
ORIGINAL PAPER

On the Maximal Colorings of Complete Graphs Without
Some Small Properly Colored Subgraphs

Chunqiu Fang1,2,4 • Ervin Gy}ori2 • Jimeng Xiao2,3,5

Received: 14 December 2019 / Revised: 10 May 2021 / Accepted: 4 June 2021 /
Published online: 15 June 2021
� The Author(s) 2021

Abstract
Let prðKn;GÞ be the maximum number of colors in an edge-coloring of Kn with no

properly colored copy of G. For a family F of graphs, let exðn;FÞ be the maximum

number of edges in a graph G on n vertices which does not contain any graphs in F
as subgraphs. In this paper, we show that prðKn;GÞ � exðn;G0Þ ¼ oðn2Þ; where

G0 ¼ fG�M : M is a matching of Gg. Furthermore, we determine the value of

prðKn;PlÞ for sufficiently large n and the exact value of prðKn;GÞ, where G is C5;C6

and K�
4 , respectively. Also, we give an upper bound and a lower bound of

prðKn;K2;3Þ.
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1 Introduction

We call a subgraph of an edge-colored graph rainbow, if all of its edges have

different colors. While a subgraph is called properly colored (also can be called

locally rainbow), if any two adjacent edges receive different colors. The anti-
Ramsey number of a graph G in a complete graph Kn, denoted by arðKn;GÞ, is the
maximum number of colors in an edge-coloring of Kn with no rainbow copy of G.
Namely, arðKn;GÞ þ 1 is the minimum number k of colors such that any k-edge-
coloring of Kn contains a rainbow copy of G. In this paper, we let prðKn;GÞ be the

maximum number of colors in an edge-coloring of Kn with no properly colored copy

of G. Namely, prðKn;GÞ þ 1 is the minimum number k of colors such that any k-
edge-coloring of Kn contains a properly colored copy of G.

Given a family F of graphs, we call a graph G an F -free graph, if G contains no

graph in F as a subgraph. The Turán number exðn;FÞ is the maximum number of

edges in a graph G on n vertices which is F -free. Such a graph G is called an

extremal graph, and the set of extremal graphs is denoted by EXðn;FÞ. The

celebrated result of Erd}os-Stone-Simonovits Theorem [7, 9] states that for any F we

have

exðn;FÞ ¼ p� 1

2p
þ oð1Þ

� �
n2; ð1:1Þ

where p ¼ WðFÞ ¼ minfvðFÞ : F 2 Fg � 1; is the subchromatic number.
The anti-Ramsey number was introduced by Erd}os, Simonovits and Sós in [8].

There they showed that arðKn;GÞ� exðn;GÞ þ 1, where G ¼ fG� e : e 2 EðGÞg
and by (1.1), they showed that arðKn;GÞ ¼ ðd�1

2d þ oð1ÞÞn2, where d ¼ WðGÞ. This
determined arðKn;GÞ asymptotically when WðGÞ� 2: In the case WðGÞ ¼ 1, the

situation is more complex. Already the cases when G is a tree or a cycle are

nontrival. For a path Pk on k vertices, Simonovits and Sós [20] proved

arðKn;P2tþ3þ�Þ ¼ tn� t þ 1

2

� �
þ 1þ �, for large n, where � ¼ 0 or 1. Jiang [11]

showed arðKn;K1;pÞ ¼ bnðp�2Þ
2

c þ b n
n�pþ2

c or possibly this value plus one if certain

conditions hold. For a general tree T of k edges, Jiang and West [12] proved
n
2
bk�2

2
c þ Oð1Þ� arðKn; TÞ� exðn; TÞ for n� 2k and conjectured that

arðKn; TÞ� k�2
2
nþ Oð1Þ: For cycles, Erd}os, Simonovits and Sós [8] conjectured

that for every fixed k� 3, arðKn;CkÞ ¼ ðk�2
2

þ 1
k�1

Þnþ Oð1Þ, and proved that for

k ¼ 3. Alon [1] proved this conjecture for k ¼ 4 and gave some upper bounds for

k� 5. Finally, Montellano-Ballesteros and Neumann-Lara [18] completely proved

this conjecture, that is, for n� k� 3 and n � rkðmod ðk� 1ÞÞ, where 0� rk � k � 2,

arðKn;CkÞ ¼
n

k � 1

j k k � 1

2

� �
þ

rk

2

� �
þ n

k � 1

l m
� 1: ð1:2Þ

For cliques, Erd}os, Simonovits and Sós [8] showed arðKn;Kpþ1Þ ¼ exðn;KpÞ þ 1 for

p� 3 and sufficiently large n. Montellano-Ballesteros and Neumann-Lara [17] and

independently Schiermeyer [19] showed that arðKn;Kpþ1Þ ¼ exðn;KpÞ þ 1 holds for
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every n� p� 3. For complete bipartite graphs, Axenovich and Jiang [2] showed that

arðKn;K2;tÞ ¼ exðn;K2;t�1Þ þ OðnÞ, where t� 2. Krop and York [13] showed that

arðKn;Ks;tÞ ¼ exðn;Ks;t�1Þ þ OðnÞ, where t� s� 2. Also, there are many other

results about anti-Ramsey numbers. We mention the excellent survey by Fujita,

Magnant and Ozeki [10] for more conclusions on this topic.

The maximum number of colors in an edge-colored complete graph without some

properly colored subgraphs was first studied by Manoussakis, Spyratos, Tuza and

Voigt in [15]. For cliques, they [15] obtained the approximate value of prðKn;KtÞ.

Theorem 1 [15] For t� 3, let b ¼ t�1
2

� �
, we have prðKn;KtÞ ¼ b�1

2b þ oð1Þ
� �

n2:

For paths and cycles, they [15] showed that prðKn;PnÞ ¼
n� 3

2

� �
þ 1 for large

n and prðKn;CnÞ ¼
n� 1

2

� �
þ 1. Also, they gave a conjecture about cycles as

follows.

Conjecture 1 [15] Let n[ l� 4. Assume that Kn is colored with at least k colors,
where

k ¼

1

2
lðlþ 1Þ þ n� lþ 1; if n\

10l2 � 6l� 18

6ðl� 3Þ ;

1

3
ln� 1

18
lðlþ 3Þ þ 2; if n� 10l2 � 6l� 18

6ðl� 3Þ ;

8>>><
>>>:

then Kn admits a properly colored cycle of length lþ 1.

In this paper, we generalize Theorem 1 to an arbitrary graph G which shows that

prðKn;GÞ is related to the Turán number like the anti-Ramsey number.

Theorem 2 Let G be a graph and G0 ¼ fG�M : M is a matching of Gg, then
prðKn;GÞ� exðn;G0Þ þ 1 and prðKn;GÞ ¼ d�1

2d þ oð1Þ
� �

n2; where d ¼ WðG0Þ.

We will prove Theorem 2 in Sect. 2 by the method used in the proof of

Theorem 1 in [15]. Theorem 2 determines prðKn;GÞ asymptotically when

WðG0Þ � 2. As the anti-Ramsey number, the case WðG0Þ ¼ 1 is more complex.

In Sect. 3, we will determine prðKn;PlÞ for large n by proving the following

theorem.

Theorem 3 Let Pl be a path on l vertices and l � rlðmod 3Þ, where 0� rl � 2. For

n� 2l3, we have

prðKn;PlÞ ¼
l

3

� 	
� 1

� �
n�

l

3

� 	

2

0
@

1
Aþ 1þ rl:

For cycles, we slightly improve the lower bound of Conjecture 1 (See

Proposition 4). Also, We modify Conjecture 1 as follows.
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Conjecture 2 Let Ck be a cycle on k vertices and ðk � 1Þ � rk�1ðmod 3Þ, where
0� rk�1 � 2. For n� k;

prðKn;CkÞ ¼ max
k � 1

2

� �
þ n� k þ 1;

k � 1

3

� 	
n�

k � 1

3

� 	
þ 1

2

0
@

1
Aþ 1þ rk�1

8<
:

9=
;:

It is easy to see that prðKn;C3Þ ¼ arðKn;C3Þ ¼ n� 1. Also, by Proposition 4 and

(1.2), one can check that for n� 3,

prðKn;CnÞ ¼ arðKn;CnÞ ¼
n� 1

2

� �
þ 1; ð1:3Þ

prðKnþ1;CnÞ ¼ arðKnþ1;CnÞ ¼
n� 1

2

� �
þ 2: ð1:4Þ

Li, Broersma and Zhang [14], and later Xu, Magnant and Zhang [21] showed that

for n� 4, prðKn;C4Þ ¼ n. We obtain the exact value of prðKn;C5Þ and prðKn;C6Þ in
Sect. 4.

Theorem 4 For n� 5, prðKn;C5Þ ¼ nþ 2.

Theorem 5 For n� 6, prðKn;C6Þ ¼ nþ 5.

Let K�
4 be the diamond, the graph obtained from K4 by deleting an edge. We

obtain the exact value of prðKn;K
�
4 Þ in Sect. 5.

Theorem 6 For n� 3, prðKn;K
�
4 Þ ¼

3ðn�1Þ
2

j k
:

We also give a lower bound and an upper bound of prðKn;K2;3Þ in Section 5.

Theorem 7 For n� 5, 7
4
nþ Oð1Þ� prðKn;K2;3Þ� 2n� 1:

Notations: Let G be a simple undirected graph. For x 2 VðGÞ, we denote the

neighborhood and the degree of x in G by NGðxÞ and dGðxÞ, respectively. The
maximum degree of G is denoted by DðGÞ. The common neighborhood of U �
VðGÞ is the set of vertices in VðGÞnU that are adjacent to each vertex of U. We will

use G� x to denote the graph that arises from G by deleting the vertex x 2 VðGÞ.
For a vertex set X � VðGÞ, G[X] is the subgraph of G induced by X and G� X is the

subgraph of G induced by VðGÞnX. Given a graph G ¼ ðV ;EÞ, for any (not

necessarily disjoint) vertex sets A;B � V , we let

EGðA;BÞ :¼ fuv 2 EðGÞju 6¼ v; u 2 A; v 2 Bg. We use G to denote the complement

of G. Given two vertex disjoint graphs G1 and G2, we denote by G1 þ G2 the join of

graphs G1 and G2, that is the graph obtained from G1 [ G2 by joining each vertex of

G1 with each vertex of G2.

Given an edge-coloring c of Kn, we denote the color of an edge uv by c(uv). For
any vetex v 2 VðGÞ, let CðvÞ :¼ fcðvwÞ : w 2 VðKnÞnfvgg and dcðvÞ :¼ jCðvÞj: A
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color a is starred (at x) if all the edges with color a induce a star K1;r (centered at the

vertex x). We let dcðvÞ ¼ jfa 2 CðvÞ : a is starred at vgj. For a subgraph H of G, we
denote CðHÞ ¼ fcðuvÞ : uv 2 EðHÞg. A representing subgraph of an edge-colored

Kn is a spanning subgraph containing exactly one edge of each color. The weak
representing subgraph of an edge-colored Kn is consisting of all the edges whose

color appears only once in Kn. Note that an edge xy is the unique edge with color a
in Kn if and only if the color a is stared at both x and y. Thus, if G is the weak

representing subgraph of an edge-colored Kn, then we have

jEðGÞj �
X

v2VðKnÞ
dcðvÞ � jCðKnÞj: ð1:5Þ

2 The Proof of Theorem 2

In this section, we will prove Theorem 2 by a similar argument used in the proof of

Theorem 1 in [15].

Theorem 2 Let G be a graph and G0 ¼ fG�M : M is a matching of Gg, then
prðKn;GÞ� exðn;G0Þ þ 1 and prðKn;GÞ ¼ d�1

2d þ oð1Þ
� �

n2; where d ¼ WðG0Þ.

Proof Let F be a graph in EXðn;G0Þ. We color the edges of Kn as follows. Take a

subgraph F of Kn, and assign distinct colors to all of E(F) and a new color c0 to all

the remaining edges. Suppose there is a properly colored G, then M ¼ fe 2
EðGÞ; e is colored with c0g is a matching of G, and G�M � F. By the definition

of G0, we have G�M 2 G0, and this is a contradiction with F being G0-free. Thus we

have prðKn;GÞ� exðn;G0Þ þ 1 ¼ ðd�1
2d þ oð1ÞÞn2 by (1.1).

Let G0 ¼ G�Mp, where Mp is a p-matching of G and vðG0Þ ¼ d þ 1. We prove

that for every fixed e[ 0, and for n large enough with respect to n0 ¼ jVðGÞj and e,
there is a properly colored copy of G in any ðd�1

2d þ eÞn2-edge-coloring of Kn. In a

representing subgraph of Kn with ðd�1
2d þ eÞn2 edges, for an arbitrarily fixed s, and for

n sufficiently large, by (1.1), there exists a complete ðd þ 1Þ-partite subgraph Ks;s;...;s

with s vertices in each class. We take s ¼ 2n0þdþ1:
Denote by V the vertex set of Ks;s;...;s and by V1;V2; . . .;Vdþ1 its vertex classes.

We apply the following procedure.

For each i ¼ 1; 2; . . .; d þ 1 do sequentially the following:

(1) Select arbitrarily 2n0þdþ1�i pairwise disjoint pairs fuij; vijg in Vi,

j ¼ 1; 2; . . .; 2n0þdþ1�i:

(2) For j ¼ 1; 2; . . .; 2n0þdþ1�i, delete from Ks;s;...;s the (at most one) vertex z 2
VnVi for which either cðzuijÞ ¼ cðuijvijÞ or cðzvijÞ ¼ cðuijvijÞ, and if z has

already been selected in a previous pair fui0j0 ; vi0j0 g, for some i0\i, then also

delete the other member of its pair.

Claim 1 The above procedure can be executed smoothly and there are at least 2n0

pairs remains undeleted in each Vi at the end of the execution.
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The Proof of Claim 1 In the beginning, each Vi contains 2n0þdþ1 vertices,

i ¼ 1; 2; . . .; d þ 1. In the first iteration, i ¼ 1, we can carry out (1) and (2) easily.

Suppose we have carried out up to the ði� 1Þ-st iteration. Before executing the i-th

iteration observe that at most
P

1� j� i�1 2
n0þdþ1�j ¼ 2n0þdþ1 � 2n0þdþ2�i vertices

have been deleted from Vi. Thus, Vi contains at least 2n0þdþ2�i vertices and it is

enough to execute instruction (1) in the ith iteration.

On the other hand, for any i ¼ 1; 2; . . .; d, from the ðiþ 1Þ-st iteration up to the

end, due to instructions of type (2), at most
P

iþ1� j� dþ1 2
n0þdþ1�j ¼ 2n0þdþ1�i �

2n0 pairs in Vi have been deleted and thus at least 2n0 pairs in Vi remains undeleted.

Note also that Vdþ1 contains 2
n0 pairs of vertices and there is no deletion of pair in

Vdþ1. h

For 1� i� d þ 1, let fxijyij : 1� j� 2n0g be the 2n0 pairs in Vi which remain

undeleted and V 0
i ¼ fxij; yij : 1� j� 2n0g. Let H be the graph obtained by adding the

edge set fxijyij : 1� i� d þ 1; 1� j� 2n0g to the graph Ks;s;...;s½V 0
1 [ � � � [ V 0

dþ1�.
Then H is properly colored by Claim 1. Since G0 ¼ G�Mp and vðG0Þ ¼ d þ 1, we

have H 	 G. Thus prðKn;GÞ� ðd�1
2d þ oð1ÞÞn2. h

3 Paths

In this section, we study the maximum number of colors in an edge-colored

complete graph without properly edge-colored paths, and prove Theorem 3. Before

doing so, we determine prðKn;PlÞ for some small values of l.

Proposition 1

(a) prðKn;P3Þ ¼ 1; for n� 3.

(b) prðKn;P4Þ ¼ 2; for n� 4.

(c) prðKn;P5Þ ¼ 3; for n� 5.

Proof

(a) The conclusion holds trivially.

(b) Choose a vertex v of Kn, color all edges incident to v with color c1 and color

all the remaining edges with color c2. We use two colors and there is no

properly colored P4. Hence prðKn;P4Þ� 2.

For n� 5, we have prðKn;P4Þ� arðKn;P4Þ ¼ 2 (see [3]). For n ¼ 4, let

VðK4Þ ¼ fu; v; x; yg. Given a 3-edge-coloring of K4, there exists at least one edge

in Eðfu; vg; fx; ygÞ, we say ux, such that cðuxÞ 6¼ cðuvÞ and cðuxÞ 6¼ cðxyÞ. Thus
vuxy is a properly colored P4 and prðKn;P4Þ� 2.

(c) Choose two vertices u and v of Kn, assign one color c1 to all edges incident

with u, one new color c2 to all edges incident with v (except the edge uv) and
the other new color c3 to all the remaining edges. We use three colors and

there is no properly colored P5. Hence prðKn;P5Þ� 3.
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Let n� 5. Given a 4-edge-coloring of Kn, there is always a rainbow P4 ¼ u1u2u3u4
since arðKn;P4Þ ¼ 2 (see [3]). Since jCðP4Þj ¼ jEðP4Þj ¼ 3, there is a color

c0 2 CðKnÞnCðP4Þ. Suppose there is no properly colored P5 in the 4-edge-coloring

of Kn. Then for all u 2 VðKnÞnVðP4Þ, it must be cðuu1Þ ¼ cðu1u2Þ,
cðuu4Þ ¼ cðu3u4Þ, cðuu2Þ 2 fcðu1u2Þ; cðu2u3Þg and cðuu3Þ 2 fcðu2u3Þ; cðu3u4Þg. If
cðu1u4Þ ¼ c0; then uu1u4u3u2 is a properly colored P5, a contradiction. If cðu1u3Þ ¼
c0 or cðu2u4Þ ¼ c0, say cðu1u3Þ ¼ c0, then u4uu1u3u2 is a properly colored P5, a

contradiction. So we may assume that there are two vertices x; y 2 VðKnÞnVðP4Þ
such that cðxyÞ ¼ c0. In this case, u4yxu2u1 or u4yxu2u3 is a properly colored P5, a

contradiction. Hence prðKn;P5Þ� 3. h

Here, we give the lower bound of prðKn;PlÞ by the following proposition.

Proposition 2 Let Pl be a path on l vertices and l � rlðmod 3Þ, where 0� rl � 2.
For n� l, we have

prðKn;PlÞ� max
l� 3

2

� �
þ 1;

l

3

� 	
� 1

� �
n�

l

3

� 	

2

0
@

1
Aþ 1þ rl

8<
:

9=
;:

Proof We color the edges of Kn as follows. For the first lower bound, we choose a

Kl�3 and color it rainbow, and use one extra color for all the remaining edges. In

such way, we use exactly
l� 3

2

� �
þ 1 colors and do not obtain a properly colored

Pl.

For the second lower bound, we partition Kn into two graphs Kb l
3
c�1 þ Kn�b l

3
cþ1

and Kn�b l
3
cþ1. First we color Kb l

3
c�1 þ Kn�b l

3
cþ1 rainbow. Then we color Kn�b l

3
cþ1 by

ð1þ rlÞ new colors without producing a properly colored P3þrl (See the proof of

Proposition 3.1). In such way, we use exactly l
3

� �
� 1

� �
n�

l

3

� 	

2

0
@

1
Aþ 1þ rl

colors and do not obtain a properly colored Pl. h

The proof of the following proposition is trivial. We will use it to prove

Theorem 3.

Proposition 3 Let Pl be a path with l vertices, and l � rlðmod 3Þ, where 0� rl � 2.
If an edge-colored Kn contains a rainbow copy of Kb l

3
c�1;2b l

3
cþ3 but does not contain

a properly colored Pl. We denote by Q the vertices of Kn � Kb l
3
c�1;2b l

3
cþ3, by X the

smaller class of Kb l
3
c�1;2b l

3
cþ3 and by Y the other one. Then jCðKn½Y�Þj � 1þ rl.

Furthermore, we have jCðKn½Y �Þ [ CðEKn
ðY ;QÞÞj � 1þ rl and

jCðKn½Y [ Q�Þj � 1þ rl. We get the most colors if the colors of all the edges
between X and Y [ Q and all the edges in X are different, they differ from all the
other edges and we use exactly 1þ rl colors in Y [ Q such that there is no properly
colored P3þrl in Y [ Q. Then the number of colors is
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l

3

� 	
� 1

� �
n�

l

3

� 	

2

0
@

1
Aþ 1þ rl:

Now, we will prove Theorem 3, and the idea comes from [20] (Fig. 1).

Theorem 3 Let Pl be a path on l vertices and l � rlðmod 3Þ, where 0� rl � 2. For

n� 2l3, we have

prðKn;PlÞ ¼
l

3

� 	
� 1

� �
n�

l

3

� 	

2

0
@

1
Aþ 1þ rl:

Proof We just need prove the upper bound for l� 6. We shall use the following

famous results of Erd}os and Gallai (see [5]): for n� r� 2,

exðn;PrÞ�
r � 2

2
n; ð3:1Þ

exðn; fCrþ1;Crþ2; . . .gÞ�
rðn� 1Þ

2
: ð3:2Þ

Let c be an edge-coloring of Kn using prðKn;PlÞ colors without producing a properly
colored Pl. Take a longest properly colored path Ps ¼ v1v2 � � � vs, where s� l� 1:
Denote by G the graph obtained by choosing one edge from each remaining color

such that the number of edges joining Ps to the remaining n� s vertices is as large
as possible. We would partition VðGÞnVðPsÞ into three sets U1;U2 and U3 as

follows:

(a) U1 is the vertex set of VðKnÞnVðPsÞ not jointed to Ps at all: neither by edges

nor by paths;

U1 U2 U3

Ps v1 v2 vs−1 vs

Fig. 1 The structure of graph G
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(b) U2 is the set of isolated vertices of VðKnÞnVðPsÞ jointed to Ps by edges;

(c) U3 ¼ VðKnÞnðVðPsÞ [ U1 [ U2Þ:

Claim 1 For any vertex u 2 U1 [ U2 [ U3, we have cðuv1Þ ¼ cðv1v2Þ and
cðuvsÞ ¼ cðvs�1vsÞ. Moreover, EGðU2 [ U3; fv1; v2; vs�1; vsgÞ ¼ ;:

Proof of Claim 1 It is obvious that cðuv1Þ ¼ cðv1v2Þ and cðuvsÞ ¼ cðvs�1vsÞ for any
vertex u 2 U1 [ U2 [ U3 by the maximality of Ps, thus we have

EGðU2 [ U3; fv1; vsgÞ ¼ ;. Suppose that there is a vertex u 2 U2 [ U3 such that

uv2 2 EðGÞ or uvs�1 2 EðGÞ, we say uv2 2 EðGÞ. Notice that cðuv1Þ ¼ cðv1v2Þ 6¼
cðuv2Þ by the definition of G, it follows that v1uv2 � � � vs is a properly colored path of

order sþ 1, a contradiction to the maximality of Ps. h

Claim 2 G½U1� contains no Pbs
2
c.

Proof of Claim 2 Suppose Pbs
2
c ¼ u1u2. . .ubs

2
c is a path in G½U1�. By the definition of

G, the colors of CðG½U1�Þ can not appear in any edges between U1 and VðPsÞ. Thus,
cðu1vds

2
eÞ 6¼ cðu1u2Þ, cðubs

2
cv1Þ 6¼ cðubs

2
cubs

2
c�1Þ and cðubs

2
cvsÞ 6¼ cðubs

2
cubs

2
c�1Þ. Since

cðvds
2
e�1vds

2
eÞ 6¼ cðvds

2
evds

2
eþ1Þ, at most one of cðvds

2
e�1vds

2
eÞ and cðvds

2
evds

2
eþ1Þ is the same

as cðudsþ1
2
evds2eÞ. So at least one of v1v2. . .vds

2
eu1u2. . .ubs

2
cvs and

vsvs�1. . .vds
2
eu1u2. . .ubs

2
cv1 is a properly colored path of order at least sþ 1, a

contradiction to the maximality of Ps. Hence, G½U1� contains no Pbs
2
c. h

By Claim 2 and (3.1), we have

jEðG½U1�Þj �
1

2

s

2

j k
� 2


 �
jU1j �

1

2

l� 1

2

� 	
� 1

� �
jU1j: ð3:3Þ

Claim 3 For any vertex u 2 U2 [ U3 and any three consecutive vertices
vi; viþ1; viþ2 2 VðPsÞ, we have jEGðu; fvi; viþ1; viþ2gÞj � 1:

Proof of Claim 3 Suppose there exist a vertex u 2 U2 [ U3 and three consecutive

vertices vi; viþ1; viþ2 2 VðPsÞ such that jEGðu; fvi; viþ1; viþ2gÞj� 2, that is at least

two of uvi; uviþ1; uviþ2 are edges of G, then whatever cðvviÞ is, at least one of

v1. . .viuviþ1viþ2. . .vs and v1. . .viviþ1uviþ2. . .vs is a properly colored path of order

sþ 1, a contradiction to the maximality of Ps. h

By Claims 1 and 3, we have jEGðu;PsÞj � s�4
3

� 
� l�5

3

� 
¼ l

3

� �
� 1 for all u 2 U2.

Thus, we have

jEGðU2;PsÞj�
l

3

� 	
� 1

� �
jU2j: ð3:4Þ

Let H be any component of G½U3� and r be the length of the longest cycle in H. If H
contains no cycles, then we write r ¼ 2. By (3.2), we have
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jEðHÞj� rjVðHÞj � r

2
: ð3:5Þ

Now we will estimate the number of edges between V(H) and VðPsÞ in G by the

following two claims.

Claim 4 For any vertex u 2 VðHÞ, we have

EGðu; fv1; . . .; v2rþ1; vs�2r; . . .; vsgÞ ¼ ;: ð3:6Þ

Proof of Claim 4 Since H is connected and the length of the longest cycle in H is r,
we can always find a path Pr � H starting from u in H. Let Pr ¼ u1u2. . .ur be such a
path, where u1 ¼ u. By an argument very similar to the one in Claim 1, we have

EGðu; fv1; . . .; vrþ1; vs�r; . . .; vsgÞ ¼ ;: By the symmetry, we just need to show that

there is no edge between u and fvrþ2; . . .; v2rþ1g. If there exists vi 2 fvrþ2; . . .; v2rg
such that uvi 2 EðGÞ, we have i� r þ 2� 4. By the definition of G, we have

cðurvb i
2
cÞ 6¼ cður�1urÞ. Since cðvb i

2
c�1vb i

2
cÞ 6¼ cðvb i

2
cvb i

2
cþ1Þ, at most one of cðvb i

2
c�1vb i

2
cÞ

and cðvb i
2
cvb i

2
cþ1Þ is the same as cðurvb i

2
cÞ. Thus at least one of

v1v2. . .vb i
2
cus. . .u1viviþ1. . .vs and vi�1vi�2. . .vb i

2
cus. . .u1viviþ1. . .vs is a properly

colored path of order at least sþ 1, a contradiction to the maximality of Ps. If

uv2rþ1 2 EðGÞ, then we have cðuv2rÞ 6¼ cðv2rv2rþ1Þ, otherwise

v1v2 � � � v2ruv2rþ1v2rþ2 � � � vs is a properly colored path of order sþ 1, a contradiction

to the maximality of Ps. Also, we have cðuv2rÞ 6¼ cðuu2Þ. By an argument similar to

the above, one can find a properly colored path of order at least sþ 1, a

contradiction to the maximality of Ps. h

Claim 5 For any six consecutive vertices vi; viþ1; viþ2; viþ3; viþ4; viþ5 2 VðPsÞ, all
edges between fvi; viþ1; viþ2; viþ3; viþ4; viþ5g and V(H) of G induce a star.

Proof of Claim 5 If not, suppose xvi and yvj are two independent edges between

V(H) and fvi; viþ1; viþ2; viþ3; viþ4; viþ5g in G, where x; y 2 VðHÞ and

j 2 fiþ 1; iþ 2; iþ 3; iþ 4; iþ 5g. Let Pxy be a path of H which connect x and

y. If j 2 fiþ 1; iþ 2; iþ 3g, then whatever cðxviþ1Þ is, at least one of

v1. . .vixviþ1 � � � vs and v1. . .viviþ1xPxyyvj. . .vs is a prorperly colored path of order

at least sþ 1, a contradiction to the maximality of Ps. If j ¼ iþ 4, then we have

cðxviþ3Þ ¼ cðviþ2viþ3Þ and cðyviþ1Þ ¼ cðviþ1viþ2Þ, otherwise,

v1v2. . .viþ3xPxyyviþ4. . .vs or v1v2. . .viþ1yPyxxviþ3. . .vs is a properly colored path

of order at least sþ 2, a contradiction to the maximality of Ps. It follows that

v1. . .viþ1yPyxxviþ3. . .vs is a properly colored path of order at least sþ 1, a

contradiction to the maximality of Ps. If j ¼ iþ 5, by a similar argument of the

former case, we have cðxviþ3Þ ¼ cðyviþ2Þ ¼ cðviþ2viþ3Þ and

v1v2. . .viþ2yPyxxviþ3. . .vs is a properly colored path of order at least sþ 2, a

contradiction to the maximality of Ps. h
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By Claim 3, for any six consecutive vertices vi; viþ1; viþ2; viþ3; viþ4; viþ5 2 VðPsÞ
and any vertex u 2 VðHÞ, we have jEGðu; fvi; viþ1; viþ2; viþ3; viþ4; viþ5gÞj� 2. Thus,

by Claim 5, we have

jEGðVðHÞ; fvi; viþ1; viþ2; viþ3; viþ4; viþ5gÞj � maxf2; jVðHÞjg� jVðHÞj: ð3:7Þ

Combining (3.6) and (3.7), we have

jEGðVðHÞ;VðPsÞÞj �
s� 2ð2r þ 1Þ

6

� �
jVðHÞj: ð3:8Þ

Combining (3.5) and (3.8), we have

jEGðVðHÞ;VðPsÞÞj þ jEðHÞj � s� 2ð2r þ 1Þ
6

� �
jVðHÞj þ rjVðHÞj � r

2

� s� 4r � 2

6

� �
þ r

2

� �
jVðHÞj

� s� 4r � 2

6
þ r þ 1

2

� �� �
jVðHÞj

� s� 1

6

� �
jVðHÞj

The last inequality holds since r� 2. Note that jEGðVðHÞ;VðPsÞÞj þ
jEðHÞj� s�1

6

� 
jVðHÞj holds for each component H of G½U3�. Thus, we have

jEGðU3;PsÞj þ jEðG½U3�Þj �
s� 1

6

� �
jU3j �

l� 2

6

� �
jU3j: ð3:9Þ

By (3.3), (3.4) and (3.9), we have

prðKn;PlÞ ¼ jCðKnÞj � jCðPsÞj þ jEðGÞj

�
s

2

 !
þ jEðG½U1�Þj þ jEGðU2;PsÞj þ jEGðU3;PsÞj þ jEðG½U3�Þj

�
s

2

 !
þ 1

2

l� 1

2

� 	
� 1

� �
jU1j þ

l

3

� 	
� 1

� �
jU2j þ

l� 2

6

� �
jU3j:

Note that 1
2

l�1
2

� �
� 1� l

3

� �
� 1� 1

2
for l� 6 and l�2

6

� 
� l

3

� �
� 1� 1

2
for all l� 12.

When l� 11, we have s� 10, by Claim 4, U3 ¼ ;. Let U
 ¼ fu 2 U2 : dGðuÞ ¼
l
3

� �
� 1g: Then we have

prðKn;PlÞ�
s

2

� �
þ l

3

� 	
� 1� 1

2

� �
ðn� s� jU
jÞ þ l

3

� 	
� 1

� �
jU
j: ð3:10Þ

Since n� 2l3, by Proposition 2, we have
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prðKn;PlÞ�
l

3

� 	
� 1

� �
n�

l

3

� 	

2

0
@

1
Aþ 1þ rl: ð3:11Þ

Combining (3.10) and (3.11), since n� 2l3, we have jU
j � l3. By Claims 1 and 3,

there are at most
s� 4� 2ðb l

3
c � 1� 1Þ

b l
3
c � 1

0
B@

1
CA distinct ðb l

3
c � 1Þ-subset of VðPsÞ can

be the neighborhood of some vertex in U
. Since s� l� 1 and 6� l� 3 l
3

� �
þ 2, we

have

s� 4� 2ðb l
3
c � 1� 1Þ

b l
3
c � 1

0
B@

1
CA�

l� 1� 2b l
3
c

b l
3
c � 1

0
B@

1
CA�

b l
3
c þ 1

b l
3
c � 1

0
B@

1
CA ¼ b l

3
c þ 1

2

0
@

1
A� l2

9
:

Note that jU
j � l3 [ l2

9
ð2b l

3
c þ 3Þ, by Pigeonhole Principle, U
 contains at least

2b l
3
c þ 3 vertices which have a common neighborhood of size b l

3
c � 1 in G. That is,

we find a rainbow Kb l
3
c�1;2b l

3
cþ3. By Proposition 3, the proof is complete.

h

4 Cycles

The lower bound of prðKn;CkÞ was given roughly by Manoussakis, Spyratos, Tuza

and Voigt in [15]. Here we prove the lower bound precisely again.

Proposition 4 Let Ck be a cycle on k vertices and ðk � 1Þ � rk�1ðmod 3Þ; where
0� rk�1 � 2. For n� k;

prðKn;CkÞ� max
k � 1

2

� �
þ n� k þ 1;

k � 1

3

� 	
n�

k � 1

3

� 	
þ 1

2

0
@

1
Aþ 1þ rk�1

8<
:

9=
;:

Proof We color the edges of Kn as follows. For the first lower bound, we choose a

Kk�1 and color it rainbow, and use one extra color for all the remaining edges. In

such way, we use exactly
k � 1

2

� �
þ 1 colors and do not obtain a properly colored

Ck.

For the second lower bound, we partition Kn into two graphs Kbk�1
3
c þ Kn�bk�1

3
c and

Kn�bk�1
3
c. First we color Kbk�1

3
c þ Kn�bk�1

3
c rainbow. Then we color Kn�bk�1

3
c by ð1þ

rk�1Þ new colors without producing a properly colored P3þrk�1
(See the proof of
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Proposition 3.1). In such way, we use exactly bk�1
3
cn� bk � 1

3
c þ 1

2

 !
þ 1þ rk�1

colors and do not obtain a properly colored Ck. h

Conjecture 3 Let Ck be a cycle on k vertices and ðk � 1Þ � rk�1ðmod 3Þ, where
0� rk�1 � 2. For n� k;

prðKn;CkÞ ¼ max
k � 1

2

� �
þ n� k þ 1;

k � 1

3

� 	
n�

k � 1

3

� 	
þ 1

2

0
@

1
Aþ 1þ rk�1

8<
:

9=
;:

Now we prove Conjecture 2 holds for C5 and C6, respectively.

Theorem 4 For n� 5, prðKn;C5Þ ¼ nþ 2.

Proof By Proposition 4, we have prðKn;C5Þ� nþ 2 for n� 5. We will prove

prðKn;C5Þ� nþ 2 by induction on n. The base cases n ¼ 5 and n ¼ 6 follow from

(1.3) and (1.4), respectively. For n� 7, assume that the conclusion holds for order

less than n. Let c be an ðnþ 3Þ-edge-coloring of Kn. If there is a vertex v such that

dcðvÞ� 1, then jCðKn � vÞj � nþ 3� 1 ¼ ðn� 1Þ þ 3 and there is a properly

colored C5 by the induction hypothesis. Thus we assume that dcðvÞ� 2, for all

v 2 VðKnÞ. Let G be the weak representing subgraph of Kn. By (1.5), we have

jEðGÞj � 2n� ðnþ 3Þ ¼ n� 3� 4. Thus, G contains a 2-matching. Let fxy; zwg be

a 2-matching of G. Choose a vertex u 2 VðKnÞnfx; y; z;wg. We consider the

following two cases.

Case 1. There are at least two edges of fux; uy; uz; uwg are colored with distinct

colors.

In this case, there are at least one edge of fux; uyg, we say ux, and at least one

edge of fuz; uwg, we say uz, such that cðuxÞ 6¼ cðuzÞ. By the definition of G, we
have cðuxÞ 6¼ cðxyÞ, cðuzÞ 6¼ cðzwÞ and cðxyÞ 6¼ cðywÞ 6¼ cðzwÞ. Thus, uxywzu is a

properly colored C5.

Case 2. The four edges ux, uy, uz and uw are colored with the same color.

If c(ux) is starred at u, since dcðuÞ� 2, there exists a vertex v 2
VðKnÞnfx; y; z;w; ug such that c(uv) is starred at u and cðuvÞ 6¼ cðuxÞ. Also, we
have cðuxÞ 6¼ cðxzÞ 6¼ cðzwÞ and cðzwÞ 6¼ cðvwÞ 6¼ cðuvÞ. Thus, uxzwvu is a properly
colored C5. If c(ux) is not starred at u, since dcðuÞ� 2, there exists two vertices

v1; v2 2 VðKnÞnfx; y; z;w; ug such that cðuv1Þ and cðuv2Þ are starred at u and

cðuv1Þ 6¼ cðuv2Þ. Also, we have cðuv1Þ 6¼ cðv1xÞ 6¼ cðxyÞ and

cðuv2Þ 6¼ cðv2zÞ 6¼ cðxyÞ. Thus, uv1xyv2u is a properly colored C5.

h

For C6, we consider more cases to prove it.

Theorem 5 For n� 6, prðKn;C6Þ ¼ nþ 5.

123

Graphs and Combinatorics (2021) 37:2287–2304 2299



Proof By Proposition 4, we have prðKn;C6Þ� nþ 5 for n� 6: We will prove

prðKn;C6Þ� nþ 5 by induction on n. The base cases n ¼ 6 and n ¼ 7 follow from

(1.3) and (1.4), respectively. For n� 8, assume that the conclusion holds for order

less than n. Let c be an ðnþ 6Þ-edge-coloring of Kn. If there is a vertex v such that

dcðvÞ� 1, then jCðKn � vÞj � nþ 6� 1 ¼ ðn� 1Þ þ 6 and there is a properly

colored C6 by the induction hypothesis. Thus we assume that dcðvÞ� 2 for all

v 2 VðKnÞ. Let G be the weak representing subgraph of Kn. By (1.5), we have

jEðGÞj � 2n� ðnþ 6Þ ¼ n� 6� 2.

Case 1. DðGÞ� 2.

In this case, G contains a path of order 3. Let P3 ¼ xyz be such a path of G and

U ¼ VðKnÞnfx; y; zg: Let H be a subgraph Kn obtained by choosing one edge from

the colors which are starred at some vertex of U such that the number of edges

between fx; y; zg and U is as large as possible.

Case 1.1 jEðH½U�Þj � 2.

Let u1u2; v1v2 2 EðH½U�Þ. If u1u2 and v1v2 have a common end vertex, we say

u2 ¼ v1, then cðxu1Þ 6¼ cðu1v1Þ and cðzv2Þ 6¼ cðv1v2Þ by the choice of H. Thus

xyzv2v1u1x is a properly colored C6. Now we may assume that fu1u2; v1v2g is a 2-

matching of H. Assume that cðu1u2Þ and cðv1v2Þ are starred at u1 and v1
respectively. Thus cðu2v2Þ 6¼ cðu1u2Þ and cðu2v2Þ 6¼ cðv1v2Þ. By the choice of H, we
have cðxu1Þ 6¼ cðu1u2Þ and cðyv1Þ 6¼ cðv1v2Þ. Thus, xyv1v2u2u1x is a properly

colored C6.

Case 1.2 jEðH½U�Þj ¼ 1:
Assume uv 2 EðH½U�Þ and c(uv) is starred at u. Then we have cðxuÞ 6¼ cðuvÞ.

Also, cðvzÞ 6¼ cðuvÞ. Take a vertex w 2 Unfu; vg. Since dcðwÞ� 2, we have

jEHðw; fx; y; zgÞj � 2. There is at least one of fx; zg, say x, such that c(wx) is starred
at w and cðwxÞ 6¼ cðwyÞ. Also, we have cðwxÞ 6¼ cðuxÞ. Thus wxuvzyw is a properly

colored C6.

Case 1.3 EðH½U�Þ ¼ ;:
For all v 2 U, since dcðvÞ� 2, we have jEHðv; fx; y; zgÞj � 2. Notice that

jUj � n� 3� 5: If there are three vertices in U, say u1; u2; u3 2 U, such that they

have a common neighborhood fx; zg in H, then at least one of fu1x; u1zg, say u1x,
such that cðu1yÞ 6¼ cðu1xÞ. Also, at most one edge of fu2x; u2z; u3x; u3zg has the

same color as cðu2u3Þ. Thus, at least one of xu1yzu3u2x and xu1yzu2u3x is a properly
colored C6.

Now we may assume that there are at least two vertices in U, say u1; u2, such that

they have a common neighborhood fx; yg or fy; zg in H, say fx; yg. If there is a

vertex u3 2 Unfu1; u2g such that u3y; u3z 2 EðHÞ, we have cðzxÞ 62
fcðxu1Þ; cðxu2Þ; cðzu3Þg and at most one edge of fu1x; u1y; u2x; u2yg has the same

color as cðu1u2Þ. Thus, at least one of xu1u2yu3zx and xu2u1yu3zx is a properly

colored C6. If there is a vertex u3 2 Unfu1; u2g such that u3x; u3z 2 EðHÞ, at least
one of xu1u2yzu3x and xu2u1yzu3x is a properly colored C6. Now we may assume

that U has a common neighborhood fx; yg in H. Take four distinct vertices

u1; u2; u3; u4 2 U. At most one edge of fu1x; u1y; u2x; u2yg has the same color as

cðu1u2Þ and at most one edge of fu3x; u3y; u4x; u4yg has the same color as cðu3u4Þ.
Thus the graph induced by the edges set fu1u2; u3u4; xui; yui : 1� i� 4g contains a a
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properly colored C6.

Case 2. DðGÞ ¼ 1:
Note that if G has three independent edges, then we can find a properly colored

C6. Recall that jEðGÞj� n� 6� 2. Now we may assume that n ¼ 8 and jEðGÞj ¼ 2.

Let EðGÞ ¼ fxy; zwg and U ¼ VðK8Þnfx; y; z;wg ¼ fu1; u2; u3; u4g:
Case 2.1 There is an edge uiuj such that cðuiujÞ is starred at ui, say cðu1u2Þ is

starred at u1.
If there is one vertex in fx; y; z;wg, say x, such that cðu1xÞ 6¼ cðu1u2Þ, then

u1xyzwu2u1 is a properly colored C6. We assume that cðu1xÞ ¼ cðu1yÞ ¼ cðu1zÞ ¼
cðu1wÞ ¼ cðu1u2Þ: Since dcðu1Þ� 2, we can assume that cðu1u3Þ is starred at u1 and
cðu1u3Þ 6¼ cðu1u2Þ: Thus u1xyzwu3u1 is a properly colored C6.

Case 2.2 For all edge uiuj, cðuiujÞ is not starred at ui or uj.

Since dcðu1Þ� 2 and dcðu2Þ� 2, we can find two distinct vertices v1; v2 2
fx; y; z;wg such that cðu1v1Þ is starred at u1 and cðu2v2Þ is starred at u2. If v1 ¼ x and
v2 ¼ y, then u1xzwyu2u1 is a properly colored C6. If v1 ¼ x and v2 ¼ z, then

u1xywzu2u1 is a properly colored C6. h

5 K -
4 and K2,3

In this section, we will prove Theorems 6 and 7. First, we determine the exact value

of prðKn;K
�
4 Þ.

Theorem 6 For n� 4, prðKn;K
�
4 Þ ¼

3ðn�1Þ
2

j k
:

Proof The lower bound: Consider an edge-coloring of Kn as follows. Take a

triangle C3 ¼ xyz of Kn and a maximum matching M ¼ fx1y1; x2y2; . . .; xbn�3
2
cybn�3

2
cg

of Kn � fx; y; zg. There is one vertex w in VðKnÞnðVðMÞ [ fx; y; zgÞ when n is even.

For 1� i�bn�3
2
c, color all the edges of fuxi : u 2

fx; y; z; x1; y1; x2; y2; . . .; xi�1; yi�1gg with color c1i and all the edges of fuyi : u 2
fx; y; z; x1; y1; x2; y2; . . .; xi�1; yi�1gg with color c2i. If n is even, color all edges of

fuw : u 2 VðKn � wÞg with a new color. Finally, assign distinct new colors to all

edges of C3 [M. In such a coloring, there is no properly colored K�
4 , and the

number of colors is b3ðn�1Þ
2

c.
The upper bound: We will prove that for any b3n�1

2
c-edge-coloring of Kn, there

is a properly colored K�
4 by induction on n. The base case n ¼ 4 is trivial. For n� 5,

assume that the conclusion holds for order less than n. Let c be a 3n�1
2

� �
-edge-

coloring of Kn. If there is a vertex v such that dcðvÞ� 1, then

jCðKn � vÞj� 3n�1
2

� �
� 1� 3ðn�1Þ�1

2

j k
, and there is a properly colored K�

4 in Kn �
v by the induction hypothesis. We may assume that dcðvÞ� 2 for all v 2 VðKnÞ. Let
G be the weak representing subgraph of Kn. By (1.5), we have

jEðGÞj � 2n� 3n�1
2

� �
¼ nþ1

2

� 
, which implies there is a path P3 ¼ xyz in G. By

the construction of G, if e ¼ uv 2 EðGÞ, the c(e) is starred at u and v. We consider

the following two cases.
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Case 1. xz 62 EðGÞ.
In this case, c(xz) is not starred at x or z, say x. Since dcðxÞ� 2, there is a vertex

w 62 fx; y; zg such that c(xw) is starred at x. Then cðxzÞ; cðywÞ 62
fcðxyÞ; cðyzÞ; cðxwÞg and the edge set fxy; yz; xz; xw; ywg induces a properly

colored K�
4 .

Case 2. xz 2 EðGÞ.
In this case, we can assume cðuxÞ ¼ cðuyÞ ¼ cðuzÞ for all u 2 VðKnÞnfx; y; zg;

otherwise we easily have a properly colored copy of K�
4 in Kn½x; y; z; u�. Thus we

have

jCðKn � fx; ygÞj � 3n� 1

2

� 	
� 3 ¼ 3ðn� 2Þ � 1

2

� 	
:

If n ¼ 5, then 3 ¼ jEðK5 � fx; ygÞj � jCðK5 � fx; ygÞj � 4, a contradiction. Thus we

may assume that n� 6, there is a properly colored K�
4 in Kn � fx; yg by the

induction hypothesis. h

Now we prove the lower bound and upper bound of prðKn;K2;3Þ. We conjecture

that the exact value is closer to the lower bound.

Theorem 7 For n� 5, 7
4
nþ Oð1Þ� prðKn;K2;3Þ� 2n� 1:

Proof The lower bound: Let n ¼ 4k þ r, where 1� r� 4. Set VðKnÞ ¼ V1 [ � � � [
Vk [ Vkþ1 such that Vi \ Vj ¼ ; for i 6¼ j, jVij ¼ 4 for 1� i� k and jVkþ1j ¼ r. We

color the edges with end-vertices in the same set with 6k þ r
2

� �
distinct colors and

color the remaining edges with k addition colors c1; c2; . . .; ck such that all edges

between Vi and Vj are colored with cminfi;jg, where i 6¼ j. The total number of colors

is 7
4
nþ Oð1Þ and there is no properly colored K2;3.

The upper bound: We will prove that for any 2n edge-coloring of Kn, there is a

properly colored K2;3 by induction on n. The base case n ¼ 5 is trivial. For n� 6,

assume that the conclusion holds for order less than n. Let c be a 2n-edge-coloring
of Kn. If there is a vertex v such that dcðvÞ� 2, then jCðKn � vÞj � 2n� 2 and there

is a properly colored K2;3 in Kn � v by the induction hypothesis. We may assume

that dcðvÞ� 3 for all v 2 VðKnÞ. Let G be the weak representing subgraph of Kn. By

(1.5), we have jEðGÞj � 3n� 2n ¼ n: Note that for n� 4; exðn;P4Þ� n and the

equality holds for the graph of disjoint copies of C3 (see [5]). So we will consider

the following two cases.

Case 1. G contains a P4 ¼ xyzw.
If G½VðP4Þ� ffi K4, then we can assume cðuxÞ ¼ cðuyÞ ¼ cðuzÞ ¼ cðuwÞ for all

u 2 VðKnÞnfx; y; z;wg; otherwise we easily have a properly colored copy of K2;3.

Therefore

jCðKn � fx; y; zgÞj � 2n� 6 ¼ 2ðn� 3Þ:

If n ¼ 6, then 3 ¼ jEðK6 � fx; y; zgÞj � jCðK6 � fx; y; zgÞj � 6, a contradiction. If

n ¼ 7, then 6 ¼ jEðK6 � fx; y; zgÞj � jCðK6 � fx; y; zgÞj � 8, a contradiction. Thus

we may assume that n� 8, there is a properly colored K2;3 in Kn � fx; y; zg by the
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induction hypothesis.

Now we consider the case G½VðP4Þ� 6ffi K4. Since dcðxÞ� 3 and dcðwÞ� 3, there

is a vertex u 2 VðKnÞnfx; y; z;wg such that c(xu) or c(wu), say c(xu) is starred at x
and cðxuÞ 62 fcðxyÞ; cðxwÞg. Therefore, the edges between fx; zg and fy; u;wg
induce a properly colored K2;3.

Case 2. G is the graph of disjoint copies of C3.

Let T1 ¼ xyzx be a triangle of G. Since dcðxÞ� 3, there is a vertex u 2
VðKnÞnfx; y; zg such that c(xu) is starred at x and cðxuÞ 62 fcðxyÞ; cðxzÞg. Suppose u
belong to the triangle T2 ¼ uvwu of G. Therefore, the edges between fy; ug and

fx; z; vg induce a properly colored K2;3.

h

6 Conclusion

In this paper, we obtain the relationship of prðKn;GÞ and exðn;G0Þ by Theorem 2.

We also determine the value of prðKn;GÞ for some small graphs. Since the lower

bound of prðKn;CkÞ is very similar to the paths, we expect that the idea of the proof

of Theorem 3 would be helpful to prove Conjecture 2 for large n.
Another interesting open problem is determining the behavior of prðKn;K4Þ:

Theorem 1 shows that prðKn;K4Þ ¼ oðn2Þ and Theorem 2 shows that

prðKn;K4Þ� exðn;C4Þ þ 1. Since exðn;C4Þ ¼ 1
2
n3=2 þ oðn3=2Þ (See [4, 6]), one

can prove that prðKn;K4Þ ¼ Oðn3=2Þ. The main idea is that for an edge-coloring of

Kn, if the weak representing subgraph contains a C4, then there exists a properly

colored K4 in Kn.
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