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ABSTRACT

Let G be a simple graph of order n ≥ 2 and let k ∈ {1, . . . , n − 1}.
The k-token graph Fk(G) of G is the graph whose vertices are the k-
subsets of V (G), where two vertices are adjacent in Fk(G) whenever
their symmetric difference is an edge of G. In 2018 J. Leaños and A.
L. Trujillo-Negrete proved that if G is t-connected and t ≥ k, then
Fk(G) is at least k(t − k + 1)-connected. In this paper we show that
such a lower bound remains true in the context of edge-connectivity.
Specifically, we show that if G is t-edge-connected and t ≥ k, then
Fk(G) is at least k(t− k + 1)-edge-connected. We also provide some
families of graphs attaining this bound.

Keywords Token graphs · edge-connectivity ·Menger’s theorem
AMS Subject Classification Numbers: 05C40

1. Introduction

Throughout this paper, G is a simple finite graph of order n ≥ 2 and
k ∈ {1, . . . , n − 1}. The k-token graph Fk(G) of G is the graph whose ver-
tices are all the k-subsets of V (G) and two k-subsets are adjacent whenever their
symmetric difference is a pair of adjacent vertices in G. In particular, note that
Fk(G) is isomorphic to Fn−k(G). In this paper we often write token graph instead
of k-token graph. See Figure 1 for an example.
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FIGURE 1. The graph on the left is the cycle C5, and the graph on the right is F2(C5). For instance, note
that the symmetric difference of the vertices {1, 2} and {2, 3} of F2(C5) is {1, 3}, but they are not adjacent in
F2(C5) because 1 and 3 are not adjacent in C5.

As far as we know, the notion of token graphs was introduced by Y. Alavi, M.
Behzad, P. Erdős, and D. R. Lick in 1991 [1], where the 2-token graphs were called
double vertex graphs. The next time that this concept appeared in the literature was
in 2002, when T. Rudolph in its arXiv preprint “Constructing physically intuitive
graph invariants" used F2(G) to study the graph isomorphism problem [20]. In
such a work were exhibited some examples of non-isomorphic graphs G and H
which are cospectral, but with F2(G) and F2(H) non-cospectral. He emphasized
that fact by making the following remark about the eigenvalues of F2(G): “then
the eigenvalues of this larger matrix are a graph invariant, and in fact are a more
powerful invariant than those of the original matrix G".
In 2007 [4], the notion of token graphs was extended by K. Audenaert, C. God-
sil, G. Royle, and T. Rudolph to any integer k ∈ {1, . . . , n − 1}, and in such
a paper Fk(G) was called the symmetric k-th power of G. It was proved in [4]
that the 2-token graphs of strongly regular graphs with the same parameters are
cospectral. In addition, some connections with generic exchange Hamiltonians in
quantum mechanics were also discussed. Following Rudolph’s study, A. Barghi,
and I. Ponomarenko [17]; and A. Alzaga, R. Iglesias, and R. Pignol [3] proved,
independently, that for a given positive integer m there exists infinitely many pairs
of non-isomorphic graphs with cospectral m-token graphs.
In 2012 [11], R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Ur-
rutia, and D. R. Wood reintroduced, independently, the concept of k-token graphs
as “a model in which k indistinguishable tokens move from vertex to vertex along
the edges of a graph". From this new way of defining Fk(G) is not hard to see
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that the study of the structure of Fk(G) is intimately related to the class of prob-
lems known as reconfiguration problems. For more on reconfiguration problems,
see for example [5, 7, 13, 18, 14, 22, 23]. On the other hand, most of the results
reported in [11] address the following classical approach: Given a graph G and
a graph invariant η; What can we say about η(Fk(G)), when η(G) is known? In
[11] were studied the cases in which the graph invariant is the (vertex-) conne-
ctivity, the diameter, the clique number, the chromatic number, etc. This approach
has been continued in several investigations (see, e.g., [9, 8, 12, 15, 16]).
The k-token graphs also are a generalization of Johnson graphs: if G is the com-
plete graph of order n, then Fk(G) is isomorphic to the Johnson graph J(n, k).
The Johnson graphs have been widely studied and the analysis of many of its com-
binatorial properties is an active area of research [2, 6, 19, 10, 21].
Concerning the connectivity of token graphs, in [11] were given some families
of graphs of order n with connectivity exactly t, and whose k-token graphs have
connectivity exactly k(t− k + 1), whenever k ≤ t. In that paper was conjectured
that it is best possible. More formally, they conjectured that if G is t-connected
and k ≤ t, then Fk(G) is at least k(t− k + 1)-connected. In 2018 [15], J. Leaños
and A. L. Trujillo-Negrete proved this conjecture. In the present paper we are
interested in the edge-connectivity of Fk(G).
As usual, if H is a graph, then we shall use κ(H), λ(H), and δ(H) to denote,
respectively, the connectivity, edge-connectivity, and minimum degree of H . It is
well known that any connected graph H satisfies

(1) δ(H) ≥ λ(H) ≥ κ(H).

On the other hand, for any of these two inequalities, it is easy to find simple con-
nected graphs whose value of the right side parameter is close to 1 while the value
of the left side parameter may be significantly longer. See Figure 2 for a couple
of examples. Our goal in this paper is to study the edge-connectivity of Fk(G) for
the case in which k ≤ λ(G), and in Theorem 1 we report our main result, which,
as we shall see in Section 4, is best possible.
On the other hand, since at the begining of this work we were aware of the follow-
ing lower bound for λ(Fk(G)) due to [15] and (1):

(2) λ(Fk(G)) ≥ κ(Fk(G)) ≥ k(κ(G)− k + 1).

Since the difference between κ(G) and λ(G) can be significantly large, we remark
that the bound of λ(Fk(G)) provided by Theorem 1 can be significantly better than
those in (2). In particular, note that if G is connected, then the bound in Theorem
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FIGURE 2. Let m ≥ 2 be a large integer and let r := bm/2c. On the left we have the graph H1 constructed
from two copies of Kr by identifying a vertex of a copy with a vertex of the other copy. Then H1 has order
2r − 1 and r − 1 = λ(H1) ≥ κ(H1) = 1. The graph on the right is H2 constructed by connecting two copies
of Kr by means of a new edge e. Then H2 has order 2r and r − 1 = δ(H2) ≥ λ(H2) = 1.

1 depends only on the edge-connectivity of G but not on the (vertex-) connectivity
of G, which makes the study of λ(Fk(G)) interesting in its own right.

Theorem 1. Let G be a connected graph of order n, and let k be a positive integer
such that k ≤ n− 1 and k ≤ λ(G). Then λ(Fk(G)) ≥ k(λ(G)− k + 1).

Next corollary is a direct consequence of Inequality 1 and Theorem 1.

Corollary 1. Let G be a connected graph of order n, and let k be a positive
integer such that k ≤ n− 1 and k ≤ λ(G). If δ(Fk(G)) = k(λ(G)− k + 1) then
λ(Fk(G)) = δ(Fk(G)).

Our approach in this paper is a refinement of some ideas and techniques introduced
in [11] and [15]. As we shall see in Sections 2 and 3, such a combination has
resulted in an improvement of our understanding over the structure of the paths of
Fk(G). In particular, we remark that the proof that we present here is significantly
shorter than those in [15].
The rest of this paper is organized as follows. In Section 2 we give some tools and
well known facts which will be used in the proof of our main result. The proof
of Theorem 1 is given in Section 3. Finally, in Section 4 we shall provide two
families of graphs which satisfy the hypothesis of Corollary 1, and hence attain
the lower bound in Theorem 1. Additionally, we also give an example that shows
that the hypothesis λ(G) ≥ k in Corollary 1 is necessary.

2. Paths of Fk(G) that comes from the concatenation of paths of G

In this paper we use the definition of Fk(G) given in [11]. Hence, we think of
a vertex of Fk(G) as a configuration of k tokens placed at k distinct vertices of
G, where two of such configurations are adjacent in Fk(G) if and only if one
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configuration can be reached from the other by moving one token along an edge
of G from its current vertex to an unoccupied vertex.
Our aim in this section is to present some basic facts which will be used in the
next section. In particular, using a technique introduced in [11], we explain how
to produce paths in Fk(G) by moving tokens along certain paths of G. As we
will see, the existence of such paths in Fk(G) and Menger’s Theorem for edge-
connectivity are the heart of the proof of Theorem 1. We start by giving some
concepts and notations.
Let H be a simple connected graph. We recall that if u and v are vertices of H ,
then a u− v path is a path of H with ends u and v. Let P be a path of H of length
at least one. If u and v are vertices of P , then we shall use u

−→
P v to denote the

only directed subpath of P which goes from u to v. If P = uv, then we write −→uv
instead of u

−→
P v.

Now we give some notation introduced in [11] with slight adaptations. Let X be
a k-set of V (G). If P is an x− y path in G directed from x to y such that x ∈ X
and y /∈ X , then we say that P is an admissible path for X .
Let P be an x−y path ofG admissible forX , and let Y := (X\{x})∪{y}. Clearly,
X and Y are distinct vertices of Fk(G). Now suppose that X ∩ P = {v1, . . . , vq}
ordered by P (although not necessarily consecutive in P ), where v1 = x. We
shall use X −→

xPy
Y to denote the X − Y path in Fk(G) directed from X to Y

corresponding to the following sequence of token moves: First move the token at
vq along P to y, then for i = q − 1, q − 2, . . . , 1 move the token at vi along P to
vi+1.
For an example, let us consider the cycle C5 and F2(C5) in Figure 2. Let Q be
the 2 − 3-path of C5 defined as Q := 2, 1, 5, 4, 3. Clearly, Q is admissible for
X = {2, 4}. Then x = 2, y = 3, Y = {3, 4}, q = 2, v2 = 4, and v1 = 2. Then,

Q := X −→
xQy

Y = {2, 4} −→
4,3
{2, 3} −→

2,1
{1, 3} −→

1,5
{5, 3} −→

5,4
{4, 3}.

Note that when the token at vi goes from vi to vi+1, there are no other tokens in
viPvi+1. Thus these moves correspond to a path in Fk(G), which starts in X and
ends in Y . Also note that each edge X1, X2 in X −→

xPy
Y corresponds to an edge

in P . More precisely, if X1 and X2 are adjacent vertices in X −→
xPy

Y , then their

symmetric difference consists of two adjacent vertices of P , say x1 ∈ X1 \X2 and
x2 ∈ X2 \ X1, which are adjacent in P (for instance, the first edge {2, 4}, {2, 3}
of Q corresponds naturally to the edge 4, 3 of Q). Then X −→

xPy
Y and P have the

same length.
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Now suppose that X is a k-set of V (G), that P is an x − yi path of G admissible
for X , and that Q is a yj − w path of G admissible for Y := (X \ {x}) ∪ {yi}.
Let W := (Y \ {yj}) ∪ {w}. Then we will denote the concatenation of the paths
X −→

xPyi
Y and Y −→

yjPw
W simply by

X −→
xPyi

Y −→
yjPw

W.

Note that such a concatenation is a directed walk of Fk(G) which starts in X and
ends in W , where possibly X = W . The concatenation of more than 2 of such
paths is defined and denoted analogously.
The next proposition will be useful.

Proposition 1. Let H be a simple connected graph. Then H is t-edge-connected
if and only if for each edge e = uv of H there are t edge-disjoint u− v paths.

Proof. The forward implication follows immediately from Menger’s Theorem for
edge-connectivity. Conversely, suppose that for each edge uv of H there are t
edge-disjoint u − v paths, and consider a minimum cut edge C of H . Then, it is
enough to show that C has at least t edges. Since H is connected, then C has at
least one edge, say e = xy. But by hypothesis H has at least t edge-disjoint x− y
paths. Because C is a cut edge which separates x from y, then each of such x− y
paths contains at least one edge of C, and hence C has at least t edges. �

We end this section by showing that the lower bound given in Theorem 1 is in fact
a lower bound for the minimum degree of Fk(G).

Proposition 2. Let k, t, n be integers such that 2 ≤ k ≤ t ≤ n − 1. Let G be a
t-edge-connected simple graph of order n. Then δ(Fk(G)) ≥ k(t− k + 1).

Proof. Let G, k, n, t be as in the statement of Proposition 2. Let X be a vertex of
Fk(G). From the t-edge-connectivity of G we know that each vertex v of G has
degree at least t. Then each v ∈ X has at least t− k + 1 neighbors in G \X . Let
F be the set of edges of G with an end in X and the other end in G \ X . Then
|F | ≥ k(t − k + 1). From the definition of Fk(G) it is easy to see that there is a
one-to-one correspondence between the edges of F and the edges of Fk(G) that
are incident with the vertex X ∈ V (Fk(G)). Then δ(Fk(G)) ≥ k(t − k + 1), as
required. �

3. Proof of Theorem 1

In view of Proposition 1 and Menger’s Theorem for edge-connectivity, in order to
show Theorem 1, it is enough to prove Lemma 1. For brevity, in the rest of the
section, if m is a positive integer, then we use [m] to denote {1, . . . ,m}.
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Lemma 1. Let G be a connected graph of order n ≥ 3, and let k be a positive
integer such that k ≤ n − 1. If X and Y are two adjacent vertices of Fk(G) and
k ≤ λ(G), then Fk(G) has k(λ(G)− k + 1) edge-disjoint X − Y paths.

Proof. Let G, k, n, λ(G), X and Y as in the statement of Lemma 1. Since Lemma
1 holds trivially for k = 1 because F1(G) and G are isomorphic, we assume that
k ≥ 2. For brevity, let t := λ(G).
Since X and Y are adjacent in Fk(G), then the symmetric difference of X and
Y consists precisely of two vertices x, y ∈ V (G) which are adjacent in G. We
assume that x ∈ X \ Y , y ∈ Y \ X , and that e is the edge of G joining x to y.
Then X = {x} ∪ Z and Y = {y} ∪ Z, where Z := {z1, . . . , zk−1} is a subset of
k − 1 vertices of V (G) \ {x, y}. See Figure 3.
For i ∈ [k − 1], let ui,1, . . . ui,mi

be the vertices of G− (X ∪ Y ) that are adjacent
to zi in G. Since G is t-edge-connected, then δ(G) ≥ t, and so mi ≥ t − k ≥ 0.
For i ∈ [k − 1],mi ≥ 1, and j ∈ [mi], let

Zx
i,j := (X \ {zi}) ∪ {ui,j},

Zy
i,j := (Y \ {zi}) ∪ {ui,j}, and
Pi,j := X −→

ziui,j

Zx
i,j −→

xy
Zy
i,j −→ui,jzi

Y.

Let us define

C1 := {Pi,j|i ∈ [k − 1],mi ≥ 1, and j ∈ [mi]}.

Note that C1 is a collection of X − Y paths of Fk(G) directed from X to Y , all of
length 3, and that |C1| = m1 + · · ·+mk−1.
Now we show that the paths in C1 are pairwise edge-disjoint. Let Pi1,j1 and Pi2,j2
be two distinct paths of C1. If i1 6= i2, then zi1 is the only element of Z that every
internal vertex of Pi1,j1 does not contain. Similarly, zi2 is the only element of Z
that every internal vertex of Pi2,j2 does not contain. Thus Pi1,j1 and Pi2,j2 have
no internal vertices in common, and hence they are edge-disjoint. Then we can
assume that i1 = i2 and that j1 6= j2. Let i := i1 = i2 and let r ∈ {j1, j2}. Note
that if U is any internal vertex of Pi,r, then U ∩ {ui,j1, ui,j2} = {ui,r}. Then Pi,j1
and Pi,j2 have no internal vertices in common.
From the t-edge-connectivity of G and Menger’s Theorem we know that G has
a collection N = {P1, . . . , Pt} of t pairwise edge-disjoint x − y paths. Let us
assume (without loss of generality) that every path in N is directed from x to y.
Let Zxy be the subset of Z consisting of all vertices of G that are adjacent to both
x and y in G. Let ` := |Zxy|. Then ` ∈ {0, . . . , k − 1}. For z ∈ Zxy, let Pxzy

be the x − y path of G directed from x to y and defined by xzy. Let Nxzy be the
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collection formed by such ` paths of length 2. Now we show that by making slight
modifications of N , if necessary, we can assume that every path of Nxzy is in N .
Let z ∈ Zxy. We analyze three cases separately.
CASE 1. Suppose that neither xz nor zy belongs to some path of N . Then Pxzy

is a directed x− y path from x to y that does not belong to N . In such a case, we
add the Pxzy to N and remove any path Pr of N \ Nxzy in order to keep N as a
collection of t paths. Note that such Pr exists because t > k − 1 ≥ `.
CASE 2. Suppose that exactly one of xz or zy belongs to some path of N , say Pr.
Then we add the corresponding Pxzy to N and remove Pr from it.
CASE 3. Suppose that both xz and zy are in paths of N . If they are in the same
path, then xzy = Pxzy ∈ N and we are done. Then we can assume that xz and
zy lie in different paths of N . Suppose that xz ∈ Pi and zy ∈ Pj with i 6= j. In
this case, note that xzy and P ′xzy := Pj ∪ Pi \ {xz, zy} are two x − y paths of G
directed from x to y. As before, we can assume that xzy and P ′xzy are paths of N
instead of Pi and Pj.
It is easy to see that none of the modifications in each of these three cases affects
the edge-disjointness property of the x− y paths of N .
By performing a relabeling if necessary, let us assume that N = {P1, . . . , Pt} and
that N \ Nxzy = {P`+1, . . . , Pt}. We let N0 denote the set of all paths of N that
are disjoint from Z. For Pr ∈ N1 := N \ (Nxzy ∪N0), let xr (respectively, yr) be
the first (respectively, last) internal vertex of Pr. Then xxr and yry are the first and
last, respectively, edges of Pr. Since Pr ∈ N1, then it has length at least 3, and so
xr 6= yr. If Pr ∈ N1 is such that at least one of xr or yr belongs to Z \ Zxy, then
we say that Pr is bad. Let us denote by Nb the set of all bad paths of N1, and let
Ng := N1 \ Nb. Since each vertex of Z \ Zxy is adjacent to at most one of x or
y, and the paths of N1 are pairwise edge-disjoint, then each vertex of Z \ Zxy is
contained in at most one bad path, and so |Nb| ≤ k − 1− `.
We remark that {Nxzy, N0, Nb, Ng} is a partition of N . Let n0 := |N0|, nb := |Nb|,
and ng := |Ng|. Then t = `+ n0 + nb + ng. Let us assume that the ng paths of N
with the greatest indices are the elements of Ng. More formally, let us assume that
Ng = {Pt−ng+1, . . . , Pt}.
For every Pr ∈ N0 ∪Nxzy, let Pr := X −→

xPry
Y . Now let us define

C2 := {Pr|Pr ∈ N0 ∪Nxzy}.
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For every Pr ∈ Ng, let
Xr := (X \ {x}) ∪ {xr},
Yr := (Y \ {y}) ∪ {yr}, and
Pr := X −→

xxr

Xr −→
xrPryr

Yr −→
yry

Y.

Finally, we define
Cg := {Pr|Pr ∈ Ng}.

Clearly, C2 ∪ Cg is a collection of X − Y paths of Fk(G) directed from X to Y .
Now we show that if Pi and Pj are distinct paths of C2 ∪ Cg, then they are edge-
disjoint. Suppose that Pi and Pj are the corresponding x− y paths in N of Pi and
Pj, respectively. Seeking a contradiction, suppose that Pi and Pj have a common
edge, say AB, in Fk(G). The definition of Fk(G) implies that G must have two
adjacent vertices a and b such that A \ B = {a} and B \ A = {b}. Since G is
simple, then the only way to reach configuration B from configuration A, in one
step, is moving a token from a to b along the edge f = ab. Then the edge f must
belong to both Pi and Pj, contradicting that Pi and Pj are edge-disjoint.
Now we show that if Pr ∈ C2∪Cg and Pi,j ∈ C1 then Pr and Pi,j are edge-disjoint.
Let Pr be the underlying x − y path of Pr in G. We start by noting that each
internal vertex of Pi,j contains exactly one of x and y. On the other hand, for Pr

we have the following:

• If Pr ∈ N0, then neither x nor y belongs to any internal vertex of Pr.

• If Pr ∈ Nxyz, then both x, y belong to the unique internal vertex of Pr.

• If Pr ∈ Ng, then neither x nor y belongs to any internal vertex of Pr.

These facts imply that Pr and Pi,j have no internal vertices in common, and hence
they are edge-disjoint.
In summary, we have proved that C1 ∪ C2 ∪ Cg is a collection of pairwise edge-
disjoint X −Y paths of Fk(G) of cardinality λ := m1+ · · ·+mk−1+ `+n0+ng.
It remains to show that λ ≥ k(t − k + 1). The t-edge-connectivity of G implies
that δ(G) ≥ t. From the definition of Zxy we know that each z ∈ Z \ Zxy =
{z`+1, . . . , zk−1} is adjacent to at most one of x or y. This implies that mi ≥
t− (k−1) whenever i ∈ {`+1, . . . , k−1}. Similarly, for i ∈ {1, . . . , `} we have
that mi ≥ t− k. Then,
m1 + · · ·+mk−1 ≥ `(t− k) + (k − 1− `)(t− k + 1) = (k − 1)(t− k + 1)− `.

On the other hand, by combining t = ` + n0 + nb + ng and nb ≤ k − 1 − `, we
obtain t− k + 1 ≤ n0 + ng. Then,

λ ≥ (k − 1)(t− k + 1)− `+ `+ t− k + 1 = k(t− k + 1).
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FIGURE 3. Here we shown some of the subsets of V (G) involved in the proof of Lemma 1. Every thick
straight line segment represents an edge of G, and every thick convex arc is a path of G. Note that P0, P1 =
xz1y, Pb1 , Pb2 , and Pr form a set of x− y pairwise edge-disjoint paths of G. The paths Pb1 and Pb2 are bad
paths of N1. Similarly, note that P0 ∈ N0, P1 ∈ Nxzy, and Pr ∈ Ng .

4. Theorem 1 is best possible

A couple of concrete examples satisfying the hypothesis of Corollary 1 are the
complete graphG := Kt+1 and the graphG := Kt ≡ Kt that results by connecting
two copies ofKt by means of a matching of size t. Hence, λ(Fk(G)) = k(t−k+1)
for 2 ≤ k ≤ t and G ∈ {Kt+1, Kt ≡ Kt}.
Finally, note that the graph G on the left in Figure 4 has λ(G) = 1 and
δ(G) = 3, whereas its 2-token graph F2(G) (on the right) has λ(F2(G)) = 3
and δ(F2(G)) = 4. The last two values disagree with the conclusion of Corollary
1. Such a discrepancy reveals that the hypothesis λ(G) ≥ k in Corollary 1 is
necessary.

10
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FIGURE 4. The graph on the right F2(G) is the 2-token graph of the graph G on the left. They show that
the hypothesis λ(G) ≥ k in Corollary 1 is necessary. Note that λ(G) = 1, δ(G) = 3, λ(F2(G)) = 3, and
δ(F2(G)) = 4.
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