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Abstract

Suppose that G is a finite group and X is a G-conjugacy classes of involutions. The
commuting involution graph C(G, X) is the graph whose vertex set is X with x,y € X
being joined if x # y and xy = yx. Here for various exceptional Lie type groups of
characteristic two we investigate their commuting involution graphs.

Keywords Commuting involution graphs - Exceptional groups of Lie type -
Disc structure

1 Introduction

Suppose that G is a finite group and X is a subset of G. The commuting graph,
C(G,X), has X as its vertex set and two vertices x,y € X are joined by an edge if
x # y and x and y commute. The extensive bibliography in [9] points towards the
many varied commuting graphs which have been studied. But here we shall be
considering commuting involution graphs—these are commuting graphs C(G, X)
where X is a G-conjugacy class of involutions. From now on X is assumed to be a G-
conjugacy class of involutions. Because involutions are often centre stage in the
study of non-abelian simple groups, there is a large literature on their commuting
involution graphs. Indeed, such graphs have been instrumental in the construction of
some of the sporadic simple groups. For example, the three Fischer groups with the
conjugacy class being the 3-transpositions were investigated by Fischer [11],
resulting in the construction of these groups. Later, also prior to their construction,
commuting involution graphs for the Baby Monster ({3, 4}-transpositions) and the
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Monster (6-transpositions) were analyzed. Recently the commuting involution
graphs of the sporadic simple groups have received much attention, see
[5, 12, 14, 15, 17]. For those simple groups of Lie type consult [1, 4, 8-10], while
an analysis of the commuting involution graphs of finite Coxeter groups may be
found in [2, 3].

The aim of this short note is to describe certain features of C(G, X) when G is one
of the exceptional Lie type groups of characteristic two. Specifically we consider G
being one of the simple groups >Dy(2), Es(2),2 F4(2)" and F4(2).

For x € X we define the i disc of x, A;(x), (i € N) to be

Ailx) ={ye X |d(xy) =i}

where d(, ) is the usual distance metric on the graph C(G, X). Of course, G acting by
conjugation on X embeds G in the group of graph automorphisms of C(G,X) and,
evidentily, G is transitive on the vertices of C(G, X). We now choose ¢ € X to be a
fixed vertex of C(G,X)—our main focus is the description of the discs of 7 in
C(G,X). The diameter of C(G,X) will be denoted by Diam C(G, X)and we shall rely
upon the ArtLas [7] for the names of conjugacy classes of G. Our main result is as
follows.

Theorem 1 Let G be isomorphic to one of >D4(2), Es(2),%> F4(2)" and F4(2).

(i)  The sizes of the discs Ai(t) are listed in Table 1 and the G-conjugacy classes
of tx for x € Ai(1),i € N are given in Table 2.

() If (G,X) = (Es(2),24), (Es(2),2B), CFa(2)',24), (F4(2),24), (F4(2), 2B)
or (F4(2),2C), then Diam C(G,X)= 2.

(i) jr  (G,X) = (’Da(2),24),(D4(2),2B), (Es(2),2C), CF4(2),2B)  or
(F4(2),2D), then Diam C(G, X)= 3.

Table 1 Disc sizes for C(G,X), G = 3 D4(2), Es(2),2 F4(2)', F4(2)

G X=1 A (0)] A2 (0)] |As(1)]
3D4(2) 2A 18 288 512

2B 339 11112 57344
Eg(2) 2A 127782 4954112

2B 285311 8819313408

2C 3384671 609992912640 977994252288
2R, (2) 2A 90 1664

2B 147 7712 3840
F4(2) 2A 2286 67328

2B 2286 67328

2C 20944 4364800

2D 50511 113896448 236912640
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Table 2 The conjugacy class of products #x for x € A;(r)

G X =10 A) Ay (1) As(1)
3D4(2) 2A 2A 4A 3A
2B 2AB 3A, 4AC, 6B, 8AB 3B, 6A, 7AD, 9AC, 12A,
13AC, 14AC, 18AC, 21AC, 28AC
Es(2) 2A 2AB  3A, 4B
2B 2AC 3AB, 4AF, 4JK, 5A, 6A,
6D, 6F, 8C,12B
2C 2AC 3AC, 4AK,6AL 8AJ, 12A, 5A, 7CD, 9AB, 10AB,
12B (1231205767, 528482304%), 12B (528482304%), 12E (2818572288),
12CD, 12E (42278584323), 12F (8455716864), 13A, 14GH,
12F (4227858432), 12GM, 12P, 15CD, 17AB, 18AB, 20AB, 21GH,
16A, 16C, 24A 24BD, 28KL, 30EF
2, (2) 2A 2AB  4C, 5A
2B 2AB 3A, 4AC, 6A, 8CD, 12AB 5A, 13AB
F4(2) 2A 2A,2C 3A,4C
2B 2B, 2C 3A,4D
2C 2AD 3AB, 4AD, 4F, 4IM, 5A, 6GH
2D 2AD 3AC, 4A0, 6AK, 8AF, 8HK, SA, 7AB, 8G, 9AB, 10AC,

12AB (294912%), 12CH,
121J (294912'%), 12KO

12AB (1179648), 121J (1179648),
13A,14AB, 15AB, 16AB,

17AB, 18AB, 20AB, 21AB,
24AD, 28AB, 30AB

These results were obtained computationally with the aid of Macma [6] , Gap
[16] and the ONLINE ATLAS [18]. In the course of these calculations we determined
the Cg(¢)-orbits on X (where Cg(f) is acting by conjugation). Representatives, in
MacMma format, for each of these orbits are to be found as downloadable files at [13],
as they may be of value in other investigations of these groups. In Sect. 2 we also
collate information on the action of Cs(#) on X. In particular, we give the Cg(?)-
orbit sizes on each (non-empty) X¢, X¢ being defined below.

We observe that some “obvious” groups are missing in this paper. First G,(2)’
being isomorphic to PSU3(3) means it is covered in [8]. As for G =2 E4(2), the
cases X = 2A and X = 2B are done in [1], while there are partial results in the case
X = 2C. Likewise [1] also has partial results for E;(2). While Eg(2) is far and away
beyond current computational capabilities.

We remark on the graphs studied here. First we note that as the outer
automorphism of F4(2) interchanges the two classes 2A and 2B, we have that
C(F4(2),2A) and C(F4(2),2B) are isomorphic graphs. A very noteworthy conse-
quence of the present work is that the distance between ¢ and x in C(G, X) is almost
always determined by the G-class to which #x belongs. The exceptions are G =
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E¢(2),X =2C with tx € 12BU 12EU 12F and G = F4(2),X = 2D and tx € 12A U
12BU 121 U 12J. See Table 2 for more details—for example when G =2 F4(2),X =
2D and tx € 121 U 12J each of 12/ and 12/ breaks into thirteen Cg(t)-orbits, 12 of
size 294,912 and one of size 1,179,648 with those of size 294,912 being in A,(¢) and
the one of size 1,179,648 in A;(z).

A word or two about the information in our tables is required. As mentioned we
employ the class names given in the AtLas though we make some modifications.
First we suppress the “slave” notation. So, for example, the classes 7B * 2, 7C * 4 of
3D4(2) are just written as 7B, 7C, respectively. Secondly we compress the letter part
of a class name when we mean the union of these classes and their letters are in
alphabetical sequence. As an example, in Table 2, for G = F4(2) and X = 2D, 8AF
is short-hand for 84 U8B U8C U8D UZE U 8F.

Let C be a G-conjugacy class and define

Xce={xeX|meC}.

It is clear that Xc will either be empty or be a union of certain Cg(#)-orbits of X
(where G acts upon X by conjugation). In locating which discs of 7 contain the
vertices in X¢c we sometimes need to determine how X¢ breaks into Cg(7)-orbits.
Also of interest to us is the size of X which leads us to class structure constants.
Class structure constants are the sizes of sets

{(g1,82) € Ci x C2 | g182 = 8}

where Cj, C,, C3 are G-conjugacy classes and g is a fixed element of C3. Now these
constants can be calculated directly from the complex character table of G which are
recorded in the ATLAS and are available electronically in the standard libraries of the
computer algebra package Gap [16]. If we take C; =C, C, =X =C; and g =1,
then in this case

IGI 1 (h /cr % (1)
Xe| = ,
IXc| Co0IICalh) E

where £ is a representative from C and y, . . ., z; the complex irreducible characters
of G.

2 Cg(t)-Orbits on X

As promised, we tabulate the sizes of the Cg(#)-orbits in their action upon X¢ where
C is a G-conjugacy class for which X¢ is non-empty. In the ensuing tables we use an
exponential notation to indicate the multiplicity of a particular size. Thus in the
table for G 2 3 D4(2) with X = 2B the entry 4°, 2412 next to 2B is telling us that X»3
is the union of eighteen Cg(r)-orbits, six of which have size 4 and twelve of which
have size 24. Still looking at the same table, the entry 512, 1536 next to 9AC
indicates that each of Xo4, Xop and Xoc is the union of two Cg(t)-orbits of sizes 512
and 1536. We give details of the permutation ranks in Table 3.

@ Springer



Graphs and Combinatorics (2021) 37:1345-1355 1349

2.1 G=3 D4(2)

X =24

2A 18 3A 512 4A 288

X =2B

2A 3,24 2B 46 2412 3A 384 3B 512

4A 243192 4B 2410192 4C 384°¢ 6A 1536

6B 3846 7AC 512 7D 3072 8A 384°

8B 3848 9AC 512, 1536 12A 15362 13AC 3072

14AC 1536 18AC 15362 21AC 3072 28AC 15362

2.2 G~ E(2)

X =24

2A 2790 2B 124992 3A 2097152 4B 2856960

X =2B

2A 63, 2160% 2B 56,4320, 302402, 2C 604802, 7257607,

307207, 64512, 120960 967680

3A 2359296 3B 16777216 4A 774144

4B 725760, 9676807, 4C 1935360, 3870720*, 4D 78643207, 8847360
22118407 4423680, 7741440%

4E 464486402 4F 20643847, 61931520* 4] 123863040

4K 743178240 5A 939524096 6A 707788807

6D 990904320 6F 1056964608 8C 9909043207

12B 11324620807
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Table 3 Class sizes and

. G X=1° ( Permutation rank
permutation rank
3Dy(2) 2A 819 4
2B 68796 27
Es(2) 2A 5081895 5
2B 8822169720 62
2C 1587990549600 719
2F,(2) 2A 1755 5
2B 11700 30
F4(2) 2A 69615
2B 69615
2C 4385745 33
2D 350859600 1002
23 G2 F(2)
X =24
2A 10 2B 80 4C 640 5A 1024
X =2B
2A 3,12 2B 123,482 3A 2567 4A 1922
4B 962 4C 96, 1922 5A 768 6A 7682
8CD 3842 12AB 7682 13AB 1536
24 G = F4(2)
X =24
2A 270 2C 2016 3A 32768 4C 34560
X =2B
2B 270 2C 2016 3A 32768 4D 34560
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X=2C
2AB 30 2C 322,180, 19207 2D 720%,960%, 11520 3AB 32768
4AB 15360 4CD 11520 4F 10247 4JK 307202
4L 737280 aM 1843202 5A 1048576 6GH 983040
X =2D
2AB  3,12,722,192 2C 9,122,242 724, 2D 244 144% 5762
1447,192%,576* 1152'%,9216
3AB 2048, 6144, 24576 3C 262144 4AB  192,576%, 11524
9216, 12288
4CD  144%,1923,288* 4EF  576% 1536* 4GH  2304*,4608°, 9216>
57613, 11522,23044, 2304%,92168 18432473728
4608*, 12288
41 9216'%, 184328 4JK  1152*1536%,2304* 4L 9216°,36864%
36864*, 737282 460820,9216'°, 184327 1474562
4M 2304%,4608'2,9216° 4N 147456 40 3686412, 147456*
1843230, 36864%
5A 1966082, 589824 6AB  6144%,24576%,737283 6CD  368647,491522
737283294912
6EF 786432 6GH  12288,36864%,49152% 61J 737288, 147456%,294912*
737287, 1474562, 294912
6K 2359296 TAB 1572864 8A 2949124
8B 1474568, 2949124 8CF  24576%,73728'0 8G 5898247
147456% 2949124
8HI  294912° 8J 58982416 8K 5898249
OAB 1572864, 4718592 10AB 5898242, 1179648 10C 5898242, 1179648*
12AB  294912%, 1179648 12CD 7864322 12EH  983042%,294912*, 589824*
1217 294912'2,1179648 12KL 23592967 I2MN 5898244
120 2359296* 13A 9437184 14AB 4718592
1SAB 1572864, 4718592 16AB  2359296* 17AB 9437184
18AB 47185922 20AB 2359296 21AB 9437184
24AD  2359296* 28AB 47185922 30AB  4718592%

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
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