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Abstract

In this paper, we prove lower and upper bounds on the achromatic

and the pseudoachromatic indices of the n-dimensional finite projective

space of order q.

1 Introduction

The results given in this paper are related to the well-known combinatorial

problem called the Erdős-Faber-Lovász Conjecture (for short EFL Conjec-

ture), see [12].
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Let S be a finite linear space. A coloring of S with k colors is an as-

signment of the lines of S to a set of colors [k] := {1, . . . , k}. A coloring

of S is called proper if any two intersecting lines have different colors. The

chromatic index χ′(S) of S is the smallest k such that there exists a proper

coloring of S with k colors. Erdős, Faber and Lovász conjectured ([12, 13])

that the chromatic index of any finite linear space S cannot exceed the

number of its points, so if S has v points then

χ′(S) ≤ v.

In [8] the EFL Conjecture was proved for one of the most studied lin-

ear spaces, namely for the n-dimensional finite projective space of order q,

PG(n, q). In this case it is known that

χ′(PG(n, q)) ≤ qn+1 − 1

q − 1
.

Three of this article’s authors proved the EFL Conjecture for some linear

spaces ([4, 5]). Moreover, in [1, 2, 3] two of them have considered differ-

ent types of colorations that expand the notion of the chromatic index for

graphs: the achromatic and the pseudoachromatic indices. Related prob-

lems were intensively studied by several authors, see [9, 14, 15, 17]. Fur-

thermore, in [11] Colbourn and Colbourn investigated these parameters for

block designs (see also [18]).

A coloring of S is called complete if each pair of colors appears on at

least one point of S. It is not hard to see that any proper coloring of S with

χ′(S) colors is a complete coloring. The achromatic index α′(S) of S is the

largest k such that there exists a proper and complete coloring of S with k

colors. The pseudoachromatic index ψ′(S) of S is the largest k such that

there exists a complete coloring (not necessarily proper) of S with k colors.

Clearly we have that

χ′(S) ≤ α′(S) ≤ ψ′(S). (1)

If Πq is an arbitrary (not necessarily desarguesian) finite projective plane

of order q, then

χ′(Πq) = α′(Πq) = ψ′(Πq) = q2 + q + 1,
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because any two lines of Πq have a point in common. The situation is much

more complicated in higher dimensional projective spaces, the exact values

of the chromatic indices are not known for n ≥ 3. The aim of this paper is

to study the achromatic and pseudoachromatic indices of finite projective

spaces. Our main results are summarized in the following theorem.

Theorem 1.1. Let v = qn+1−1
q−1 denote the number of points of PG(n, q).

1. If n = 3 · 2i − 1 (i = 1, 2, . . . ) then

cn
1

q
v

4
3
+ 1

3n < α′(PG(n, q)), (2)

where 1

2
7
5
≤ cn < 1

2
4
3

is a constant that depends only on n.

2. If n ≥ 2 is an arbitrary integer then

ψ′(PG(n, q)) <
1

q
v

3
2 .

In Section 2, we collect some known properties of projective spaces,

spreads and packings, and we prove a lemma about the existence of a par-

ticular spread. In Section 3, we prove the main theorems about the achro-

matic and pseudoachromatic indices. Finally, in Section 4 (an Appendix is

attached, where) we consider the smallest projective space, PG(3, 2), and

determine the exact value of its pseudoachromatic index without using a

computer.

2 On projective spaces

It is well-known that, for any n > 2, the n-dimensional finite projective

space of order q exists if and only if q is a prime power and it is unique

up to isomorphism. Let Vn+1 be an (n + 1)-dimensional vector space over

the Galois field GF(q) with q elements. The n-dimensional finite projective

space, denoted by PG(n, q), is the geometry whose k-dimensional subspaces

for k = 0, 1, . . . , n are the (k + 1)-dimensional subspaces of Vn+1. For the

detailed description of these spaces we refer the reader to [16].
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The basic combinatorial properties of PG(n, q) can be described by the

q-nomial coefficients [nk]q. This number is defined as[
n

k

]
q

:=
(qn − 1)(qn − q) . . . (qn − qk−1)
(qk − 1)(qk − q) . . . (qk − qk−1)

,

and it equals to the number of k-dimensional subspaces in an n-dimensional

vector space over GF(q). The proof of the following proposition is straight-

forward.

Proposition 2.1. The following holds in PG(n, q):

• the number of k-dimensional subspaces is
[
n+1
k+1

]
q
, in particular, the

number of points equals to qn+1−1
q−1 and the number of lines equals to

(qn+1−1)(qn−1)
(q2−1)(q−1) ;

• the number of k-dimensional subspaces through a given m-dimensional

(m ≤ k) subspace is
[
n−m
k−m

]
q
.

A t-spread S t of PG(n, q) is a set of t-dimensional subspaces (for short

t-subspaces) of PG(n, q) that partitions PG(n, q). That is, each point of

PG(n, q) lies in exactly one element of S t. Hence any two elements of S t

are disjoint. A 1-spread is also called line spread and it is denoted by S . It

is well-known that a t-spread of PG(n, q) exists if and only if (t+ 1)|(n+ 1),

hence line spreads exist in projective spaces of odd dimension.

A t-packing Pt of PG(n, q) is a partition of the t-spaces of PG(n, q) into

t-spreads. A 1-packing is also called line packing or parallelism and it is

denoted by P. The next result is an obvious corollary of Proposition 2.1.

Proposition 2.2.

• A t-spread in PG(n, q) consists of qn+1−1
qt+1−1 t-subspaces.

• A t-packing in PG(n, q) consists of
[
n
t

]
q
t-spreads.

A necessary and sufficient condition for the existence of a t-packing of

PG(n, q) is not known in general. The following theorems give specific con-

structions in some particular cases.
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Theorem 2.3 (Beutelspacher [7]). If n = 2i − 1 with i = 1, 2, . . . , then

for every prime power q the finite projective space PG(n, q) admits a line

packing.

Theorem 2.4 (Baker [6]). For all integers m > 0 the finite projective space

PG(2m+ 1, 2) admits a line packing.

A regulus of PG(3, q) is a set R of q + 1 mutually skew lines such that

any line of PG(3, q) intersecting three distinct elements of R intersects all

elements of R. It is known [10] that any three pairwise skew lines `1, `2, `3 of

PG(3, q) are contained in exactly one regulus R = R(`1, `2, `3) of PG(3, q).

A line spread S of PG(3, q) is called regular, if for any three distinct lines

of S the whole regulus R = R(l1, l2, l3) is contained in S .

Theorem 2.5 (Beutelspacher [7]). For any regular spread S of PG(3, q)

there is a packing P of PG(3, q) which contains S as one of its spreads.

There is an important class of spreads. The notion of geometric spread

was introduced by Segre [19] in the following way. Let 〈X,Y 〉 be the subspace

of PG(n, q) generated by X and Y , where X and Y are two different elements

of a t-spread S t of PG(n, q). As X and Y are disjoint, from the dimension

formula we get that 〈X,Y 〉 is a (2t+1)-subspace. We say that S t induces a

spread S t
〈X,Y 〉 in 〈X,Y 〉, if any element Z of S t having at least one point in

〈X,Y 〉 is totally contained in 〈X,Y 〉. The t-spread S t is called geometric if

S t induces a spread S t
〈X,Y 〉 in 〈X,Y 〉 for any two distinct elements X and

Y of S t.

It is not difficult to check (see [7], Section 4) that a t-spread S t of

PG(n, q) is geometric if and only if the following holds. If the elements

X of S t are called large points, and for disjoint elements X,Y of S t the

subspaces 〈X,Y 〉 are called large lines, then the large points and large lines

form a projective space. This space, ΠS t , has dimension s = n+1
t+1 − 1 and

order qt+1, it is isomorphic to PG
(
n+1
t+1 − 1, qt+1

)
.

The following two results are due to Segre [19].

Theorem 2.6. The finite projective space PG(n, q) admits a geometric t-

spread if and only if there exists a positive integer s such that n + 1 =

(t+ 1)(s+ 1) holds.
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Lemma 2.7. If PG(n, q) admits a geometric line spread S then S〈X,Y 〉 is

a regular line spread of the 3-dimensional subspace 〈X,Y 〉 of PG(n, q) for

any X,Y ∈ S (X 6= Y ).

Combining the cited results of Beutelspacher and Segre, we prove a

lemma that plays a crucial role in the proof of the lower bound in The-

orem 1.1.

If n = 3 · 2i − 1 (i = 1, 2, . . . ) then n+ 1 = (2i − 1 + 1)(2 + 1), hence the

projective space PG(n, q) admits a geometric t-spread S t with t = 2i − 1.

The large points and large lines form a projective plane ΠS t of order qt+1.

Consider the lines of ΠS t and denote the corresponding (2i+1−1)-subspaces

of PG(n, q) by Lj (j = 1, . . . , q2t+2+qt+1+1). The t-spread S t is geometric,

therefore for all j the elements X of S t with X ∩ Lj 6= ∅ form a t-spread

of Lj which will be denoted by S t
j . The spread S t

j induces a special line

packing of Lj .

Lemma 2.8. Let PG(n, q) be the finite projective space of dimension n =

3 · 2i − 1 (i = 1, 2, . . . ). Then there exists a geometric t-spread S t with

t = 2i − 1 having the property that any finite projective subspace Lj admits

a line packing Pj such that the set of lines contained in the elements of S t
j

is the union of elements of some line spreads of Pj.

Proof. Since n+1 = (1+1)((3·2i−1−1)+1), it follows from Theorem 2.6 that

PG(3 · 2i − 1, q) admits a geometric line spread S . The elements of S and

the 3-subspaces 〈X,Y |X,Y ∈ S , X 6= Y 〉 can be considered, respectively, as

points and lines of a (3 ·2i−1−1)-dimensional space ΠS of order q2. Denote

the 3-subspaces of PG(3 · 2i − 1, q) corresponding to the lines of ΠS by Uj ,

where j = 1, . . . , [3·2
i−1

2 ]q2 . Since S is a geometric spread, as a consequence

of Lemma 2.7, we have that the elements X of S with X ∩ Uj 6= ∅ form

a regular line spread of Uj which will be denoted by SUj . Moreover, by

Theorem 2.5, we conclude that the 3-space Uj admits a packing Pj such

that SUj ∈Pj . For k = 1, 2, . . . , q2 + q let Sj,k be the other spreads of Pj ,

hence

Pj = {SUj ,Sj,1, . . . ,Sj,q2+q}.
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We claim that the lines contained in the elements of the set

P =

q4+q2+1⋃
j=1

(
Pj \ {SUj}

)
∪S

is equal to the line set of PG(n, q). The lines of S obviously appear in P
exactly once. If a line ` /∈ S , then ` lies in a unique subspace of type Lj .

Namely, if the lines e, f, g, h ∈ S meet ` then ` ⊂ 〈e, f〉 and ` ⊂ 〈g, h〉 , but

this means that g ∩ 〈e, f〉 6= ∅ and h ∩ 〈e, f〉 6= ∅. Since S is geometric this

implies that g and h are contained in 〈e, f〉 and therefore 〈e, f〉 = 〈g, h〉 . But

P contains exactly one packing of Lj , hence each line of PG(n, q) appears

in P exactly once.

Now, we prove the statement of the lemma by induction on i.

If i = 1 then it follows from Theorem 2.6 that PG(5, q) admits a geomet-

ric line spread S . The elements of S and the 3-spaces 〈X,Y |X,Y ∈ S , X 6= Y 〉
can be considered as points and lines of a plane ΠS of order q2, respectively.

Denote the 3-spaces of PG(5, q) corresponding to the lines of ΠS by Lj ,

where j = 1, . . . , q4 + q2 + 1. Since S is a geometric spread, Lemma 2.7

gives that the elements X of S with X ∩ Lj 6= ∅ form a regular line spread

of Lj which will be denoted by SLj . Because of Theorem 2.5 the 3-space Lj

admits a packing Pj such that SLj ∈ Pj . For i = 1, 2, . . . , q2 + q let Sj,1

be the other spreads of Pj , hence

Pj = {SLj ,Sj,1, . . . ,Sj,q2+q}.

Consider now the case i > 1 and let us assume that the assertion

of Lemma 2.8 is proved for all i′ < i. Since n + 1 = 3 · 2i = (1 +

1)(3 · 2i−1 − 1 + 1), by Theorem 2.6, PG(n, q) admits a geometric 1-spread

S . As before, we consider the elements X of S and the 3-subspaces

〈X,Y |X,Y ∈ S , X 6= Y 〉 as points and lines of a (3 · 2i−1− 1)-space ΠS of

order q2, respectively. Denote the lines of ΠS by Vk (k = 1, . . . ,M) where

M is the number of lines of ΠS . The spread S is geometric, therefore the

elements X of S with X∩Vk 6= ∅ form a spread of Vk which will be denoted

by Sk. By Lemma 2.7, Sk is a regular spread of Vk. According to Theorem

2.5, in all Vk there exists a packing PVk
of Vk which contains Sk as one
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of its spreads. Let this packing be

PVk
= {Sk,0, . . . ,Sk,q2+q}.

with Sk,0 = Sk.

Hence -by induction- ΠS admits a basic construction Ci−1 with the prop-

erty that any finite projective subspace Uj admits a packing Pj such that

the lines contained in the elements of S t
j are the union of elements of Pj .

Let S t
j = {Tj,1, . . . ,Tj,u} then Pj = S t

j ∪{Tj,u+1, . . . ,Tj,v} where v is the

number of 1-spreads in Uj of ΠS .

Recall that each line of ΠS is a 3-subspace of PG(n, q). If Tj,l =

{ul(1), . . . , ul(w) : 1 ≤ l ≤ v} where w is the number of lines in a 1-spread of Uj

(as a subspace of ΠS ), then Tj,l,m = {Sl(1),m, . . . ,Sl(w),m : 0 ≤ m ≤ q2 + q}
is a 1-spread of Uj (as a subspace of PG(n, q)).

We construct the following packing Pj of Uj (as subspaces of PG(n, q)):

Pj =
u
t
l=1

q2+q
t
m=0

Tj,l,m ∪
v
t

l=u+1

q2+q
t
m=1

Tj,l,m.

By construction, the set
u
t
l=1

q2+q
t
m=0

Tj,l,m contains all the lines of S t
j and the

lemma follows.

3 On line colorings of projective spaces

First, we introduce some notions that we use to prove our results. Let L
be the set of lines of PG(n, q) and P be its set of points. Given a coloring

ς : L → [k] with k colors, we say that a point p ∈ P is an owner of a set of

colors C ⊆ [k] whenever for every c ∈ C there is a q ∈ P \ {p} such that

ς(〈p, q〉) = c. Therefore, ς is a complete coloring if for every pair of colors

in [k] there is a point in P which is an owner of both colors.

3.1 Lower bound

Now we are ready to prove the lower bound in Theorem 1.1.
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Proof of Theorem 1.1, Part 1. Throughout the proof we use the notations

of Section 2. Consider the geometric t-spread S t constructed in Lemma 2.8.

Let N = q2(t+1)+qt+1+1 denote the number of large lines of the correspond-

ing projective plane ΠS t . The space PG(n, q) admits a basic construction Ci
with the property that any finite projective subspace Lj admits a packing

Pj such that the set of lines contained in the elements of S t
j is the union

of elements of Pj .

Let r = [t1]q, and Uj = {Sj,1, . . . ,Sj,r} denote the set of 1-spreads from

Pj whose union is the set of all lines that are contained in the elements of

S t
j . Then Pj = Uj t{Sj,r+1, . . . ,Sj,s} where s = [2t+1

1 ]q is the number of 1-

spreads of Pj . Note that the number of 1-spreads in P∗
j := Pj\Uj is s−r =

qt[t+1
1 ]q. Every element X of S t is a t-subspace, hence, by Theorem 2.3,

admits a packing PX = {S1,X , . . . ,Sr,X}. Then the set of lines contained

in the elements of the set N⋃
j=1

P∗
j

 ∪( ⋃
X∈S t

PX

)

is equal to L.
Now we define the coloring. We distinguish the two types of spreads.

For a fixed 1 ≤ j ≤ N and r + 1 ≤ k ≤ s let the lines of Sj,k be colored

with the color cj,k = (k − r − 1)N + j. This implies that each point of Lj

is owner of the colors cj,k for all k. For a fixed 1 ≤ m ≤ r let the lines of

Sm,X be colored with the color cm = (s− r)N +m for all X. As Sm,X is a

1-spread of X ∈ S t, the set of points on the lines of the set ∪X∈S tSm,X is

equal to P. Thus each point of PG(n, q) is owner of the colors cm for all m.

Observe that the coloring is proper by definition. We claim that it is

also complete. We have to show that for every pair of colors {c, c′} there is a

point x of PG(n, q), which is an owner of both c and c′. This is obvious when

at least one of c and c′ is of type cm. Suppose that c = cj,k and c′ = cj′,k′ .

Take the subspace Lj ∩ Lj′ . Its dimension is 2t+ 1 or t, according as j = j′

or j 6= j′, so it is not the empty set. Any point x ∈ Lj ∩ Lj′ is the owner of

both colors.

9



In the coloring we use

(s− r)N + r = qt
qn+1 − 1

q − 1
+
qt − 1

q − 1
=
qn+t+1 − 1

q − 1

colors. Let h = 4n+1
3n . Since n + t + 1 = 4n+1

3 = hn and 2qn > qn+1−1
q−1 = v,

we have
qn+t+1 − 1

q − 1
=
qhn − 1

q − 1
>

1

2h
(2qn)h

q
>

1

2h
vh

q
,

hence Inequality (2) of Theorem 1.1 holds with cn = 1
2h
, and the theorem

follows, because 5 ≤ n implies 4
3 < h ≤ 7

5 .

3.2 Upper bound

Now we prove the upper bound for the pseudoachromatic index of PG(n, q).

Proof of Theorem 1.1, Part 2. If r denotes the number of lines through a

fixed point, then the total number of unordered line-line incidences is v
(
r
2

)
.

Hence v
(
r
2

)
≥
(
ψ′(PG(n,q))

2

)
. Solving this quadratic inequality we get

ψ′(PG(n, q)) ≤
1 +

√
1 + 4vr(r − 1)

2
.

Since
√

1 + 4vr(r − 1) <
√

4vr2 − 1 and r = v−1
q , this gives

ψ′(PG(n, q)) <
√
vr =

1

q

√
v(v − 1)

and the result follows.

4 The case of PG(3, 2)

In this section, we determine the pseudoachromatic index of the smallest

finite projective space, PG(3, 2), in a pure combinatorial way, without using

any computer aided calculations. To do this, we need some lemmas about

pencils and null polarities.

Definition 4.1. Let Π be a plane and P ∈ Π be a point in PG(3, q). A

pencil with carrier P in Π is the set of the q + 1 lines of PG(3, q) through

P that are contained in Π.
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Lemma 4.2. Let E be a set of five lines in PG(3, 2). If any two lines of E
have a point in common then E contains a pencil.

Proof. Any two lines of E meet, hence, all the lines in E are either coplanar

or all of them have a point in common. It follows from Proposition 2.1 that

in PG(3, 2) there are seven lines through each point, and dually, each plane

contains seven lines. Because of the duality, we may assume without loss of

generality that the five lines of E are coplanar. As each plane contains seven

points and
(
5
2

)
> 7, at least three lines of E have a point in common, thus E

contains a pencil.

Definition 4.3. Let PG(3, q)′ denote the dual space of PG(3, q), and let A be

a 4×4 non-singular matrix over GF(q) that satisfies the equation A = −AT

and whose all diagonal elements are 0.

A null polarity π : PG(3, q)→ PG(3, q)′ is a collineation which maps the

point with coordinate vector x to the point with coordinate vector xA.

As the points, lines and planes of the dual space are planes, lines and

points of the original space, respectively, a null polarity maps lines of PG(3, q)

to lines of PG(3, q). A null polarity maps intersecting lines to intersecting

lines, hence the proof of the following statement is straightforward.

Lemma 4.4. Let π be a null polarity and ς be a line-coloring of PG(3, q).

Then ς is complete if and only if ς ◦ π−1 is a complete line-coloring of

PG(3, q)′.

Theorem 4.5. The pseudoachromatic index of PG(3, 2) is equal to 18, i.e.,

ψ′(PG(3, 2)) = 18.

Proof. In PG(3, 2) there are three points on each line and there are seven

lines through each point, hence the total number of lines intersecting a fixed

line is 3·(7−1) = 18. Thus if a complete line coloring contains a color class of

size one then the coloring cannot contain more than 1+18 = 19 color classes.

There are 35 lines in PG(3, 2), so the number of color classes containing at

least two lines is at most b35/2c = 17. Hence ψ′(PG(3, 2)) ≤ 19.

11



Now, we prove that ψ′(PG(3, 2)) ≤ 18. Suppose to the contrary that

there exists a complete coloring ς of PG(3, 2) with 19 color classes.

We claim that ς contains three or four color classes of size one and no

three of the corresponding lines form a pencil. By the pigeonhole principle,

there are at least 3 color classes of size one. If there were at least five color

classes of size one in ς then, by Lemma 4.2, we could choose three color

classes such that the corresponding lines would form a pencil. Suppose that

three lines, `1, `2 and `3 form a pencil with carrier P in the plane Π, and

each of these lines forms a color class of size one. Consider the other 16

classes. At most 4 of them contain lines through P and at most 4 of them

contain lines in Π. Each of the remaining at least 8 classes must have size at

least 3, because they have to meet each `i for i = 1, 2, 3. This implies that

these color classes contain altogether 8× 3 = 24 or more lines. As the total

number of lines is 35, this means that each of the remaining 11 color classes

contains exactly one line. Hence each of the seven lines through P, and each

of the 4 lines in Π not through P are color classes of size one, but they do

not meet, so ς is not complete. This contradiction proves the statement.

Choose three color classes of size one and let `1, `2 and `3 be the lines in

these color classes. Any two of these lines have a point in common, but they

do not form a pencil, hence either they form a triangle, or they have a point

in common but they are not coplanar. In the latter case apply Lemma 4.4.

If the three lines meet in the point P then after a null polarity π, the lines

`π1 , `
π
2 and `π3 form a triangle in the plane P π. As PG(3, 2) is isomorphic to

its dual space, it is enough to consider the first case.

From now on, we suppose that `1, `2 and `3 form a triangle ABC in the

plane Π. Let A′, B′ and C ′ be the third points of the sides of the triangle,

respectively, and let D = AA′∩BB′∩CC ′ be the seventh point of the plane

Π. Take Π as the plane at infinity and consider the remaining eight points

as AG(3, 2). The coordinates of the points in Π can be choosen as follow.

A = (0 : 1 : 0 : 0), B = (0 : 0 : 1 : 0), C = (0 : 0 : 0 : 1), A′ = (0 : 0 : 1 : 1),

B′ = (0 : 1 : 0 : 1), C ′ = (0 : 1 : 1 : 0) and D = (0 : 1 : 1 : 1).

First, suppose that there is a 4th color class of size one and let `4 denote

the line in this class. Then `4 must be in Π. If it contains one of the points

12



A,B or C, then a pencil appears, hence the coloring is not complete. So

we may assume that `4 is the line A′B′C ′. Among the other 15 color classes

there are 14 classes of size 2 and one of size 3. Consider the four lines, say

`5, `6, `7 and `8, through D but not in Π. If two or three of them formed a

color class, then this class would have empty intersection with each of `1, `2

and `3, contradiction. So these four lines are distributed among at least

three color classes and each class of size two must contain a line of Π. Thus

there are two possibilities for these color classes:

(a) {`5, `8, AA′}, {`6, BB′}, {`7, CC ′},

(b) {`5, AA′}, {`6, BB′}, {`7, CC ′}, {`8, `9, `10}, where `9 is a line through

A and `10 is a line through A′.

Each of the remaining classes contains two lines whose points at infinity

cover `1, `2, `3 and `4. Since no three of these lines have a point in common,

each of the remaining classes is incident to `1, `2, `3 and `4 if and only if

two points at infinity of these color classes coincide with one of the sets

{A,A′}, {B,B′} and {C,C ′}.
If there is no more color class of size one, then each of the remaining

16 classes has size 2. The pairs of the four lines through D must be the

four lines of Π distinct from `1, `2, `3. If an affine line passes on A′, then its

pair must pass on A, and the same is true for the lines through {B,B′} and

{C,C ′}.
We can summarize these possibilities as follow.

• Each of the lines `1, `2 and `3 forms a class of size one.

• There are 12 classes such that two points at infinity of these color

classes coincide with one of the sets {A,A′}, {B,B′}, {C,C ′}.

• Each of the pairs {`5, AA′}, {`6, BB′} and {`7, CC ′} belong to one

color class.

• The nineteenth color class contains the line A′B′C ′.

• The line `8 is “free”.

13



We can choose the system of reference such that the pair of AA′ is the line

DOE where O = (1 : 0 : 0 : 0) and E = (1 : 1 : 1 : 1). Let X = (1 : 1 : 0 : 0),

Y = (1 : 0 : 1 : 0), Z = (1 : 0 : 0 : 1), K = (1 : 1 : 1 : 0), L = (1 : 1 : 0 : 1)

and M = (1 : 0 : 1 : 1) be the other affine points of PG(3, 2), see Figure 1.

The pair of the line CXL is either the line C ′O or C ′E. As the roles of O

and E were symmetric previously, we may assume without loss of generality

that C ′OK is the pair of CXL.

C

Z

M

A′

B′

L

E

D

C ′

X

K

Y

A

B

O

`3

`2

`1

Π

Figure 1: PG(3, 2), not all lines shown.

First, consider the three other classes whose two points in Π are C and

C ′. The affine part of the three lines through C are OZ, MY, KE, while

the affine part of the three lines through C ′ are EZ, XY, LM. Each of these

classes must meet the line DOE. Hence, we need a matching between these

two line-triples such that each pair contains at least one of the points O

and E. So the pair of MY must be EZ. There are two possibilities for the

remaining two pairs, so the four possible pairs through C and C ′ are:

i) (XL, OK), (MY, EZ), (OZ, XY ), (KE, LM),
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ii) (XL, OK), (MY, EZ), (KE, XY ), (OZ, LM).

In Case i) take the four classes whose two points in Π are B and B′.

The affine parts of the four lines through B are OY, EL, XK, ZM, while

the affine parts of the four lines through B′ are OL, EY, XZ, MK. Again,

we need a matching such that each pair contains at least one of the points

O and E, and each class must meet the four classes belonging to {C,C ′}.
So the pair of XK is EY, because (XK, OL) has empty intersection with

(MY, EZ). Hence the pair of ZM is OL. The pair of MK is OY, because

(EL, MK) has empty intersection with (OZ, XY ). So the affine parts of

the four pairs belonging to {B,B′} are

(XK, EY ), (ZM, OL), (OY, MK), (EL, XZ).

Take the four classes whose two points in Π are A and A′. The affine

parts of the four lines through A are OX, EM, Y K, ZL, while the affine

part of the four lines through A′ are OM, EX, Y Z, LK. At least three

classes consist of only two lines. Let us look for these classes. None of the

pairs (OX, LK), (OX, Y Z), (EM, Y Z), (EM, LK) is good, because its

intersection is empty with (YM, EZ), (KE, LM), (XL, OK), (OZ, XY ),

respectively. In the same way none of the pairs (KY, OM), (KY, EX),

(LZ, OM), (LZ, EX) is good because their intersections are empty with

(EL, XZ), (ZM, LO), (XK, Y E), (OY, MK), respectively. This means

that in the matching there are only four possible pairs containing OX or

EM, namely

(OX, OM), (OX, EX), (EM, OM), (EM, EX), (3)

and four possible pairs containing KY or LZ, namely

(KY, LK), (KY, Y Z), (LZ, Y Z), (LZ, LK). (4)

Thus at least one pair from (3) and at least one pair from (4) form a color

class.

Now consider the affine part of the two color classes containing {B,B′}
and {C,C ′}. These are the lines through D, except DOE. So they consist
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of the points X and M, Z and K, L and Y. At least one of the two classes

contains only one pair of points. But the pair {X,M} has empty intersection

with any class from (4), while both pairs {Z,K} and {L, Y } have empty

intersection with any class from (3). Hence the coloring cannot be complete

in Case i).

Now consider Case ii). Take the four classes whose two points in Π are

B,B′. The affine parts of the four lines through B are OY, EL, XK, ZM,

while the affine parts of the four lines through B′ are OL, EY, XZ, MK.

Again we need a matching such that each pair contains at least one of the

points O and E, and each class must meet the four classes belonging to

{C,C ′}.
So the pair of XK is OL, because (XK, EY ) has empty intersection

with (OZ, LM). Hence the pair of ZM is EY. We distinguish two cases,

according to the pair of OY. So the affine parts of the four pairs belonging

to {B,B′} are

(a) (XK, LO), (ZM, EY ), (OY, XZ), (EL, MK),

(b) (XK, LO), (ZM, EY ), (OY, MK), (EL, XZ).

Take the four classes whose two points at infinity are A and A′. The affine

parts of the four lines through A are OX, EM, Y K, ZL, while the affine

part of the four lines through A′ are OM, EX, Y Z, LK. At least three

classes consist of only two lines. Let us look for these classes. In both cases

none of the pairs (OX, LK), (KY, EX), (EM, Y Z), (LZ, OM) is good,

because it has empty intersection with (YM, EZ), (OZ, LM), (XK, LO),

(KZ, XY ), respectively.

Furthermore, in Case (a) none of the pairs (OX, Y Z), (EM, LK) is

good, because its intersection is empty with {O,X, Y, Z} ∩ {E,L,M,K} =

{E,M,L,K}∩ {O, Y,X,Z} = ∅. Thus we get four possible pairs containing

OX or EM :

(OX, OM), (OX, EX), (EM, OM), (EM, EX), (5)

and six possible pairs containing KY or LZ :

(KY, OM), (LZ, EX),
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(KY, LK), (KY, Y Z), (LZ, LK), (LZ, Y Z). (6)

If either (KY, OM) or (LZ, EX) belongs to the matching, then only one

more pair from (5) can be in it, hence at least one more pair from (6) also

belongs to the matching. Thus at least one pair from (5) and at least one

pair from (6) form a color class.

In Case (b) none of the pairs (LZ, EX), (KY, OM) is good, because it

has empty intersection with (OY, MK), (EL, XZ), respectively. Thus we

get six possible pairs containing OX or EM :

(OX, Y Z), (EM, LK),

(OX, OM), (OX, EX), (EM, OM), (EM, EX), (7)

and four possible pairs containing KY or LZ :

(KY, LK), (KY, Y Z), (LZ, LK), (LZ, Y Z). (8)

If either (OX, Y Z) or (EM, LX) belongs to the matching, then only one

more pair from (7) can be in it, hence at least one more pair from (8) also

belongs to the matching. Thus at least one pair from (7) and at least one

pair from (8) form a color class.

Finally, in both Cases (a) and (b), consider the affine part of the two

color classes containing {B,B′} and {C,C ′}. These are the lines through D,

except DOE. So they consist of the points X and M, Z and K, L and Y. At

least one of the two classes contains only one pair of points. But the pair

{X,M} has empty intersection with any class from (6) and from (8), while

both of the pairs {Z,K} and {L, Y } have empty intersection with any class

from (5) and from (7). Hence the coloring cannot be complete in Case ii).

Now, we present a complete coloring with 18 color classes.

Let the lines `1, `2, `3 and `4 = A′B′C ′ form color classes of size one.

These classes are denoted by C1, C2, C3 and C4, respectively. The class C5
consists of the lines AA′D and OED, while the class C6 consists of the

remaining five lines through D. Any two of these six classes obviously have

non-empty intersection. The remaining twelve classes of size two are formed
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by the 3× 4 pairs of lines whose points at infinity are {A,A′}, {B,B′} and

{C,C ′}, respectively. The affine parts of these classes are the following:

CA1 : (OX,EX), CA2 : (OM,EM), CA3 : (Y K, Y Z), CA4 : (LZ,LK);

CB1 : (OY,MX), CB2 : (XK,EY ), CB3 : (ZM,OL), CB4 : (EL,XZ);

CC1 : (OZ,XY ), CC2 : (XL,OK), CC3 : (YM,EZ), CC4 : (KE,LM).

If 1 ≤ i ≤ 6 then Ci contains at least one element of each of the pairs

{A,A′}, {B,B′} and {C,C ′}, and any two color classes belonging to the

same quadruple of classes of type CQi also intersect each other. Hence it is

enough to show that CQi and CRj have non-empty intersection if Q 6= R.

The three parts of Table 1 give one point of intersection in each case.

CB1 CB2 CB3 CB4

CA1 O X O X

CA2 M E M E

CA3 Y Y Z Z

CA4 K K L l

CC1 CC2 CC3 CC4

CA1 O O E E

CA2 O O M M

CA3 Y K Y K

CA4 Z L Z l

CC1 CC2 CC3 CC4

CB1 O O M M

CB2 X X E E

CB3 O O M M

CB4 X X E E

Table 1: Points of intersections of CQi and CRj .

This proves that the coloring is complete.
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