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ON EXPLICIT RANDOM-LIKE TOURNAMENTS

SHOHEI SATAKE

Abstract. We give a new theorem describing a relation between the
quasi-random property of regular tournaments and their spectra. This
provides many solutions to a constructing problem mentioned by Erdős
and Moon (1965) and Spencer (1985).

1. Introduction

A tournament is an oriented complete graph. Random tournaments Tn
with n vertices are obtained by choosing a direction of each edge of a com-
plete graph with n vertices with probability 1/2, independently. We say that
random tournaments asymptotically almost surely (a.a.s.) satisfy a property
P if the probability of the event that tournaments satisfy P tends to 1 when
n goes to infinity. In graph theory, there have been many problems focusing
on deterministic tournaments satisfying properties which random tourna-
ments a.a.s satisfy; see e.g. [1], [4], [8], [9], [19].

In this paper, as such a property, we mainly focus on the quasi-random

property proposed by Chung-Graham [8]. Our main result is to give a new
theorem describing a relation between the quasi-random property and spec-
tra of regular tournaments. This result also provides many solutions to a
problem, proposed by Erdős-Moon [14] and Spencer [31] (see also [1, Sec-
tion 9.1]), on explicit constructions of tournaments with a small number of
consistent edges. It is well-known that Paley tournaments have the quasi-
random property (e.g. [8]). Moreover, by proving that Paley tournaments
have a property stronger than the quasi-random property, Alon-Spencer [1]
showed that they provide solutions to the problem by Erdős, Moon and
Spencer. We note that the proof in [1] contains a part (Lemma 9.1.2 in [1])
depending on the definition of Paley tournaments. Remarkably, we gener-
alize their discussion to all regular tournaments by using a digraph-version
of the expander-mixing lemma proved by Vu [33].

The rest of this paper is organized as follows. In Section 2, we recap
the quasi-random property and introduce some related known facts. In Sec-
tion 3, we introduce our main result and give its proof. In Section 4, we
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provide some examples of regular tournaments satisfying the quasi-random
property which are also solutions to the problem by Erdős, Moon and
Spencer. At last, in Section 5, we discuss another random-like property
defined as an adjacency property.

2. The quasi-random property and related facts

In this section, we review the quasi-random property and some related
known facts. For a digraph D, let V (D) and E(D) be the vertex and the
edge set of D, respectively. For two distinct vertices x and y, let the ordered
pair (x, y) denote the edge directed from x to y.

First, we give the definition of the quasi-random property of tournaments
which was formulated by Chung-Graham [8].

Definition 2.1 (The quasi-random property, [8]). Let T be a tournament
with n vertices. Let σ be a bijection from V (T ) to {1, 2, . . . , n}. An edge
(x, y) of T is called consistent with σ if σ(x) < σ(y). Let C(T, σ) be the
number of consistent edges with σ and C(T ) = maxσ C(T, σ). Then, T has
the quasi-random property if T satisfies

(2.1) C(T ) ≤ (1 + o(1))
n2

4
.

Surprisingly, Chung-Graham [8] gave some other properties which are
seemingly unrelated, but actually equivalent with (2.1). The interested
reader is referred to [8].

Consistent edges of tournaments was originally investigated by Erdős-
Moon [14]. Their work was from paired comparisons (e.g. [18]). It is
reasonable to find suitable rankings, that is, bijections with many consistent
edges. First observe that for every tournament T with n vertices,

(2.2)
1

2

(

n

2

)

≤ C(T ) ≤
(

n

2

)

.

The lower bound of C(T ) is obtained by the following simple fact :

(2.3) C(T, σ) +C(T, σ′) =

(

n

2

)

,

where σ′ is the reversed ranking of σ which is defined as σ′(v) = n+1−σ(v)
for each v ∈ V (T ). For the upper bound of C(T ), the equality holds if
and only if T is a transitive tournament. On the other hand, it is non-
trivial to check the tightness of the lower bound of C(T ). In [14], it was
proved that there exist tournaments T such that C(T ) ≤ (1+ o(1))

(

n
2

)

/2 by
a probabilistic argument. Moreover Spencer [29], [30] and de la Vega [11]
proved that random tournament Tn a.a.s satisfies the following property
which is stronger than the quasi-random property:

(2.4) C(Tn) ≤
1

2

(

n

2

)

+O(n
3

2 ).
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Erdős-Moon [14] and Spencer [31] mentioned the problem on explicit con-
structions of tournaments T such that C(T ) is close to the lower bound. At
present, such a construction of tournaments T giving the best known “con-
structive” upper bound of C(T ) is obtained by Alon-Spencer [1]. For a prime
p ≡ 3 (mod 4), the Paley tournament Tp is the tournament with vertex set
Fp, the finite field of p elements, and edge set formed by all edges (x, y) such
that x − y is a non-zero square of Fp. In [1, Theorem 9.1.1], it was proved
that

(2.5) C(Tp) ≤
1

2

(

p

2

)

+O(p
3

2 log p).

In Section 4, by applying the main theorem proved in the next section,
we give some new explicit constructions of regular tournaments T with n
vertices such that C(T ) is close to the lower bound.

3. Main theorem

In this section, we prove our main theorem. We first give the definition of
regular digraphs and the adjacency matrix of a digraph. A digraph is said
to be d-regular if in-degree and out-degree of each vertex is d. Especially
a tournament with n vertices is simply said to be regular if it is (n − 1)/2-
regular. The adjacency matrix MD of a digraph D with vertices is the
{0, 1}-square matrix of size n whose rows and columns are indexed by the
vertices of D and the (x, y)-entry is equal to 1 if and only if (x, y) ∈ E(D).

The following is our main theorem.

Theorem 3.1. Let T be a regular tournament with n vertices. Suppose

that the adjacency matrix MT of T has eigenvalues such that (n − 1)/2 =
λ1, λ2, · · · , λn. Let λ(T ) = max2≤i≤n |λi|. Then,

(3.1) C(T ) ≤ 1

2

(

n

2

)

+ λ(T ) · n log2(2n).

Remark 3.2. Theorem 3.1 implies that every regular tournament T with
n vertices such that λ(T ) = o(n/ log n) has the quasi-random property. It
should be remarked that Kalyanasundaram-Shapira [19] shows a stronger
result; a proof of Lemma 2.3 and the first concluding remark in [19] implies
that a regular tournament T with n vertices has the quasi-random property
if and only if T satisfies that λ(T ) = o(n). (In [19], the authors considered
the eigenvalues of the {0,±1}-matrix 2MT − Jn + In, but these eigenvalues
can be directly computed from ones of MT .)

On the other hand, Theorem 3.1 not only gives a spectral condition for
the quasi-random property, but also implies that estimating eigenvalues of
MT provides better upper bounds of C(T ) than the bound (2.1). Thus,
considering (2.4), Theorem 3.1 provides a spectral condition for a property,
which random tournaments a.a.s. satisfy, stronger than the quasi-random
property; for example, if T satisfies λ(T ) = o(n/ log n), then Theorem 3.1
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implies that C(T ) ≤
(

n
2

)

/2 + o(n2), which immediately implies the quasi-
random property.

In the proof of Theorem 3.1, we use the expander-mixing lemma for normal
regular digraphs proved by Vu [33]. A digraph D is said to be normal if
MD and its transpose M t

D are commutative. In other word, D is normal if
|N+(x, y)| = |N−(x, y)| for any two distinct vertices x and y where N+(x, y)
(resp. N−(x, y)) is the set of vertices z such that (x, z), (y, z) ∈ E(D) (resp.
(z, x), (z, y) ∈ E(D)).

Now we are ready to introduce the expander-mixing lemma for normal
regular digraphs.

Lemma 3.3 (Expander-mixing lemma, [33]). Let D be a normal d-regular
digraph with n vertices and λ(D) = max2≤i≤n |λi|. For two disjoint subsets

A,B ⊂ V (D), let

e(A,B) :=
∣

∣{(a, b) ∈ E(D) | a ∈ A, b ∈ B}
∣

∣.

Then for every pair of two disjoint subsets A,B ⊂ V (D), it holds that
∣

∣

∣
e(A,B)− d

n
· |A| · |B|

∣

∣

∣
≤ λ(D)

√

|A| · |B|.(3.2)

From this lemma, we can easily obtain the following corollary.

Corollary 3.4. Let D be a normal d-regular digraph with n vertices. Then

for every pair of two disjoint subsets A,B ⊂ V (D),

|e(A,B)− e(B,A)| ≤ 2λ(D)
√

|A| · |B|.(3.3)

Proof. From the triangle inequality, we see that

|e(A,B) − e(B,A)| =
∣

∣

∣

(

e(A,B)− d

n
· |A| · |B|

)

−
(

e(B,A) − d

n
· |B| · |A|

)
∣

∣

∣

≤
∣

∣

∣
e(A,B)− d

n
· |A| · |B|

∣

∣

∣
+

∣

∣

∣
e(B,A)− d

n
· |B| · |A|

∣

∣

∣
.

Thus, by Lemma 3.3, we get the corollary. �

By Corollary 3.4, we get the following lemma.

Lemma 3.5. Let T be a regular tournament with n vertices and let σ be a

bijection from V (T ) to {1, 2, . . . , n}. Then

(3.4) C(T, σ)− C(T, σ′) ≤ 2λ(T ) · n log2(2n).
Proof of Lemma 3.5. The lemma follows by combining Corollary 3.4 and the
argument in [1, pp.150-151] to prove the bound (2.5) for Paley tournaments.
It should be noted (see also [6]) that every regular tournament T with n
vertices is normal since it holds that M t

T = Jn − In −MT , where In and Jn
are the identity matrix and the all-one matrix of order n, respectively.

Fix a bijection σ. Let r be the smallest integer such that n ≤ 2r. Let
n = a1 + a2, where a1 and a2 are positive integers with a1, a2 ≤ 2r−1.
Consider a partition of V (T ), say A1 and A2, such that A1 is the set of
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“highly ranked” a1 vertices in σ and A2 is the remaining a2 vertices. It
follows from Corollary 3.4 that

e(A1, A2)− e(A2, A1) ≤ 2λ(T )
√
a1a2 ≤ 2λ(T ) · 2r−1.(3.5)

Next, let a1 = a11 + a12, where a11 and a12 are positive integers with
a11, a12 ≤ 2r−2, and similarly for a2 = a21 + a22. As above, divide A1

into two subsets, say A11 and A12, where A11 is the set of “highly ranked”
a11 vertices of A1 in σ and A12 is the remaining a12 vertices of A1. For
a21 and a22, two subsets A21 and A22 of A2 are defined in the same way as
A11, A12. It then follows from Corollary 3.4 that

e(A11, A12)− e(A12, A11) + e(A21, A22)− e(A22, A21)

≤ 2λ(T )
√
a11a12 + 2λ(T )

√
a21a22

≤ 2 · 2λ(T ) · 2r−2.

Then iterate such estimation from the first to the r-th step. In the i-th step,
V (T ) is partitioned into 2i subsets, say Aε1 and Aε2 (ε ∈ {1, 2}i), such that
each Aεj (j = 1, 2) contains at most 2r−i vertices which are consecutive in
σ. It follows from Corollary 3.4 that

∑

ε∈{1,2}i−1

{e(Aε1, Aε2)− e(Aε2, Aε1)} ≤ 2i−1 · 2λ(T ) · 2r−i = 2λ(T ) · 2r−1.

(3.6)

On the other hand, it turns out from the construction of partitions that
∑

1≤i≤r

∑

ε∈{1,2}i−1

{e(Aε1, Aε2)− e(Aε2, Aε1)} = C(T, σ)− C(T, σ′).(3.7)

Thus by combining (3.6) and (3.7), it follows that

C(T, σ)−C(T, σ′) ≤ r · 2λ(T ) · 2r−1 ≤ 2λ(T ) · n log2(2n).
�

Proof of Theorem 3.1. The theorem is a direct consequence of the equality
(2.3) and Lemma 3.5. �

Remark 3.6. It should be noted that for every regular tournament T with
n vertices, λ(T ) ·n log2(2n) cannot be less than

√
n3 + n log2(2n)/2. In fact,

for every such tournament T , it holds that

(3.8) λ(T ) ≥
√
n+ 1

2
.

Indeed, for every strongly-connected normal d-regular digraph D with n
vertices, it holds that

nd = E(D) = Tr(MDM
t
D) =

n
∑

i=1

|λi|2 ≤ d2 + (n− 1)λ(D)2,

which follows from the hand shaking lemma and the Perron-Frobenius the-
orem (see e.g. [21]). The idea of the above inequality can be found in [20,
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p.217]. Also note that every regular tournament T is strongly connected,
which follows from the Perron-Frobenius theorem and facts that T is nor-
mal and every eigenvalue of MT corresponding to eigenvectors distinct to
the all-one vector has the real part equal to −1/2 (see also [5]).

4. Examples of quasi-random regular tournaments

In this section, we give some examples of regular tournaments T with n
vertices and λ(T ) = o(n/ log n). As will be shown below, we can construct
such tournaments for almost all positive integers n.

First we consider the following tournaments constructed from finite fields
which are variants of cyclotomic tournaments (see e.g. [24] and reference
therein). Let m be a positive even integer and p ≡ m + 1 (mod 2m) be a
prime. Note that there exist infinitely many such primes by the Dirichlet’s
theorem on arithmetic progressions and the fact that m + 1 and 2m are
coprime when m is even. Recall that Fp is the finite field of order p. Let
g be a primitive element of Fp. For even m, the multiplicative group of
Fp, which is denoted by F

∗
p, is divided into m cosets S0, S1, . . . , Sm−1 where

Si := {gt | t ≡ i (mod m)} for each 0 ≤ i ≤ m − 1. Note that Sj = −Si if
j ≡ −i (mod m).

Definition 4.1. Let i = (i1, i2, . . . , im/2) ∈ {0, 1, . . . ,m − 1}m/2 such that
Si = Si1 ∪ · · · ∪ Sim/2

and F
∗
p \ S = −S. Then the tournament Tm

p (Si) is
defined as follows:

V (Tm
p (Si)) = Fp,

E(Tm
p (Si)) = {(x, y) ∈ F

2
p | x− y ∈ Si}.

(4.1)

This is a direct generalization of Paley tournament since Tm
p (Si) is exactly

Tp in the case of m = 2. Moreover from the definition, it is not so hard to
see that Tm

p (Si) is a regular tournament with p vertices.
Now we obtain the following corollary.

Corollary 4.2.

(4.2) C
(

Tm
p (Si)

)

≤ 1

2

(

p

2

)

+O(p
3

2 log p).

Corollary 4.2 is proved by combining Lemma 3.5 and the following eval-
uation of λ(Tm

p (Si)).

Lemma 4.3.

λ
(

Tm
p (Si)

)

≤ m
√
p

2
.(4.3)

Proof. First, by a simple calculation, it can be shown that the set of eigen-
value of MTm

p (Si) is
{

∑

s∈Si

ψ(s) | ψ is an additive character of Fp

}

.
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Since Si = giS0 for each 1 ≤ i ≤ m− 1, we see that
∑

s∈Si

ψ(s) =
∑

s∈giS0

ψ(s) =
∑

s∈S0

ψ(gis).(4.4)

Since S0 is the set of non-zero m-th power elements and each non-zero m-th
power residue appears exactly m times in the sequence (xm)x∈F∗

p
,

∑

s∈S0

ψ(gis) =
1

m

∑

x∈F∗

p

ψ(gixm).(4.5)

At last, we use the following known estimation (see e.g. [26, p.44]);
∣

∣

∣

∑

x∈Fp

ψ(axm)
∣

∣

∣
≤ (m− 1)

√
p,(4.6)

for any non-trivial additive character ψ and a 6= 0. By combining (4.4),
(4.5) and (4.6),

λ
(

Tm
p (Si)

)

≤ m

2
· 1

m
· {(m− 1)

√
p+ 1} =

(m− 1)
√
p+ 1

2
≤ m

√
p

2
.

�

The second example is doubly regular tournament which has been exten-
sively studied in algebraic combinatorics and related areas (e.g. [23]).

Definition 4.4. A tournament T with n vertices is called a doubly regular

tournament if T is a regular tournament such that for any distinct two
vertices x and y, N+(x, y) = N−(x, y) = (n− 3)/4.

Let DRTn denote a doubly regular tournament with n vertices.

Corollary 4.5.

(4.7) C(DRTn) ≤
1

2

(

n

2

)

+O(n
3

2 log n).

Corollary 4.5 is proved by the following well-known evaluation of λ(DRTn)
which also shows that the inequality (3.8) is tight.

Lemma 4.6 (e.g. [10]).

λ(DRTn) =

√
n+ 1

2
.(4.8)

Proof. We give a proof for the reader’s convenience. LetM =MDRTn . Then
by the definition, it holds that

(4.9) MM t =
n+ 1

4
In +

n− 3

4
Jn.

Since M +M t = Jn − In, we obtain the following equality.

(4.10) M2 +M +
n+ 1

4
In − n+ 1

4
Jn = O.
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Since DRTn is regular, we see that (n − 1)/2 is an eigenvalue of M and
a corresponding eigenvector is the all-one eigenvector 1. Since DRTn is
normal, each eigenvalue θ except for (n − 1)/2 has an eigenvector v which
is orthogonal to 1. Thus,

(4.11)
(

θ2 + θ +
n+ 1

4

)

v = 0.

Since v 6= 0, we get

(4.12)
(

θ2 + θ +
n+ 1

4

)

= 0,

completing the proof. �

Remark 4.7. We remark that Corollary 4.5 is a generalization of the bound
(2.5) because Paley tournaments are also doubly-regular tournaments. For
other non-isomorphic examples of doubly regular tournaments, see e.g. [17]
and [32]. As shown in, for example, [16] and [23], there are some known con-
structions of doubly regular tournaments such that the number of vertices
is non-prime (and non-prime power). Especially, constructions of complex
codebooks in [16] provide DRTn for every integer n such that each prime
factor f of n is the form of f ≡ 3 (mod 4).

Remark 4.8. By the definition of DRTn, n must be a positive integer of
the form n ≡ 3 (mod 4). On the other hand, as an analogue of DRTn for
integers n of the form n ≡ 1 (mod 4), Savchenko [24] introduced the notion
of a nearly-doubly-regular tournament CNDRn with n vertices which is a
certain regular tournament with exactly four eigenvalues distinct to (n−1)/2
with multiplicity (n − 1)/4. According to [24], it holds that λ(CNDRn) =
(
√
n+1)/2. Thus if there exists CNDRn for infinitely many n ≡ 1 (mod 4),

then it holds that

C(CNDRn) ≤
1

2

(

n

2

)

+O(n
3

2 log n).

It is conjectured in [24] (see also [25]) that there exists a CNDRn for ev-
ery n ≡ 1 (mod 4). Interestingly, Savchenko [24] also found examples of
CNDRp for primes p = 5, 13, 29, 53, 173, 229, 293 and 733 from the class of
T 4
p (S(0,1)) in the first example, and thus Lemma 4.3 can be improved for

these examples. (It is shown in [24] that for every prime p ≡ 5 (mod 8),
T 4
p (S(0,1)) has exactly four eigenvalues distinct to (p−1)/2 with multiplicity

(p − 1)/4.) It would be interesting to prove or disprove the existence of
infinitely many primes p ≡ 5 (mod 8) such that the tournament T 4

p (S(0,1))
is in the class of CNDRp.

The third example is based on a construction of pseudo-random graphs
due to Shparlinski [27]. For related facts on eliptic curves, see [27, Section
2.1]. For a prime p, let n ∈ [p + 1 − 2

√
p, p + 1 + 2

√
p] be an odd integer.

It is known (e.g. [7], [12]) that there exists an eliptic curve E over Fp such
that the number of Fp-rational points of E is n. It is also known (e.g. [28])
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that all Fp-rational points of E form an abelian group G of order n under
an operation ⊕. Let 0G be the identity of G. For an element s ∈ G and a
subset S ⊂ G, the inverse of s is denoted by ⊖s and let ⊖S = {⊖s | s ∈ S}.
Definition 4.9. Let S ⊂ G be a subset such that S ∪ ⊖S ∪ {0G} = G and
|S| = (n− 1)/2. Then the tournament Tp,n(S) is defined as follows.

V (Tp,n(S)) = G,

E(Tp,n(S)) = {(x, y) ∈ G2 | x⊖ y ∈ S}.(4.13)

By the definition, Tp,n(S) is a regular tournament with n vertices.

Corollary 4.10. There exists a subset S ⊂ G such that

(4.14) C(Tp,n(S)) ≤
1

2

(

n

2

)

+O(n
3

2 log2 n).

Corollary 4.10 is obtained by Lemma 3.5 and the following evaluation of
λ(Tp,n(S)) which follows from [27, Theorem 1].

Lemma 4.11 ([27]). There exists a subset S ⊂ G such that

λ(Tp,n(S)) = O(
√
n log n).(4.15)

For the details of a construction of such a subset S, see [27].

Remark 4.12. It is worth noting that as shown in [27], almost all positive
integers are in the interval [p + 1 − 2

√
p, p + 1 + 2

√
p] for some prime p.

Indeed, it holds ([27]) that

lim
N→∞

|{n ≤ N | ∃ prime p s.t. n is odd and n ∈ [p+ 1− 2
√
p, p+ 1 + 2

√
p]}|

⌈N2 ⌉
= 1.

Thus the third example provides regular tournaments T with n vertices and
small λ(T ) for almost all positive integers n.

5. Shütte’s problem for tournaments

At last, in this section, we focus on another random-like property.

Definition 5.1. Let k be a positive integer. A tournament T has the
property Sk if for every A ⊂ V (T ) of size k, there exists a vertex z /∈ A
directing to all members of A.

The Shütte’s problem asks the existence of tournaments satisfying this
property (see [13] and [22]). As shown by Erdős [13], random tourna-
ments a.a.s. satisfy Sk for any k ≥ 1. On the other hand, the problem
of explicit constructions has been considered in graph theory. For example,
Graham-Spencer [15] showed that the Paley tournament Tp satisfies Sk if

p > k222k−2 for each k ≥ 1. From the digraphs constructed in [3], we can
also construct tournaments satisfying Sk for every k by adding some edges.
At present, there seems to be almost no explicit constructions of tourna-
ments satisfying both of the quasi-random property and Sk except for Paley
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tournaments. The following proposition and Corollary 4.2 show that the
tournament Tm

p (Si) has the quasi-random property and Sk.

Proposition 5.2. Let m be an even positive integer. Then for every k ≥
1, there exists a prime pm(k) such that for every prime p > pm(k), the

tournament Tm
p (Si) has the property Sk.

Proposition 5.2 is proved by a direct generalization of the discussion in
[15] and [2], so we omit the proof here. Moreover, it is not so hard to prove
that Tm

p (Si) has the existentially closed property (see e.g. [4]).
We also note that doubly regular tournaments constructed in [32] satisfy

both of the quasi-random property and S2, which follows from Corollary 4.5
and the corollary in [32, p.277].
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