Z:
(i) Z has a non-trivial good orientation, or
(ii) |Z| = 3 and the vertices in Z are isolated in B, or
(iii) |Z| = 2,
then R has an orientation of diameter 2.

Proof. Let OW be a non-trivial good orientation of R[W ] with a corresponding par-
tition of W into sets U1 and V1. We will extend it to a non-trivial good orientation
of V .

Proof of (i): Let OZ be a non-trivial good orientation of R[Z] with a corre-
sponding partition of Z into sets U2 and V2. We assign the orientation U1 → U2,
U2 → V1, V1 → V2, and V2 → U1. We also include OW and OZ in the orientation.
It is easy to verify that this in indeed a non-trivial orientation of diameter 2.

Proof of (ii) and (iii): Let Z = {y1, . . . , yk} (k ∈ {2, 3}). If k = 3, orient R[Z]
as y1 → y2 → y3 → y1. For the remaining red edges, orient U1 → y1 and y1 → V1,
and for j ∈ [k] \ {1} orient yj → U1 and V1 → yj . Orient any remaining red
edges arbitrarily. It is easy to verify that this is indeed a non-trivial orientation of
diameter two. �

Lemma 3.4. The following graphs have an orientation of diameter two:

(1) Q ∪ 7K1, where Q ∈ {K4, D4,2, D4,1}
(2) D4,3 ∪ 8K1,

(3) Q ∪ 6K1 and Q ∪K2 ∪ 5K1, where Q ∈ {D3,3, S3,3}

(4) Q ∪ aP1 ∪ bP2, with a, b ≥ 0 and a+ b = 5, where Q ∈ {D3,2, C5, D3,1,K3}
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(5) aP1 ∪ bP2 ∪ cP3 ∪ dP4, with a, b, c, d ≥ 0 and a+ b+ c+ d = 5.

In particular by case (5) Theorem 1.1 holds for 5 ≤ n ≤ 7.

Proof. We either directly give the orientation (for small graphs in case (5)) or
find a partition of V into two disjoint sets W and Z for which the conditions of
Lemma 3.3 hold. We will do the latter by exhibiting a quadruple (U1, V1, U2, V2) of
subgraphs of B whose vertices partition V . This signifies that Z = V (U1)∪ V (V1),
B[W ] = U2 ∪ V2, all edges between Z and W are red, R[W ] has a non-trivial good
orientation with partition classes U2 and V2, and either |Z| = 2 (i.e. both U1 and
V1 are the singleton K1 and B[Z]) ∈ {K2, 2K1}), or |Z| = 3 and the vertices in Z
are isolated in B, or R[Z] has a non-trivial good orientation with partition classes
U1 and V1 (and consequently B[Z] = U1 ∪ V1).

The proofs of each case in the theorem follow.

(1) B = Q ∪ 7K1, where Q ∈ {K4, D4,2, D4,1}. As 4 ≤ n(Q) ≤ 6, the quadruple
(K1,K1, Q, 5K1) gives an orientation of diameter two by Lemmata 3.1 and 3.3.

(2) B = D4,3 ∪ 8K1. We use quadruple (K1,K1, 6K1, D4,3). Since 6K1 and D4,3

form a partition of B into two graphs U2 and V2, with n(U2) = 6 and n(V2) = 7,
Lemma 3.1 gives that W has a non-trivial good orientation. Since |Z| = 2,
Lemma 3.3 gives a diameter two orientation of R.

(3) B ∈ {Q∪ 6K1, Q∪K2 ∪ 5K1} where Q ∈ {D3,3, S3,3}. In both cases quadruple
(K1,K1, 4K1, Q) gives the required orientation by Lemmata 3.1 and 3.3.

(4) B = Q ∪ aP1 ∪ bP2, with a, b ≥ 0 and a+ b = 5, where
Q ∈ {D3,2, C5, D3,1,K3}. Then Q = K3 or n(Q) ∈ {4, 5}. As max(a, b) ≥ 3,
there are two paths of the same size. Choose a pair of such paths of minimum
order i (so i ∈ {1, 2}), and let H be the union of the remaining three paths.
Clearly 3 ≤ n(H) ≤ 6.
Consider the quadruple (Pi, Pi, H,Q).
If n(Q) = n(H) = 3 or n(Q) 6= 3 6= n(H), then by Lemmata 3.1 and 3.3 we
have the required orientation.
If n(H) = 3 6= n(Q), notice that D3,2 E K3 ⊞K2, C5 E K3 ⊞K2 and D3,1 =
K3 ⊞K1 and use Lemmata 3.2 and 3.3 to find an orientation of diameter two.
If n(H) 6= 3 = n(Q), then the fact that H is the disjoint union of paths gives
that H E K3 ⊞Kn(H)−3. Lemmata 3.2 and 3.3 give the required orientation.

(5) B = aP1 ∪ bP2 ∪ cP3 ∪ dP4, with a, b, c, d ≥ 0 and a+ b + c+ d = 5.
All cases where n(G) < 8 (i.e. when a+ 2b+ 3c+ 4d ≤ 7) and the case where
a = 4, b = 0, c = 0, and d = 1 were done by computer search. See Figure 1 for
the orientations of these graphs.

For 8 ≤ n(G) ≤ 9 and we are not in the case B = P4 ∪ 4P1, we will
consider partitions which use Corollary 3.1 and Lemma 3.3. If B = P3 ∪ P2 ∪
3P1, consider the partition (K1,K1, 3P1, P3). If B = 2P1 ∪ 3P2, consider the
partition (K1,K1, P2∪P1, P2∪P1). If B = P4∪P2∪3P1, consider the partition
(K1,K1, 3P1, P4). If B = 2P3∪3P1, consider the partition (P1, P1, P3, P3∪P1).
If B = P3∪2P2∪2P1, consider the partition (P1, P1, P3, 2P2). If B = 4P2∪P1,
consider the partition (K1,K1, 2P2, 2P2 ∪ P1). This considers all cases where
n(G) ≤ 9.

Let n(G) ≥ 10. As max(a, b, c, d) ≥ 2, we again have two paths of the same
length. Let H be the union of two paths Pi of the same length where i is
chosen to be minimum possible, and the remaining three paths be Pj , Pk, Pℓ

where without loss of generality k ≤ ℓ ≤ j. We have 2i+ j+k+ ℓ = n(G) ≥ 10,
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Figure 1. Orientations of graphs where either n(G) < 8 or a = 4,
b = 0, c = 0, and d = 1.
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so (since j ≥ k ≥ ℓ) 10−2i
3 ≤ j ≤ 4 and k + ℓ ≤ 2j. We have two cases.

Case 1: i = 1
As 8

3 ≤ j ≤ 4, we have j ∈ {3, 4} and j ≤ 4 ≤ 10 − j − 2 ≤ k + ℓ ≤ 2j. Take
the quadruple (P1, P1, Pj , Pk ∪ Pℓ); Lemmata 3.2 and 3.3 give the required
orientation.

Case 2: i ≥ 2
By the definition of i we must have max(k, ℓ) > 1, so k + ℓ ≥ 3. If j = 2, this
gives i = j = k = ℓ = 2 and G = K10 −M , which has the required orientation
by using Corollary 3.1 and Lemma 3.3 with the partition (K1,K1, 2P2, 2P2),
so assume j ≥ 3. Now either 3 ≤ k + ℓ ≤ j ≤ 4 or 3 ≤ j ≤ k + ℓ ≤ 2j and in
both cases the quadruple (Pi, Pi, Pj , Pk ∪ Pℓ) with Lemmata 3.2 and 3.3 give
the required orientation.

�

Definition 3.3. Let W ⊆ V such that B[W ] is the union of one or more com-
ponents of B. We say that W is a reducible unit if R[W ] has a good orienta-
tion. We say that W is a reduction if R[W ] has a non-trivial good orientation and
ex(B[W ]) ≥ −1.

4. Properties of B

From now on we assume that G is a minimal counterexample, that is, G is a
graph on n vertices, n ≥ 5, and at least

(

n
2

)

− (n− 5) edges that has no orientation
of diameter two, and among those graphs let G be a graph of minimum order and
of minimum size. Clearly, if G has n vertices, then G has exactly

(

n
2

)

− (n − 5)
edges. Hence the corresponding graph B has order n and size n − 5. Moreover,
n ≥ 8 by Lemma 3.4.

In this section we show that a minimal counterexample cannot have a reduction.
We also show that no component of B contains three independent vertices, and
that no component has two independent vertices that have at least two common
neighbors.

Lemma 4.1. Let G be a minimal counterexample. Then B has no reduction.

Proof. Suppose to the contrary that B has a reduction W . Then |W | > 2 and,
by m(B[W ]) ≥ |W | − 1, also W 6= V . Let OW be a non-trivial good orientation
of R[W ] and let U1 and V1 be the partition classes of OW . Create B⋆ from B by
removing the vertices of W and adding two new vertines u1, v1 with a blue edge
u1v1 connecting them. As B[W ] is a union of components of B, B contains no
edges joining vertices in W to vertices in V −W . Then n(B⋆) = n+ 2 − |W | < n
and since m(B[W ]) ≥ |W | − 1,

1 ≤ m(B⋆) = (n− 5)−m(B[W ]) + 1 ≤ n− 3− |W | < n(B⋆)− 5.

In particular, 5 < n(B⋆). Since B was a minimal a counterexample, the red graph
R⋆ corresponding to B⋆ has an orientation O⋆ of diameter 2.

We now make use of OW and O⋆ to obtain an orientation OR of diameter 2 of
R. Let x, y ∈ V . If x, y ∈ W then orient xy as in OW . If x, y ∈ V −W then orient
xy as in R⋆. The remaining edges, joining a vertex in x ∈ V −W to a vertex in
y ∈ W are oriented as follows. If xu1 has received the orientation −−→xu1 in O⋆ then
we orient x → U1, and if xu1 has received the orientation −−→u1x in O⋆ then we orient
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U1 → x. Similarly, if xv1 has received the orientation −→xv1 in O⋆ then we orient
x → V1, and if xv1 has received the orientation −→v1x in O⋆ then we orient V1 → x.

If x, y ∈ V , then either both vertices are in the same set U1 (or V1), in which
case there is a path of length at most two in OW , or they are in different sets, for
example x ∈ U1 and y ∈ V1, in which case the (u1, v1)-path in O⋆ gives rise to an
(x, y)-path in OR. �

Lemma 4.2. Let G be a minimal counterexample. If X is an independent set of
order 3 in B, and Ni is the set of vertices in v ∈ V −X having exactly i neighbors
(in B) in X, then

(1) |N2| ≤ 1 and N3 = ∅.

Proof. Suppose that X = {x1, x2, x3} is an independent set B such that (1) does
not hold. Create a new blue graph B⋆ by identifying the vertices of X to a new
vertex x and removing multiple edges. Then n(B⋆) = n− 2 ≥ 5 and

m(B⋆) = m(B)− |N2| − 2|N3| ≤ m(B)− 2 = n− 7 = n(B⋆)− 5.

Therefore, since G is a minimal counterexample, the red graph R⋆ corresponding
to B⋆ has an orientation O⋆ of diameter 2.

We will now orient R. Orient every edge uv with u, v /∈ {x1, x2, x3} as in O⋆.
Orient R[X ] as −−→x1x2,

−−→x2x3 and −−→x3x1,. If an edge ux is present in R⋆, then all edges
uxi, i = 1, 2, 3 are present in R, and depending on whether ux is oriented as −→ux
or as −→xu in O⋆, we orient them u → {x1, x2, x3} or {x1, x2, x3} → u. Orient any
remaining edges in R arbitrarily. to obtain the orientation OR

Let u, v ∈ V (G). If u, v ∈ {x1, x2, x3}, then clearly there exists a (u, v)-path of
length at most two in OR. If u ∈ X and v ∈ V −X or vice versa then the (x, v)-path
of length at most two in O⋆ gives rise to a (u, v)-path of the same length in OR.
If u, v ∈ V − X then the (u, v)-path of length at most two in O⋆ gives rise to a
(u, v)-path of the same length in OR. This shows that OR is an orientation of R of
diameter 2, a contradiction to G being a counterexample. �

Lemma 4.3. Let G be a minimal counterexample. Then no component of B has
three independent vertices.

Proof. Suppose to the contrary that B has a component which contains three in-
dependent vertices x1, x2 and x3. We may assume that

(2) dB(x1, {x2, x3}) = 2.

Indeed, if dB(x1, {x2, x3}) ≥ 3 then let x′
1 be a vertex on a shortest path in B from

x1 to {x2, x3} that is at distance two from {x2, x3}. The new set {x′
1, x2, x3} is

independent and satisfies (2).
By (2) we may assume, possibly after renaming vertices, that dB(x1, x2) = 2. A
similar argument as above now yields that we can choose x3 such that also

dB(x3, {x1, x2}) = 2.

Hence we can choose {x1, x2, x3} such that it contains at least two pairs of vertices
at distance two in B. Hence, possibly after renaming the vertices, we have

(3) dB(x1, x2) = dB(x2, x3) = 2.

Now (3) implies that there exists a common neighbor y12 of x1 and x2, and a
common neighbor y23 of x2 and x3 in B. If y12 = y23, then the set N3 of vertices
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with exactly three neighbors in {x1, x2, x3} contains y12 and is thus not empty, a
contradiction to Lemma 4.2. If y12 6= y23, then the set N2 of vertices with exactly
two neighbors in {x1, x2, x3} contains y12 and y23, again a contradiction to Lemma
4.2. �

Lemma 4.4. Let G be a minimal counterexample. If x1, x2 are independent vertices
in B, then x1 and x2 have at most one common blue neighbor.

Proof. Suppose to the contrary that B has two vertices x1 and x2 that share at least
two neighbors. Then x1 and x2 are in the same component of B. As n(B) > 1 and
m(B) < n(B)−1, B is not connected. Choose a vertex x3 from another component.
Then x1, x2, x3 are independent vertices, for which the set N2 of vertices having
exactly two neighbors in {x1, x2, x3} has at least two elements, a contradiction to
Lemma 4.2. �

5. On tree components of B

Since B has n vertices and n − 5 edges, B is not connected. In this section we
give useful lower bounds on the number of components of B that are trees, and we
show that for a given order t we can find a union Ft of tree components of B whose
order is close to t and excess is at most −t. This will be useful in finding reductions
and further restricting the possible structure of B for a minimal counterexample.
Recall that the excess of a graph H is defined as ex(H) = m(H)− n(H).

Lemma 5.1. If B contains a component B1 that is not a tree, then B has at least
ex(B1) + 5 ≥ 5 components that are trees. If B has only tree components, it has
exactly five components.

Proof. Let T1, T2, . . . , Tk be the components of B that are trees, and
B1, B2, . . . , Bℓ be the components that are not trees. Then ex(Ti) = −1 for all
i ∈ {1, 2, . . . , k} and ex(Bi) ≥ 0 for all i ∈ {1, 2, . . . , ℓ}. Since m(B) = n − 5, we
have ex(B) = −5, and so

−5 = ex(B) =

k
∑

i=1

ex(Ti) +

ℓ
∑

i=1

ex(Bi) = −k +

ℓ
∑

i=1

ex(Bi)

If B has no tree component (i.e. ℓ = 0), this gives k = 5. Hence, B has exactly five
components. If B contains a component that is not a tree, B1 say, then this yields

−5 = −k +
ℓ

∑

i=1

ex(Bi) ≥ −k + ex(B1),

and so k ≥ 5 + ex(B1) ≥ 5, as claimed. �

Lemma 5.2. Assume B contains at least t tree components whose size does not
exceed m0. Then there exists t0 with t ≤ t0 ≤ t + m0 such that some subset of
the tree components in B forms a forest Ft satisfying n(Ft) = t0 and ex(Ft) ≥ −t.
If B contains a tree of size m0 where t > m0, then we can choose Ft such that
ex(Ft) ≥ −t+m0.

Proof. Let T1, T2, . . . , Tt be the t largest tree components of B whose size does not
exceed m0. Clearly T1 ∪ T2 ∪ · · · ∪ Tt contains at least t vertices. Let j be the
smallest positive integer such that T1 ∪ T2 ∪ · · · ∪ Tj contains t or more vertices.
Let Ft = T1 ∪ T2 ∪ · · ·Tj and let t0 = n(Ft). Since Tj has size at most m0 and thus
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order at most m0+1, we have t ≤ t0 ≤ t+m0. Moreover, since T1 ∪T2 ∪ · · · ∪Tj−1

has less than t vertices, it follows that Tj has at least t0− t+1 vertices and at least
t0 − t edges. Hence m(Ft) ≥ m(Tj) ≥ t0 − t, and thus ex(Ft) ≥ −t.
If t > m0, we have that j ≥ 2 and T1 has size m0. The same argument as above
yields that m(Ft) ≥ m(T1) +m(Tj) = m0 + t0 − t and thus ex(Ft) ≥ −t+m0, as
desired. �

6. Describing the components of B

In this section further restrict the structure of B in a minimal counterexample.
We show that each component of B is either a a path on at most four vertices,
a complete graph, a proper dumbbell, a proper short dumbbell, or a 5-cycle, and
none of these components have order more than six.

Lemma 6.1. Let G be a minimal counterexample and B1 a component of B.

(a) If B1 is a tree, then B1 is a path Pi with 1 ≤ i ≤ 4.
(b) If B1 is not a tree, then B1 is one of the following:

(i) a complete graph Ki with i ≥ 3,
(ii) a proper dumbbell,
(iii) a proper short dumbbell, or
(iv) a 5-cycle.

Proof. As any tree that is not a path on at most 4 vertices is not a complete graph,
a dumbbell or a short dumbblell, it is enough to show that B1 is a complete graph,
a dumbbell, a short dumbbell or a 5 cycle.

If B1 is complete, then the lemma holds, so assume that B1 is not complete. Let
x1 and x2 be two vertices of B1 with dB(x1, x2) = diam(B1) ≥ 2. By Lemma 4.3
B1 does not have three independent vertices, so dB(x1, x2) = diam(B1) ≤ 3 and
V (B1) = NB(x1) ∪NB(x2), and |NB(x1) ∩NB(x2)| ≤ 1 by Lemma 4.4.

Case 1: diam(B1) = 3 (consequently NB(x1) ∩NB(x2) = ∅).
Since B1 does not have three independent vertices by Lemma 4.3, we conclude that
each NB[xi] forms a clique.
Since B1 is connected, B1 has an edge joining a vertex y1 ∈ NB(x1) to a vertex
y2 ∈ NB(x2). We show that B1 does not contain a further edge joining a vertex
z1 ∈ NB(x1) to a vertex z2 ∈ NB(x2) by using that Lemma 4.4 gives that two
independent vertices share at most one neighbor. Indeed, if y1 = z1, then {y1, x2}
would be a set of two independent vertices that share two neighbors. If y2 = z2,
then {y2, x1} would be a set of two independent vertices that share two neighbors.
Lastly, if y1 6= z1 and y2 6= z2, then {y1, z2} would be a set of two independent
vertices that share two neighbors. It follows that B1 is a dumbbell.

Case 2: diam(B1) = 2 (consequently NB[x1] ∩NB[x2] = {y}) .
We consider two subcases:

If min(degB(x1), degB(x2)) = 1, then without loss of generality degB(x1) = 1 and
NB(x1) = {y}. Since diam(B1) = 2, every vertex in V (B1) − {x1, y} is adjacent
to y in B1. Since B1 does not contain three independent vertices, V (B1)− {x1, y}
induces a complete graph in B1. Therefore B1 is a short dumbbell.

If min(degB(x1), degB(x2)) ≥ 2, then, since B1 does not contain three independent
vertices, NB[xi] \ {y} induces a complete graph in B for i ∈ {1, 2}. If y is adjacent
to all vertices in B1, then B1 is a short dumbbell and we are done. Assume without
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loss of generality that there is a vertex z1 ∈ NB[x1] to which y is non-adjacent in
B1. Then dB(z1, x2) = 2, so z1 and x2 have a common blue neighbor z2. Since x1

and z2 are non-adjacent in B and thus cannot have two common neighbors, z2 and
y are non-adjacent in B. Since also the edges x1x2, x1z2 and x2z1 are not present
in B, we conclude that x1, y, x2, z2, z1, x1 form an induced 5-cycle in B1. Hence B1

contains an induced 5-cycle.
Rename the vertices of the 5-cycle so the cycle is v0v1v2v3v4v0. Suppose there
is a sixth vertex w adjacent to a vertex in {v0, v1, v2, v3, v4} in B1. If |NB(w) ∩
{v0, . . . , v4}| ≤ 2, it is easy to see that v together with two suitably chosen vertices in
{v0, v1, v2, v3, v4} forms an independent set of cardinality three, which is impossible.
Hence v is adjacent to at least three vertices in {v0, v1, v2, v3, v4}. But then v has
two neighbors among these vertices that are not adjacent, without loss of generality
v1 and v3, so that v1 and v3 are non-adjacent vertices with two common neighbors,
a contradiction to Lemma 4.4. This proves that B1 contains only {v0, v1, v2, v3, v4},
and so B1 is a 5-cycle. �

Lemma 6.2. In a minimal counterexample all components of B are of order at
most six.

Proof. Suppose to the contrary that B contains a component B1 with more than six
vertices. Let n1 ≥ 7 and m1 be the order and size, respectively, of B1. By Lemma
6.1, B1 is a complete graph, a dumbbell, or a short dumbbell. It is easy to see that
among all such graphs of order n1 the dumbbell D⌈n1/2⌉,⌊n1/2⌋ has minimum size,
and every other graph has bigger size. A simple calculation shows that

(4) m1 ≥ m(D⌈n1/2⌉,⌊n1/2⌋) ≥

⌈

1

4
n2
1 −

1

2
n1 + 1

⌉

,

and consequently

(5) ex(B1) = m1 − n1 ≥

⌈

(n1 − 3)2 − 5

4

⌉

,

where equality holds only when B = D⌈n1/2⌉,⌊n1/2⌋.

Assume first that B1 6= D3,4. If n1 ≥ 8, equation (5) easily gives ex(B1) ≥ n1−3. If
n1 = 7, then, as the lower bound in (5) is only sharp when B1 = D3,4, it follows that
ex(B1) ≥ 4 = n1 − 3. By Lemma 5.1, B contains at least ex(B1) + 5 ≥ n1 + 2 tree
components. Set t = n1 − 2. By Lemma 5.2, for some t0 with n1− 1 ≤ t0 ≤ n1 +2,
B contains a forest Ft of order t0 and excess at least −t = −n1 + 2 that is the
union of the tree components of B. Let W := V (B1) ∪ V (Ft). We show that
W is a reduction. Clearly the graph R[W ] contains a spanning subgraph Kn1,t0 .
Since n1 − 1 ≤ t0 ≤ n1 + 2, it is easy to verify that either n1 ≤ t0 ≤

(

n1

2

)

or

t0 < n1 ≤
(

t0
2

)

. So R[W ] has a non-trivial good orientation by Lemma 3.1, and
ex(B[W ]) = ex(B1) + ex(Fn1−2) ≥ n1 − 3 + (−n1 + 2) = −1. Hence, W is a
reduction, a contradiction to Lemma 4.1. So we must have that B1 = D3,4

If B1 = D3,4, ex(B1) = 3 by equation (5), and B has at least 8 tree components.
Set m0 be the size of the largest tree component. If 1 ≤ m0, Lemma 5.2 with
t = 5 and 1 ≤ m0 ≤ 3 yields that there exists a forest F5 in B of order t0, where
5 ≤ t0 ≤ 8, and excess at least −5 + 1 = −4. Let W = V (B1) ∪ V (F5), then
ex(B[W ]) = ex(B1) + ex(F5) ≥ 3 + (−4) = −1, and R[W ] has a non-trivial good
orientation by Lemma 3.1. Hence W is a reduction, a contradiction to Lemma 4.1.
So all tree components of B are singletons. If all k components of B −B1 are P1,
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then −5 = ex(B) = 3 − k gives B = D3,4 ∪ 8P1. But by Lemma 3.4, D3,4 ∪ 8P1

has an orientation of diameter two, which is a contradiction. Therefore B contains
another non-tree component B2 with at least one edge, so it has at least 3 (and
by our proof so far, at most 7) vertices. Set W = B1 ∪ B2 ∪ 2P1. By Lemma 3.1,
W has a non-trivial good orientation with partition classes B1 and B2 ∪ 2P1 and
ex(B[W ]) ≥ 3− 2 > 0. So W is a reduction, which is a contradiction. �

Lemma 6.3. If a minimal counterexample B contains a component B1 that is not
a tree, then B −B1 has exactly ex(B1) + 5 components, all of which are trees.

Proof. Suppose to the contrary that B contains two non-tree components B1 and
B2 with 3 ≤ n(B1) ≤ n(B1). Then ex(B1) ≥ 0 and ex(B2) ≥ 0, and by Lemma 6.2
n(B1) ≤ 6. If n(B1) = n(B2) = 3 or n(B1), n(B2) ∈ {4, 5, 6}, then V (B1) ∪ V (B2)
has a non-trivial good orientation by Lemma 3.1 and is thus a reduction, since
ex(B1 ∪ B2) = ex(B1) + ex(B2) ≥ 0. So we have n1 ∈ {4, 5, 6} and n2 = 3. As
V (B1) ∪ V (P4) or V (B2) ∪ V (P3) would form a reduction, all tree components in
B are P1 or P2. Since V (B1)∪ V (B2)∪ V (Pi) forms a reduction for i ∈ {1, 2}, this
is a contradiction to Lemma 4.1. Hence all k components of B − B1 are trees. As
−5 = ex(B) = ex(B1)− k we are done. �

Lemma 6.4. Assume B contains a non-tree component B1. Let F be a for-
est that is the union of the smallest number of tree components of B such that
min(4, n(B1)) ≤ n(F ) ≤ 6 and k0 be the number of tree components that make up
F . Then k0 ≥ ex(B1) + 2, ex(B1) ≤ 2, and the tree components of B contain at
most min(3, n(B1)− 1) vertices.

Proof. If B1 is a component that is not a tree, by Lemma 6.2 ex(B1) ≥ 0 and
3 ≤ n(B1) ≤ 6. B does not contain a P4 component, otherwise W = V (B1)∪V (P4)
would form a reduction by Lemma 3.1 and ex(B[W ]) ≥ −1.

Let F and k0 be given as in the conditions of the lemma. Clearly, k0 ≤ 4 and
ex(F ) = −k0. Consider W = V (B1) ∪ V (F ). If n(B1) 6= 3 or n(B1) = n(F ),
then R[W ] has a non-trivial good orientation by Lemma 3.1. If n(B1) = 3 and
4 ≤ n(F ) ≤ 6, then B1 = K3, F E K3 ⊞ Kn(F )−3, and R[W ] has a non-trivial
good orientation by Lemma 3.2. As W is not a reduction, we must have −2 ≥
ex(B[W ]) = ex(B1)− k, giving k ≥ ex(B1) + 2. ex(B1) ≤ 2 follows from k ≤ 4. As
k ≥ 2, no tree component has size n(B1). �

7. Proof of the main result

We start by eliminating the possibility of a non-tree component from a minimal
counterexample.

Lemma 7.1. In a minimal counterexample no component of B is a complete graph
on three or more vertices.

Proof. Suppose to the contrary that B contains a component B1 that is a complete
graph of order n1 ≥ 3. By Lemma 6.4 we have ex(B1) ≤ 2 and consequently
n1 ∈ {3, 4}.

If B1 = K4, then ex(B1) = 2 and B contains exactly 7 tree components by Lemma
6.3. By Lemma 6.4 all tree components must be P1 (otherwise k0 < 4 in the lemma,
which is a contradiction). By Lemma 3.4, the graph K4 ∪ 7K1 has an orientation
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of diameter two, so it is not a counterexample, which is a contradiction.

If B1 = K3, then ex(B1) = 0 and B contains exactly 5 tree components by Lemma
6.3. By Lemma 6.4 all these tree components must be P1 or P2, so we have B =
K3∪aK1∪bK2 for some nonnegative integers a, b with a+b = 5. But by Lemma 3.4
all such graphs have an orientation of diameter two. So G is not a counterexample,
a contradiction. �

Lemma 7.2. In a minimal counterexample no component of B is a proper dumbbell.

Proof. Assume that B1 is a component of B that is a proper dumbbell; then
n(B1) ≥ 4, and by Lemmata 6.2 and 6.4 we have n(B1) ≤ 6 and ex(B1) ≤ 2,
and B − B1 has no P4 component. Hence B1 ∈ {D3,1, D4,1, D3,2, D4,2, D3,3}. By
Lemma 6.3, B−B1 has exactly ex(B1) + 5 other components that are all paths on
at most three vertices. We will examine each case grouped by ex(B1).

(1) B1 ∈ {D4,1, D4,2}. Then ex(B1) = 2 and B−B1 has exactly 7 tree compo-

nents by Lemma 6.3. By Lemma 3.4, the graphB1 ∪ 7K1 has an orientation
of diameter two, therefore not all tree components of B are singletons. We
get k0 ≤ 3 and a contradiction in Lemma 6.4.

(2) B1 ∈ {D3,1, D3,2}. Then ex(B1) = 0 and B − B1 has exactly five tree

components by Lemma 6.3. Lemma 3.4 gives that B1 ∪ aK1 ∪ bK2 has
a diameter two orientation for all a + b = 5, so at least one of the tree
components is a P3 . For j ∈ {1, 2}, D3,j E K3 ⊞Kj, and by Lemma 3.2
V (P3) ∪ V (B1) is a reduction, which is again a contradiction.

(3) B1 = D3,3. Then ex(B1) = 1. By Lemma 6.3, B − B1 contains exactly

6 components which are trees. By Lemma 3.4, the graphs D3,3 ∪ 6K1 and

D3,3 ∪K2 ∪ 5K1 have an orientation of diameter two. Hence B − B1 con-
tains a P3 or two components that are P2. We get k0 ≤ 2 and a contradic-
tion in Lemma 6.4.

�

Lemma 7.3. In a minimal counterexample no component of B is a proper short
dumbbell.

Proof. Assume that B1 is a component of B that is a proper short dumbbell.
Then 5 ≤ n(B1). By Lemmata 6.2 and 6.4, n(B1) ≤ 6, ex(B1) ≤ 2, and no tree
component of B is a P4. This gives that B1 = S3,3, ex(B1) = 1, and B − B1 has

exactly 6 tree components. By Lemma 3.4, both S3,3 ∪ 6K1 and S3,3 ∪K2 ∪ 5K1

have diameter two orientations, so the components of B include at least two P2 or
at least one P3. This gives k0 = 2 and a contradiction in Lemma 6.4. �

Lemma 7.4. In a minimal counterexample no component of B is a 5-cycle.

Proof. Assume that B1 is a component of B that is a 5-cycle. Then ex(B1) = 0
and, by Lemmata 6.3 and 6.4, B − B1 has exactly 5 components which are trees
on at most three vertices. By Lemma 3.4, C5 ∪ aP2 ∪ bP1 has an orientation of
diameter two for all non-negative integers a, b with a + b = 5, so at least one of
these tree components is a P3. As P3 ≤ K3 and C5 E K3 ⊞ K2, by Lemma 3.2
B1 ∪ P3 forms a reduction, contradicting Lemma 4.1. �

We are now ready to complete the proof of Theorem 1.1.



A SIZE CONDITION FOR DIAMETER TWO ORIENTABLE GRAPHS 15

Proof. Suppose to the contrary that Theorem 1.1 is false. Let G be a minimal
counterexample, that is a graph of minimum order and minimum size for which
the theorem does not hold. By Lemma 3.4, n(G) ≥ 8 and consequently m(G) =
n(G)−5. By Lemma 6.1, every component ofB that is not a tree is either a complete
graph on at least three vertices, a proper dumbbell, a proper short dumbbell, or a
5-cycle. By Lemmata 7.1, 7.2, 7.3, and 7.4, all components of B must be trees, and
by Lemmata 5.1 and 6.1 B = aP1 ∪ bP2 ∪ cP3 ∪ dP4 for some a+ b+ c+ d = 5. But
then Lemma 3.4 gives that G has a diameter two orientation, a contradicton. �

8. Open Problem

In Theorem 1.1, we show that in graph of given order n we need at least
(

n
2

)

−n+5
edges to guarantee the existence of an orientation of diameter two. It is natural
to ask the same question for any given value of d: In a graph of order n, over all
bridgeless graphs, how many edges do we need at least to guarantee the existence
of an orientation of diameter at most d?
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