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Making a tournament indecomposable by one

subtournament-reversal operation
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Abstract

Given a tournament T , a module of T is a subset M of V (T ) such that for
x, y ∈ M and v ∈ V (T ) ∖M , (v, x) ∈ A(T ) if and only if (v, y) ∈ A(T ). The
trivial modules of T are ∅, {u} (u ∈ V (T )) and V (T ). The tournament T

is indecomposable if all its modules are trivial; otherwise it is decomposable.
Let T be a tournament with at least five vertices. In a previous paper, the
authors proved that the smallest number δ(T ) of arcs that must be reversed to

make T indecomposable satisfies δ(T ) ≤ ⌈v(T )+1
4
⌉, and this bound is sharp, where

v(T ) = ∣V (T )∣ is the order of T . In this paper, we prove that if the tournament T
is not transitive of even order, then T can be made indecomposable by reversing
the arcs of a subtournament of T . We denote by δ′(T ) the smallest size of such

a subtournament. We also prove that δ(T ) = ⌈ δ′(T )
2
⌉.

Keywords: Module, co-module, indecomposable, decomposability arc-index,
decomposability subtournament-index, co-modular index.
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1. Introduction and main results

A tournament T = (V (T ),A(T )) consists of a finite set V (T ) of vertices
together with a set A(T ) of ordered pairs of distinct vertices, called arcs, such
that for every x ≠ y ∈ V (T ), (x, y) ∈ A(T ) if and only if (y, x) /∈ A(T ). The
order of T , denoted by v(T ), is the number of its vertices. Given a tournament
T , the subtournament of T induced by a subset X of V (T ) is the tournament
T [X] = (X,A(T )∩(X×X)). For X ⊆ V (T ), the subtournament T [V (T )∖X] is
also denoted by T −X , and by T −x when X = {x}. Two tournaments T and T ′
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are isomorphic if there exists an isomorphism from T onto T ′, i.e., a bijection f

from V (T ) onto V (T ′) such that for every x, y ∈ V (T ), (x, y) ∈ A(T ) if and only
if (f(x), f(y)) ∈ A(T ′). A transitive tournament is a tournament T such that
for every x, y, z ∈ V (T ), if (x, y) ∈ A(T ) and (y, z) ∈ A(T ), then (x, z) ∈ A(T ).
Given a positive integer n, every transitive tournament of order n is isomorphic
to the transitive tournament n = ({0, . . . , n − 1},{(i, j) ∶ 0 ≤ i < j ≤ n − 1}).

The classic notion of a module is the main object of the paper. Given a
tournament T , a subset M of V (T ) is a module [15] (or a clan [9] or an inter-

val [12]) of T provided that for every x, y ∈ M and for every v ∈ V (T ) ∖M ,(v, x) ∈ A(T ) if and only if (v, y) ∈ A(T ). For example, ∅, {x}, where x ∈ V (T ),
and V (T ) are modules of T , called trivial modules. A tournament is indecom-

posable [12, 14] (or prime [15] or primitive [9] or simple [11]) if all its modules
are trivial; otherwise it is decomposable. An isomorphism preserves modules, in
particular it preserves indecomposability. Let us consider the tournaments of
small orders. The tournaments of orders at most 2 are clearly indecomposable.
Up to isomorphism, the tournaments of order 3 are the decomposable tour-
nament 3, and the indecomposable tournament ({0,1,2},{(0,1), (1,2), (2,0)}).
Up to isomorphism, there are four tournaments of order 4, each of them is de-
composable. Similarly, the transitive tournaments of orders at least 3 are all
decomposable. More precisely, for every integer n ≥ 3, the modules of n are the
intervals of the usual total order on V (n). On the other hand, it is well-known
that for every integer n ≥ 5, there exist indecomposable tournaments of order n
(see e.g., Theorem 1.1 below).

Our topic is based on the following question (Q): what is the minimum
number of some allowed operations that must be successively applied to a tour-
nament in order to make it indecomposable ? J.W. Moon [13] and P. Erdős et
al. [11] studied this question when an allowed operation, that we call vertex-
addition operation, consists of adding a single vertex. They proved that given
a tournament T of order at least 4, only one vertex-addition operation suffices
to make T indecomposable, unless T is transitive of odd order. Formally:

Theorem 1.1 ([11, 13]). Given a tournament T of order at least 4 that is not

transitive of odd order, there exists an indecomposable tournament T ′ such that

T ′ − v = T for some v ∈ V (T ′).
Theorem 1.1 is at the origin of similar studies in graphs, digraphs, and other

combinatorial structures: the question is to determine the minimum number of
vertices that must be added to a given structure in order to make it indecom-
posable (see e.g., [5, 6, 7, 8]).

In this paper, we are interested in Question (Q) when an allowed operation
consists of reversing arcs according to given rules. We will see how Theorem 1.1
can be stated in this context (see Theorem 1.2 below). We need some notations
and terminology. Let T be a tournament. An arc-reversal operation consists of
reversing a single arc a = (x, y) ∈ A(T ), i.e., replacing the arc a by a⋆ = (y, x) in
A(T ). The tournament obtained from T after reversing the arc a is denoted by
Inv(T, a) or Inv(T,{x, y}). Thus Inv(T, a) = Inv(T,{x, y}) = (V (T ), (A(T ) ∖{a})∪{a⋆}). The reversal of a subset B of A(T ) from the tournament T is done
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as a succession of arc-reversal operations. The tournament obtained from T after
reversingB is denoted by Inv(T,B). Thus Inv(T,B) = (V (T ), (A(T )∖B)∪B⋆),
where B⋆ = {b⋆ ∶ b ∈ B}. Given an arc a = (x, y) ∈ A(T ), the vertex set {x, y} is
denoted by V(a). Similarly, for B ⊆ A(T ), the vertex set ⋃

b∈B

V(b) is denoted by

V(B).
Let us say that an arc a is a v-arc when v ∈ V(a). In Theorem 1.1, the

indecomposable tournament T ′ is obtained from T by adding the vertex v. It
is easily seen that, equivalently, T ′ is also obtained from any tournament U

such that V (U) = V (T ) ∪ {v} and U − v = T , by a succession of v-arc-reversal
operations. Thus Theorem 1.1 is equivalent to the following one.

Theorem 1.2. Let T be a tournament of order at least 5. For every v ∈ V (T )
such that T − v is not transitive of odd order, there exists a set B of v-arcs of T

such that Inv(T,B) is indecomposable.

Question (Q) has been investigated by us [1, 2] when an allowed operation
consists of an arbitrary arc-reversal operation. In [2], we proved that every
tournament T of order at least 5 can be made indecomposable by reversing

no more than ⌈v(T )+1
4
⌉ arcs, and that this bound is best possible because, for

example, transitive tournaments needs this many arcs to be reversed. Formally,
given a tournament T of order at least 5, the decomposability arc-index (called
decomposability index in [1, 2]) of T , denoted by δ(T ), is the smallest integer m
for which the tournament T can be made indecomposable by reversing a set of
m arcs of T . The decomposability arc-index is closely related to another index
based on co-modules and called co-modular index.

Convention. Let T be a tournament. For X ⊆ V (T ), X denotes V (T )∖X .

The notion of co-module and related notions were introduced in [2] as follows.
Given a tournament T , a co-module of T is a subset M of V (T ) such that M or
M is a nontrivial module of T . A co-modular decomposition of the tournament
T is a set of pairwise disjoint co-modules of T . A ∆-decomposition of T is a
co-modular decomposition of T which is of maximum size. Such a size is called
the co-modular index of T , and is denoted by ∆(T ). Notice that when T is
decomposable, we have ∆(T ) ≥ 2. For a nonnegative integer n, we denote by
∆(n) (resp. δ(n) when n ≥ 5) the maximum of ∆(T ) (resp. δ(T )) over the
tournaments T of order n. The relationship between the above two indices is
given by the following theorem obtained in [2].

Theorem 1.3 ([2]). For every tournament T of order at least 5, we have

δ(T ) = ⌈∆(T )
2
⌉. Moreover, for every integer n ≥ 5, we have ∆(n) = ⌈n+1

2
⌉

and, consequently, δ(n) = δ(n) = ⌈∆(n)
2
⌉ = ⌈n+1

4
⌉.

In this paper, we are interested in Question (Q) by searching for an ana-
logue of Theorem 1.3 for another type of allowed operations motivated by The-
orem 1.2, and leading to a new index for which we establish the relation with
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those of Theorem 1.3. This operation type, that we call subtournament-reversal

operation, consists of reversing simultaneously all the arcs of a subtournament.
It was considered in [3], where the authors study the minimum number of such
operations that must be successively applied to a tournament T to make it
transitive. Obviously subtournament-reversal operations include arc-reversal
ones. For simplicity, given a tournament T and a subset X of V (T ), we write
Inv(T,X) for Inv(T,A(T [X])). For example, the dual tournament of T is the
tournament T ⋆ = Inv(T,V (T )) = Inv(T,A(T )). Notice that T and T ⋆ share the
same modules. In particular, T is indecomposable if and only if T ⋆ is.

Let T be a tournament of order at least 5 which is not transitive of even order.
Clearly there is a vertex v ∈ V (T ) such that T −v is not transitive of odd order.
By Theorem 1.2, there exists a subset B of v-arcs of T such that Inv(T,B) is
indecomposable. In terms of subtournament-reversal operations, this yields the
following. Since Inv(T,B) = Inv(Inv(T,V(B)),V(B)∖{v}), then T can be made
indecomposable by at most two successive subtournament-reversal operations.
This naturally leads to the following question: can the tournament T be made
indecomposable by a single subtournament-reversal operation ? We will prove
that the answer is yes, i.e., there exists a subsetX of V (T ) such that Inv(T,X) is
indecomposable. This result suggests considering a new decomposability index
for tournaments of orders at least 5, other than transitive ones of even orders.
Let T be such a tournament. The decomposability subtournament-index of T ,
which we denote by δ′(T ), is the smallest integer m for which there exists

X ∈ (V (T )
m
) such that Inv(T,X) is indecomposable. For every integer n ≥ 5,

we denote by δ′(n) the maximum of δ′(T ) over the tournaments T of order n,
which are non-transitive when n is even. Theorem 1.4 below is the main result
of the paper.

Notation 1.1. Let T be a tournament. A minimal co-module of T is a co-
module M of T that is minimal in the set of co-modules of T ordered by inclu-
sion. The set of minimal co-modules of T is denoted by mc(T ).
Theorem 1.4. Given a tournament T of order at least 5 that is not transitive

of even order, there exists X ∈ (∪mc(T )
∆(T )

) such that Inv(T,X) is indecomposable.

Moreover, we have δ′(T ) =∆(T ).
The next result (see Corollary 1.1 below) is an immediate consequence of

Theorems 1.3 and 1.4 and the following two simple facts, for which we omit the
proofs.

Fact 1.1. We have δ′(6) = 3.
Fact 1.2. Given an even integer n ≥ 8, there exist non-transitive tournaments

T of order n such that ∆(T ) =∆(n) = n
2
+ 1.

Corollary 1.1. Given a tournament T of order at least 5 that is not transitive

of even order, we have δ(T ) = ⌈ δ′(T )
2
⌉ = ⌈∆(T )

2
⌉. Moreover, for every integer

n ≥ 5, we have
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δ′(n) = ⎧⎪⎪⎨⎪⎪⎩
⌈n+1

2
⌉ if n ≠ 6,

3 if n = 6.
The rest of the paper is organized as follows. Section 2 contains required

results on modules and co-modules. In Section 3, we prove an important tool for
the proof of Theorem 1.4 (see Theorem 3.2), which consists of a strengthening
of a theorem of Erdős et al. [10, Theorem 3] about the family of nontrivial
modules of a tournament. In Section 4, we prove a finer version of Theorem 1.4
(see Theorem 4.1). Some additional remarks are discussed in Section 5.

2. Some known results on modules and co-modules

We now review some useful properties of the modules and co-modules of a
tournament. We begin by the following well-known properties of modules.

Proposition 2.1. Let T be a tournament.

1. Given a subset W of V (T ), if M is a module of T , then M ∩W is a

module of T [W ].
2. Given a module M of T , if N is a module of T [M], then N is also a

module of T .

3. If M and N are modules of T , then M ∩N is also a module of T .

We next review some basic properties of co-modules and co-modular decom-
positions.

Lemma 2.1 ([2]). Given a decomposable tournament T , consider a co-modular

decomposition D of T . The following assertions are satisfied.

1. The tournament T admits at most two singletons which are co-modules of

T . In particular, D contains at most two singletons.

2. If D contains an element M which is not a module of T , then the elements

of D ∖ {M} are nontrivial modules of T .

3. If D is a ∆-decomposition of T and v(T ) ≥ 4, then D contains a nontrivial

module of T .

To continue, we need the following notions and notations introduced in [2].
Let us say that two sets E and F overlap when E ∩ F ≠ ∅, E ∖ F ≠ ∅ and
F ∖E ≠ ∅. By minimality, the elements of mc(T ) are pairwise incomparable by
inclusion, i.e.,

for every M ≠N ∈mc(T ), either M ∩N = ∅ or M and N overlap. (2.1)

Let M ∈ mc(T ). We denote by OT (M) the set of the elements N ∈ mc(T )
that overlap M , i.e., OT (M) = {N ∈ mc(T ) ∶ N overlaps M}. We set
oT (M) = ∣OT (M)∣. A transitive module of T is a module M of T such that
the subtournament T [M] is transitive. A transitive component of T is a transi-
tive module of T which is maximal in the set of transitive modules of T ordered
by inclusion. A twin of the tournament T is a module of cardinality 2 of T .
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Notation 2.1. Given a tournament T , the set of twins of T is denoted by
tw(T ).
Lemma 2.2 ([2]). Given a tournament T , the transitive components of T form

a partition of V (T ).
Lemma 2.3 ([2]). Let T be a tournament and let M ∈ mc(T ). We have

oT (M) ≤ 2. Moreover, if M ∉ tw(T ), then oT (M) = 0.
As a consequence of (2.1) and Lemma 2.3, we obtain the following.

Corollary 2.1. Let T be a tournament, and let M ∈mc(T ) such that oT (M) =
0. We have

M ∩N = ∅ for every N ∈mc(T )∖ {M}. (2.2)

In particular, (2.2) holds when M ∈mc(T )∖ tw(T ).
Notation 2.2. Let T be a tournament with at least three vertices. Suppose
that T admits a transitive component C such that ∣C ∣ = n ≥ 2. The elements
of C can be indexed as v0, . . . , vn−1 in such a way that T [C] = (C,{(vi, vj) ∶
0 ≤ i < j ≤ n − 1}). For every k ∈ {0, . . . , n − 2}, the pair {vk, vk+1} is a twin of
T [C] and thus of T (see Assertion 2 of Proposition 2.1). The unique element
of mc(T ) that is contained in {vk, vk+1} is denoted by C(k). When n ≥ 3, for
every k ∈ {0, . . . , n − 2}, we have (e.g., see [2])

C(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{v0} or {v0, v1} if k = 0,
{vn−1} or {vn−2, vn−1} if k = n − 2,
{vk, vk+1} otherwise.

Lemma 2.4 ([2]). Let T be a tournament of order at least 3. Suppose that T

admits a transitive component C such that ∣C ∣ = n ≥ 2. Given M ⊆ V (T ), the
following assertions are equivalent.

1. M ∈ mc(T ) and M ∩C ≠ ∅.
2. M ∈ {C(0), . . . ,C(n − 2)}.

Notation 2.3. Given a tournament T , the set of nontrivial modules of T is
denoted byM(T ).
3. Bipartitions ofM(T ) by transversals of mc(T )

We need some terminology from hypergraphs (e.g., see [4]) that we introduce
in terms of families of sets. We only have to consider finite families of finite sets.
Let F be such a family. A stable set of F is any (finite) set that contains no
element of F . The family F is bipartite (or has Bernstein property [10]) if there
exists a set S such that both S and (∪F) ∖ S are stable sets of F . When we
say that F is bipartite by S, we mean that S and (∪F)∖S are stable sets of F .
Erdős et al. [10] obtained the following theorem.
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Theorem 3.1 ([10]). For any tournament T ,M(T ) is bipartite.

We need a strengthened version of Theorem 3.1 (see Theorem 3.2 below). In
that order, we continue with the following notions about finite families of finite
sets. To begin, we strengthen the notion of bipartite family to that of strictly
bipartite family as follows. The family F is strictly bipartite if there exists a
(finite) set S that overlaps every element of F . In this instance, we say that F
is strictly bipartite by S. Clearly, if the family F is strictly bipartite by S, then
it is bipartite by the same S. But a bipartite family is not necessarily strictly
bipartite. A transversal of the family F is any (finite) set R that intersects
each element of F , i.e., such that F ∩ R ≠ ∅ for every F ∈ F . Observe that a
set R is a transversal of the family F if and only if (∪F) ∖ R is a stable set
of F . A minimum transversal of F is a transversal of F which is of minimum
size. Observe that a minimum transversal of F is always contained in ∪F . The
transversal number of F , denoted by τ(F), is the size of a minimum transversal
of F . An exact transversal of F is a transversal R of F such that ∣F ∩R∣ = 1
for every F ∈ F . A matching of F is a subset of pairwise disjoint elements ofF . The matching number of F , denoted by ν(F), is the size of a maximum

matching of F , i.e., a matching of F which is of maximum size. For example,
in [2], a maximum matching of mc(T ) is called a δ-decomposition of T , where
T is a tournament. It is easy to see that

for every tournament T, we have ∆(T ) = ν(mc(T )). (3.1)

Clearly, the transversal and matching numbers of the family F satisfy

ν(F) ≤ τ(F). (3.2)

When equality holds in (3.2), i.e. ν(F) = τ(F), we say that F has the König

property.

Theorem 3.2. For any tournament T that is not transitive of even order,M(T ) is strictly bipartite by an exact and minimum transversal of mc(T ).
Moreover, mc(T ) has the König property.

Proof. Let T be a tournament. If T is indecomposable, then the theorem triv-
ially holds because M(T ) = mc(T ) = ∅. Hence suppose that T is decompos-
able, and in particular v(T ) ≥ 3. Further suppose that T is not transitive of
even order. We will construct a transversal R of mc(T ) that is minimum and
exact. For this purpose, we have to divide mc(T ) into the disjoint union of
mc0(T ) =mc(T )∖ tw(T ) and mc1(T ) =mc(T )∩ tw(T ).

Let f be a choice function on mc0(T ). Since the elements of mc0(T ) are
pairwise disjoint by Corollary 2.1, then f(mc0(T )) is an exact and minimum
transversal of mc0(T ). Set R0 = f(mc0(T )).

We now consider the set C(T ) of the transitive components C of T such
that ∣C ∣ ≥ 2. With every C ∈ C(T ), we associate the subset r(C) of C defined
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as follows.

r(C) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{vi ∈ C ∶ i is even} if {v0} ∈ mc(T ),
{v∣C ∣−i ∈ C ∶ i is odd} if {v∣C ∣−1} ∈mc(T ),
{vi ∈ C ∶ i is odd} otherwise,

(3.3)

where v0, . . . , v∣C ∣−1 are the elements of C indexed in such a way that T [C] =(C,{(vi, vj) ∶ 0 ≤ i < j ≤ ∣C ∣ − 1}). To verify that r(C) is well-defined, we have
to show that if {v0} ∈ mc(T ) and {v∣C ∣−1} ∈ mc(T ), then {vi ∈ C ∶ i is even} ={v∣C ∣−i ∈ C ∶ i is odd}. The following observation follows from the definitions of
module and co-module.

Observation 3.1. Given a module M of a tournament U , if there exist I ≠ J ∈
mc(U) such that ∣I ∣ = ∣J ∣ = 1 and I ∪ J ⊆M , then M = V (U).

Suppose that {v0} ∈ mc(T ) and {v∣C ∣−1} ∈ mc(T ). Since C is a module of
T , it follows from Observation 3.1 that C = V (T ), i.e., T is transitive. Since
T is not transitive of even order, it follows that ∣C ∣ is odd. Therefore {vi ∈ C ∶
i is even} = {v∣C ∣−i ∈ C ∶ i is odd}. Thus r(C) is well-defined.

Set R1 = ∪{r(C) ∶ C ∈ C(T )} and R = R0 ∪R1. We have to prove that R is
an exact and minimum transversal of mc(T ).

To begin, we prove that R is an exact transversal of mc(T ). Let M ∈mc(T ).
First, suppose M ∈ mc0(T ). Since R0 is an exact transversal of mc0(T ), we have∣M ∩R0∣ = 1. If M ∩R1 = ∅, then ∣M ∩R∣ = 1 as desired. Hence suppose M ∩R1 ≠
∅. By the definition of R1, there exists C ∈ C(T ) such that M ∩ r(C) ≠ ∅ and
thus M ∩C ≠ ∅. By Lemma 2.4, we have M = C(k) for some k ∈ {0, . . . , ∣C ∣−2}.
But C(k) ∈ tw(T ) or ∣C(k)∣ = 1 (see Notation 2.2). Since M ∉ tw(T ), we obtain∣M ∣ = 1. Thus, ∣M ∩ R∣ = 1 as required. Second, suppose M ∈ mc1(T ). We
will prove that M ∩ R0 = ∅ and ∣M ∩ R1∣ = 1, which implies ∣M ∩ R∣ = 1. Let
C be the transitive component of T containing M . Since M ∈ tw(T ), by the
construction of r(C), we have ∣M ∩ r(C)∣ = 1. It follows from Lemma 2.2 that∣M ∩R1∣ = 1. Now suppose to the contrary that M ∩R0 ≠ ∅. By the definition
of R0, there exists N ∈ mc0(T ) such that M ∩ N ≠ ∅. Since oT (N) = 0 by
Lemma 2.3, M = N by Corollary 2.1, which is not possible because M ∈ tw(T )
and N ∉ tw(T ). Thus M ∩R0 = ∅. We conclude that R is an exact transversal
of mc(T ).

We now prove that mc(T ) has the König property, and that its exact
transversal R is minimum. Let mc2(T ) be a maximum matching of mc(T ).
Since R is an exact transversal of mc(T ) and mc2(T ) ⊆ mc(T ), R is an ex-
act transversal of mc2(T ) as well. Since the elements of mc2(T ) are pairwise
disjoint, to prove that the exact transversal R of mc2(T ) is also minimum, it
suffices to prove that R ⊆ ∪mc2(T ). By Corollary 2.1, M ∩ N = ∅ for every
M ∈ mc0(T ) and N ∈ mc(T ) ∖ {M}. Hence, it follows from the maximality of
mc2(T ) that mc0(T ) ⊆mc2(T ). Since R0 ⊆ ∪mc0(T ), we obtain R0 ⊆ ∪mc2(T ).
Now let C ∈ C(T ). We may assume T [C] = n for some integer n ≥ 2. We
have to prove that r(C) ⊆ ∪mc2(T ), which implies R1 ⊆ ∪mc2(T ) and thus
R ⊆ ∪mc2(T ), as desired. Suppose to the contrary that r(C) ∖ ∪mc2(T ) ≠ ∅.
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Let k ∈ r(C) ∖ ∪mc2(T ). It is not difficult to verify that in this case, we have
n ≥ 3. Set K0 = {i ∈ C ∶ i < k}, K1 = {i ∈ C ∶ i > k}, D0 = {C(0), . . . ,C(n − 2)},
and D1 =D0 ∩mc2(T ). By Lemma 2.4 and the maximality of mc2(T ), D1 is a
maximum matching of D0. Moreover, since k ∉ ∪D1, D1 is the disjoint union of
D1 ∩ 2K0 and D1 ∩ 2K1 (see Notation 2.2). Hence by the maximality of D1,

D1 ∩ 2K0 is a maximum matching of D0 ∩ 2K0∪{k}. (3.4)

We now distinguish the following two cases. Suppose {{0},{n−1}}∩mc(T ) = ∅.
In this instance, we have D0 = {{i, i + 1} ∶ 0 ≤ i ≤ n − 2} (see Notation 2.2) and
r(C) = {i ∈ C ∶ i is odd} (see (3.3)). Thus k is odd because k ∈ r(C). Since
the elements of D1 are disjoint and of size 2, and since ∣K0∣ = k, it follows
that ∣D1 ∩ 2K0 ∣ ≤ k−1

2
. On the other hand, {{i, i + 1} ∈ 2K0∪{k} ∶ i is even} is

a matching of size k+1
2

of D0 ∩ 2K0∪{k}. This contradicts (3.4). Now suppose{{0},{n−1}}∩mc(T ) ≠ ∅. By interchanging T and T ⋆, as well as i and n−1− i
for i ∈ C, we may assume {0} ∈ mc(T ). Thus r(C) = {i ∈ C ∶ i is even} (see
(3.3)), and hence k is even. Since the elements of (D1∩2K0)∖{{0}} are disjoint
and of size 2 (see Notation 2.2), it follows that ∣D1 ∩ 2K0 ∣ ≤ k

2
. On the other

hand, if {k} ∈ mc(T ), then since k ∉ ∪mc2(T ), mc2(T ) ∪ {{k}} is a matching
of mc(T ), which contradicts the maximality of mc2(T ). Thus {k} ∉ mc(T ).
Therefore, {{0}}∪({{i, i+1} ∈ 2K0∪{k} ∶ i is odd}) is a matching of D0∩2K0∪{k}.
Since this matching is of size 1 + k

2
and ∣D1 ∩ 2K0 ∣ ≤ k

2
, we again contradict

(3.4). We conclude that R ⊆ ∪mc2(T ), as claimed. Therefore, R is a minimum
transversal of mc2(T ). Since R is a transversal of mc(T ) and mc2(T ) ⊆mc(T ),
it follows that R is also a minimum transveral of mc(T ), as required. Moreover,
we have ∣R∣ = ∣mc2(T )∣ = τ(mc(T )). Since ∣mc2(T )∣ = ν(mc(T )), we obtain
τ(mc(T )) = ν(mc(T )), i.e., mc(T ) has the König property.

Finally, to prove thatM(T ) is strictly bipartite by R, we have to prove that
M ∩ R ≠ ∅, M ∩ R ≠ ∅, M ∩ R ≠ ∅ for every M ∈ M(T ). Let M ∈ M(T ).
Since M and M are co-modules of T , and R is a transversal of mc(T ), we have
M ∩R ≠ ∅ and M ∩R ≠ ∅. Suppose to the contrary that M ⊆ R. There exists
a subset I of M such that I ∈ mc(T ). Since I ⊆ R and ∣I ∩R∣ = 1 because R is
an exact transversal of mc(T ), we have ∣I ∣ = 1. By Assertion 3 of Proposition
2.1, M ∩ I is a module of T because I and M are. Suppose ∣M ∩ I ∣ ≥ 2. Since
M ∩ I is a nontrivial module of T , M ∩ I contains an element J of mc(T ). By
reasoning as above, we obtain ∣J ∣ = 1. It follows from Observation 3.1 that
M = V (T ), a contradiction. Thus ∣M ∩ I ∣ = 1. Since ∣M ∩ I ∣ = 1, it follows
that M is a twin of T . Let C be the element of C(T ) containing M . We may
assume that T [C] = n for some integer n ≥ 2. By interchanging T and T ⋆, we
may assume that I = {0} and M = {0,1}. Thus r(C) = {i ∈ C ∶ i is even} (see
(3.3)). Since R ∩C = r(C), it follows that 1 ∈M ∖R, which contradicts M ⊆ R.
This completes the proof.

Alternatively, Theorem 3.2 can be stated as in Theorem 3.3 below.

Notation 3.1. Given a tournament T , we denote by tr(T ) the set of exact and
minimum transversals R of mc(T ) such thatM(T ) is strictly bipartite by R.
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Theorem 3.3. For any tournament T that is not transitive of even order, we

have ∅ ≠ tr(T ) ⊆ (∪mc(T )
∆(T )

).
Proof. Let T be a tournament that is not transitive of even order. The first
assertion of Theorem 3.2 says that tr(T ) ≠ ∅. Let R ∈ tr(T ). By minimality
of the transversal R of mc(T ), we have R ⊆ ∪mc(T ). Since mc(T ) has the
König property (see Theorem 3.2) and ∆(T ) = ν(mc(T )) (see (3.1)), we obtain

∣R∣ =∆(T ). Thus R ∈ (∪mc(T )
∆(T )

), and hence tr(T ) ⊆ (∪mc(T )
∆(T )

).
The proof of Theorem 3.3 shows how Theorem 3.2 implies Theorem 3.3.

Conversely, it is easily seen that Theorem 3.3 immediately implies Theorem 3.2.
Thus, Theorems 3.2 and 3.3 are equivalent.

4. Proof of Theorem 1.4

Since tr(T ) ⊆ (mc(T )
∆(T )

) in Theorem 3.3, then Theorem 1.4 is a direct conse-

quence of Theorem 4.1 below, which gives a finer localization of the subset X

such that Inv(T,X) is indecomposable.

Theorem 4.1. Given a tournament T of order at least 5 that is not transitive

of even order, there exists X ∈ tr(T ) such that Inv(T,X) is indecomposable.

Moreover, we have δ′(T ) =∆(T ).
The aim of this section is to prove Theorem 4.1. We first introduce some

convenient notations. Let T be a tournament. We also denote by T the function
T ∶ (V (T )× V (T ))∖ {(x,x) ∶ x ∈ V (T )} Ð→ Z2, defined by

T (x, y) = ⎧⎪⎪⎨⎪⎪⎩
1 if (x, y) ∈ A(T ),
0 if (x, y) ∉ A(T ).

For instance, given a subset R of V (T ), we have

(Inv(T,R))(x, y) = ⎧⎪⎪⎨⎪⎪⎩
1 + T (x, y) if {x, y} ⊆ R,

T (x, y) otherwise.
(4.1)

For two disjoint subsets X and Y of V (T ), we write X ≡T Y to mean that
T (x, y) = T (x′, y′) for every x,x′ ∈X and y, y′ ∈ Y . For more precision, we write
T (X,Y ) = 1 (resp. T (X,Y ) = 0) to mean that T (x, y) = 1 (resp. T (x, y) = 0)
for every x ∈ X and y ∈ Y . When X = {x} for some x ∈ V (T ), we write x ≡T Y

for {x} ≡T Y , and T (x,Y ) for T ({x}, Y ). Notice that for M ⊆ V (T ), M is a
module of T if and only if x ≡T M for every x ∈M , or, equivalently, if and only
if T (x,u) = T (x, v) for every x ∈M and u, v ∈M .

The following facts come from a simple examination of the adjacency relation
in Inv(T,R) compared to that in T , as observed in (4.1).

Fact 4.1. Let T be a tournament and M,X ⊆ V (T ).
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1. If M and X do not overlap, then M is a module of Inv(T,X) if and only

if it is a module of T .

2. If M and X overlap, then M ∉M(T )∩M(Inv(T,X)).
3. If Inv(T,X) is indecomposable, then X is a transversal of mc(T ).
4. If Inv(T,X) is indecomposable, then M(T ) is strictly bipartite by X.

Fact 4.1 shows how Theorems 3.2 and 1.4 are closely related (see also Theo-
rem 4.2 below). More details about their relationship are provided in Section 5.
In the rest of this section, Theorem 3.2 will play a central role in the proof of
Theorem 4.1.

Lemma 4.1. Let T be a tournament that is not transitive of even order, let

R ∈ tr(T ), and set T ′ = Inv(T,R). The following assertions hold.

1. We have M(T )∩M(T ′) = ∅.
2. M(T ′) is strictly bipartite by R.

3. Every nontrivial module of T ′ is a transversal of mc(T ).
Proof. We clearly can suppose that T and T ′ are decomposable. SinceM(T ) is
strictly bipartite by R, the first assertion follows from Assertion 2 of Fact 4.1.
Let M ∈ M(T ′). If M is a module of T , then R overlaps M because M(T )
is strictly bipartite by R. If M is not a module of T , then R overlaps M by
Assertion 1 of Fact 4.1. Thus the second assertion holds. For the third assertion,
let I ∈ mc(T ). We have to prove that M ∩ I ≠ ∅. Since R and M overlap by
the second assertion, and since R is a transversal of mc(T ), we have M ∩R ≠ ∅,
M ∩R ≠ ∅, and I ∩R ≠ ∅. So let x ∈M ∩R, y ∈M ∩R, and u ∈ I ∩R. Suppose
to the contrary that M ∩ I = ∅. If I is a module of T , then u ≡T {x, y} and thus
u /≡T ′ {x, y}, which contradicts that M is a module of T ′. Therefore I ∈M(T ).
Since M(T ) is bipartite by R, we have I ∩ R ≠ ∅. So let v ∈ I ∩ R. Observe
that x, y, u, and v are pairwise distinct. Since I is a module of T , then either{x, y} ≡T I and thus u /≡T ′ M , or T (x, I) = 1 + T (y, I) and thus v /≡T ′ M . In
both cases, this contradicts M ∈M(T ′).
Notation 4.1. In the proof of Theorem 4.2 below, we need to divide mc(T ) into
the disjoint union of mc+(T ) =mc(T )∩M(T ) and mc−(T ) =mc(T )∖M(T ).

Observe that by Assertions 1 and 2 of Lemma 2.1, we have ∣mc−(T )∣ ≤ 2.
Moreover, it follows from Assertion 3 of Lemma 2.1 that

if the tournament T is decomposable and v(T ) ≥ 4, then mc+(T ) ≠ ∅. (4.2)

Theorem 4.2. Let T be a tournament that is not transitive of even order. If

∆(T ) ≥ 3, then for every R ∈ tr(T ), the tournament Inv(T,R) is indecompos-

able.

Proof. Suppose ∆(T ) ≥ 3. Let R ∈ tr(T ) and set T ′ = Inv(T,R). We first prove
the following claim, which is a strengthening of Assertion 3 of Lemma 4.1 under
the hypothesis ∆(T ) ≥ 3.
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Claim 4.1. Every nontrivial module of T ′ is an exact transversal of mc(T ).
Proof of Claim 4.1. Let M ∈M(T ′). To prove that M is an exact transversal
of mc(T ), we first show that

for every I ∈M(T ), if ∣M ∩ I ∣ ≥ 2, then {M ∩ I and R overlap, (4.3)

and M ∪ I = V (T ). (4.4)

Let I ∈ M(T ) such that ∣M ∩ I ∣ ≥ 2. By Assertion 1 of Proposition 2.1,
M ∩ I is a module of T [M]. Suppose to the contrary that (4.3) does not
hold. In this instance, M ∩ I and M ∩ R do not overlap. Therefore, since
T ′[M] = Inv(T [M],M∩R), it follows from Assertion 1 of Fact 4.1 applied to the
tournament T [M] that M ∩ I is also a module of T ′[M]. Thus, M ∩ I ∈M(T ′)
by Assertion 2 of Proposition 2.1. Since (4.3) does not hold, this contradicts
Assertion 2 of Lemma 4.1. Thus (4.3) holds. Hence, if R ∩M ∩ I ≠ ∅, then for
x ∈ R ∩M ∩ I, since ∣M ∩ I ∣ ≥ 2 and x ≡T M ∩ I because I ∈M(T ), we have
x /≡T ′ M ∩I, which contradicts M ∈M(T ′). Thus R ⊆M ∪I. Since M ∈M(T ′),
I ∈M(T ), M ∩ I ≠ ∅, and R ⊆M ∪ I, we obtain that M ∪ I is a module of both
T and T ′. It follows from Assertion 1 of Lemma 4.1 that the module M ∪ I is
trivial. Since ∣M ∩ I ∣ ≥ 2, (4.4) holds.

Now let I ∈ mc(T ). To prove that ∣M ∩ I ∣ = 1, we distinguish the following
two cases.

• Suppose I ∈ mc+(T ). Suppose to the contrary that ∣M ∩ I ∣ ≥ 2. Since
M ∩ R ≠ ∅ by Assertion 2 of Lemma 4.1, it follows from (4.4) that M ∩
R∩ I ≠ ∅. Therefore, since ∣I ∩R∣ = 1 because R is an exact transversal of
mc(T ), we obtain M ∩I∩R = ∅, which contradicts (4.3). Thus ∣M ∩I ∣ ≤ 1,
and hence ∣M ∩ I ∣ = 1 by Assertion 3 of Lemma 4.1.

• Suppose I ∈ mc−(T ). By Assertion 3 of Lemma 4.1, it suffices to prove
that ∣I ∣ = 1. Suppose ∣I ∣ ≠ 1. Since I ∈ mc−(T ), we have I ∈M(T ) and

I is not a module of T. (4.5)

Moreover, since ∆(T ) = ν(mc(T )) ≥ 3 by hypothesis, and oT (I) = 0 by
Lemma 2.3, then ∣M ∩I ∣ ≥ 2 by Assertion 3 of Lemma 4.1. It follows from
(4.4) that M ∪ I = V (T ), i.e. I ⊆M . Moreover, M ∩ I and R overlap by
(4.3). Let x ∈M ∩ I ∩R. Since R ⊆ ∪mc(T ) (see Theorem 3.3), then x ∈ J
for some J ∈ mc(T ). More precisely, J ∈ mc(T ) ∖ {I} because x ∈ J ∩ I,
and hence I ∩ J = ∅ because oT (I) = 0. In addition, since I is not a
module of T (see (4.5)) and I ∩ J = ∅, then J ∈ mc+(T ) by Assertion 2
of Lemma 2.1. It follows from the first case that M ∩ J = {x}. We also
have R∩J = {x} because R is an exact transversal of mc(T ). Moreover, J
and R overlap because J ∈M(T ) andM(T ) is strictly bipartite by R. So
consider a vertex y ∈ J ∩R. Since M ∩J = R∩J = {x}, we have y ∈M ∩R.
Moreover, since M is a module of T ′, by interchanging T and T ⋆, we may
assume that T ′(y,M) = 1 and thus T (y,M) = 1. In particular, T (y, I) = 1
because I ⊆M . Since I is a module of T , it follows that T (I, I) = 1, which
contradicts (4.5).
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Suppose to the contrary that T ′ is decomposable. By (4.2), we have
mc+(T ′) ≠ ∅. Let M ∈mc+(T ′).
Claim 4.2. We have ∣M ∩R∣ = 1.
Proof of Claim 4.2. Suppose ∣M ∩R∣ ≠ 1. Since M and R overlap by Assertion 2
of Lemma 4.1, we have 2 ≤ ∣M ∩R∣ ≤ v(T ) − 2. It follows from the minimality
of M as a co-module of T ′ that M ∩ R is not a module of T ′. Since M is a
module of T ′ and M ∩R is not, there exist x ≠ y ∈M ∩R and u ∈M ∩R such
that T ′(u,x) ≠ T ′(u, y), and thus

T (u,x) ≠ T (u, y). (4.6)

Since R ⊆ ∪mc(T )(see Theorem 3.3), we have u ∈ I for some I ∈ mc(T ). Since
M is an exact transversal of mc(T ) by Claim 4.1, we have I ∩M = {u}. If

I = {u}, then {u} is a module of T , which contradicts (4.6). Thus I ≠ {u}.
Since I ∩M = {u} and I ≠ {u}, we have I ∩M ≠ ∅. Let v ∈ I ∩M . Since M is a
module of T , we have T ′(v, x) = T ′(v, y), and thus

T (v, x) = T (v, y). (4.7)

Since {u, v} ⊆ I and {x, y} ⊆ I, it follows from (4.6) and (4.7) that I is not a
module of T . Therefore, I is a module of T , contradicting (4.6). Thus ∣M ∩R∣ =
1.

Now since ∆(T ) = ν(mc(T )) ≥ 3 and M is a transversal of mc(T ) by
Claim 4.1, we have ∣M ∣ ≥ 3. Since ∣M∩R∣ = 1 by Claim 4.2, we obtain ∣M∩R∣ ≥ 2.
Let u be the element of M ∩R. Recall that M and R overlap by Assertion 2
of Lemma 4.1. So let v ∈ R ∩M . Since R ⊆ ∪mc(T ) (see Theorem 3.3), v ∈ I
for some I ∈ mc(T ). Since M is an exact transversal of mc(T ) by Claim 4.1,
we have ∣I ∩M ∣ = 1. More precisely, I ∩M = {u} because R is also an exact
transversal of mc(T ). If M ∖ I is a module of T ′[M], then M ∖ I is a non-
trivial module of T ′ (see Assertion 2 of Proposition 2.1), which contradicts the
minimality of M as a co-module of T ′. Thus, M ∖ I is not a module of T ′.
Therefore, there exist x ≠ y ∈ M ∩ R such that T ′(u,x) ≠ T ′(u, y) and thus
T (u,x) ≠ T (u, y). In particular, I is not a module of T . Since I ∈ mc(T ), I is
a module of T . Moreover, since T (u,x) ≠ T (u, y), we obtain T (v, x) ≠ T (v, y)
and hence T ′(v, x) ≠ T ′(v, y), which contradicts that M is a module of T ′.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let T be a tournament of order at least 5 that is not
transitive of even order. The theorem obviously holds when T is indecompos-
able. Hence, suppose that T is decomposable, i.e. ∆(T ) ≥ 2. By Theorem 3.3,
tr(T ) ≠ ∅. If ∆(T ) ≥ 3, then for every X ∈ tr(T ), Inv(T,X) is indecompos-
able by Theorem 4.2. Hence suppose ∆(T ) = 2. By Theorem 1.3, there exists

X ∈ (V (T )
2
) such that Inv(T,X) is indecomposable. By Assertions 3 and 4 of
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Fact 4.1, X is a transversal of mc(T ) andM(T ) is strictly bipartite byX . More-
over, since ∣X ∣ = ∆(T ) = ν(mc(T )), the transversal X of mc(T ) is minimum
and exact. Equivalently X ∈ tr(T ). Hence, there always exists X ∈ tr(T ) such
that Inv(T,X) is indecomposable. Moreover, since X is a minimum transver-
sal of mc(T ) and ∣X ∣ = ∆(T ), it follows from Assertion 3 of Fact 4.1 that
δ′(T ) =∆(T ). This completes the proof.

5. Some additional remarks

Suppose that the tournament T in Theorems 1.4 and 3.2 is transitive of even
order with at least four vertices. In this instance, it is easy to see thatM(T )
is no longer strictly bipartite. It follows that there does not exist a subset X

of V (T ) such that Inv(T,X) is indecomposable (see Assertion 4 of Fact 4.1).
Thus, Theorems 1.4 and 3.2 fail to hold for these tournaments. However, it is
easy to verify that mc(T ) still has the König property.

Corollary 5.1. For any tournament T , mc(T ) has the König property.

On the other hand, Theorem 4.2 does not hold for the class T of the tourna-
ments T such ∆(T ) = 2. To see this, let us consider the tournament Tn defined
on V (Tn) = {0, . . . , n − 1}, where n ≥ 6, in the following manner :

• Tn − (n − 1) = Inv(n − 1,{(i, i + 1) ∶ 0 ≤ i ≤ n − 3}),
• Tn(n − 1,{0, . . . , n − 2}) = 1.

It is easy to verify that Tn− (n−1) is indecomposable, and that {0, . . . , n−2} is
the unique nontrivial module of Tn. Therefore mc(Tn) = {{0, . . . , n−2},{n−1}},
and hence ∆(Tn) = 2. It follows that {1, n − 1} ∈ tr(Tn). But the tournament
Inv(Tn,{1, n − 1}) is decomposable because {0, n − 1} is a nontrivial module of
it. Therefore, Tn ∈ T ∩R, where R is the class of the tournaments T for which
there exists R ∈ tr(T ) such that Inv(T,R) is decomposable. Thus ∅ ≠ R ⊆ T .
However, there exist tournaments T of arbitrary large order, such that ∆(T ) = 2
and for every R ∈ tr(T ), Inv(T,R) is indecomposable (see e.g., [2, Discussion]).
Thus R ⊊ T . This discussion leads to the problem of characterization of the
tournaments of the class R.

We now explain how Theorem 1.4 may be seen as a stronger version of
Theorem 3.2.

Lemma 5.1. Let T be a tournament and R a subset of V (T ). If ∣R∣ = ∆(T )
and Inv(T,R) is indecomposable, then R ∈ tr(T ).
Proof. Suppose that ∣R∣ = ∆(T ) and Inv(T,R) is indecomposable. By Asser-
tions 3 and 4 of Fact 4.1, R is a transversal of mc(T ) and M(T ) is strictly
bipartite by R. Since ∣R∣ = ∆(T ), the transversal R of mc(T ) is minimum.
Suppose to the contrary that the minimum transversal R of mc(T ) is not exact.
In this instance, there exists I ∈ mc(T ) such that ∣I ∩ R∣ ≥ 2. By minimality
of R, we have oT (I) ≠ 0. It follows from Lemma 2.3 that I is a twin of T ,
and in particular I = I ∩R. It follows that I is also a twin of Inv(T,R), which
contradicts that Inv(T,R) is indecomposable. We conclude that R ∈ tr(T ).
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By Lemma 5.1, Theorem 1.4 implies Theorem 3.2 for tournaments with at
least five vertices. Moreover, by Lemma 5.1 and Theorem 4.2, Theorems 1.4
and 3.2 are equivalent for the tournaments T such that ∆(T ) ≠ 2.
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