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Abstract

Let pr(K,, G) be the maximum number of colors in an edge-coloring of K, with no
properly colored copy of G. For a family F of graphs, let ex(n, ) be the maximum
number of edges in a graph G on n vertices which does not contain any graphs in F
as subgraphs. In this paper, we show that pr(K,,G) —ex(n,G') = o(n?), where
G ={G —M : M is a matching of G}. Furthermore, we determine the value of
pr(K,, P;) for sufficiently large n and the exact value of pr(K,, G), where G is Cs, Cq
and K, , respectively. Also, we give an upper bound and a lower bound of
pl"(Kv,,7 K2,3).
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1 Introduction

We call a subgraph of an edge-colored graph rainbow, if all of its edges have
different colors. While a subgraph is called properly colored (also can be called
locally rainbow), if any two adjacent edges receive different colors. The anti-
Ramsey number of a graph G in a complete graph K,, denoted by ar(K,, G), is the
maximum number of colors in an edge-coloring of K,, with no rainbow copy of G.
Namely, ar(K,,G) + 1 is the minimum number k of colors such that any k-edge-
coloring of K, contains a rainbow copy of G. In this paper, we let pr(K,, G) be the
maximum number of colors in an edge-coloring of K,, with no properly colored copy
of G. Namely, pr(K,, G) + 1 is the minimum number & of colors such that any k-
edge-coloring of K, contains a properly colored copy of G.

Given a family F of graphs, we call a graph G an F-free graph, if G contains no
graph in F as a subgraph. The Turdn number ex(n,F) is the maximum number of
edges in a graph G on n vertices which is F-free. Such a graph G is called an
extremal graph, and the set of extremal graphs is denoted by EX(n,F). The
celebrated result of Erdos-Stone-Simonovits Theorem [7, 9] states that for any F we
have

ex(n, F) = (;]+o(1)>n2 (1.1)
) 21) )
where p = W(F) = min{y(F) : F € F} — 1, is the subchromatic number.

The anti-Ramsey number was introduced by Erdds, Simonovits and Sés in [8].
There they showed that ar(K,,G) >ex(n,G) + 1, where G={G —e:e € E(G)}
and by (1.1), they showed that ar(K,, G) = (41 + o(1))n?, where d = ¥(G). This
determined ar(K,,G) asymptotically when W(G) >2. In the case W(G) = 1, the
situation is more complex. Already the cases when G is a tree or a cycle are
nontrival. For a path P, on k vertices, Simonovits and Sés [20] proved

ar(K,, Pari34e) = tn — (t—; 1) + 1 + ¢, for large n, where ¢ = 0 or 1. Jiang [11]

showed ar(K,, K1) = LMJ + [;=573) or possibly this value plus one if certain
conditions hold. For a general tree 7 of k edges, Jiang and West [12] proved
2152 + 0(1) <ar(K,,T)<ex(n,T) for n>2k and conjectured that
ar(K,,T) < *2n+ O(1). For cycles, Erdés, Simonovits and S6s [8] conjectured
that for every fixed k>3, ar(K,, Cx) = (552 + 25)n + O(1), and proved that for
k = 3. Alon [1] proved this conjecture for k = 4 and gave some upper bounds for
k >5. Finally, Montellano-Ballesteros and Neumann-Lara [18] completely proved

this conjecture, that is, forn >k >3 and n = ri(mod (k — 1)), where 0 <r; <k — 2,

ar(Ky, Cy) = {£—1J<k;1>+<r2k>+ [ 2]t (1.2)

For cliques, Erd6s, Simonovits and Sés [8] showed ar(K,,, K,+1) = ex(n, K},) + 1 for
p >3 and sufficiently large n. Montellano-Ballesteros and Neumann-Lara [17] and
independently Schiermeyer [19] showed that ar(K,, K,+1) = ex(n, K,,) + 1 holds for
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every n > p > 3. For complete bipartite graphs, Axenovich and Jiang [2] showed that
ar(K,, K>,) = ex(n,Ka,_1) + O(n), where t >2. Krop and York [13] showed that
ar(K,, K;) = ex(n,Ks4—1) + O(n), where t>s>2. Also, there are many other
results about anti-Ramsey numbers. We mention the excellent survey by Fujita,
Magnant and Ozeki [10] for more conclusions on this topic.

The maximum number of colors in an edge-colored complete graph without some
properly colored subgraphs was first studied by Manoussakis, Spyratos, Tuza and
Voigt in [15]. For cliques, they [15] obtained the approximate value of pr(K,, K;).

Theorem 1 [15] For t>3, let b = {%J, we have pr(K,,K;) = (bz;lero(l))nz.

n—3

For paths and cycles, they [15] showed that pr(K,, P,) = ( )

) + 1 for large

n and pr(K,,C,) = (n; l) + 1. Also, they gave a conjecture about cycles as
follows.

Conjecture 1 [15] Let n > 1> 4. Assume that K, is colored with at least k colors,
where

1 102 — 6/ — 18
“Il+1 —I41,ifn< —— -2,
. 2(+ J+n—I1+1,if n< 6i—3)
)1 1 102 — 6/ — 18
Sin——I(43)+2,ifn>—— °
i =gl 3) 42,02 =g

then K, admits a properly colored cycle of length [ + 1.

In this paper, we generalize Theorem 1 to an arbitrary graph G which shows that
pr(K,, G) is related to the Turan number like the anti-Ramsey number.

Theorem 2 Let G be a graph and G = {G — M : M is a matching of G}, then
pr(K,,G) >ex(n,G') + 1 and pr(K,,G) = (5t + o(1))n?, where d = ¥(G)).

We will prove Theorem 2 in Sect. 2 by the method used in the proof of
Theorem 1 in [15]. Theorem 2 determines pr(K,,G) asymptotically when
W(G') > 2. As the anti-Ramsey number, the case ¥(G') = 1 is more complex.

In Sect. 3, we will determine pr(K,,P;) for large n by proving the following
theorem.

Theorem 3 Let P; be a path on I vertices and | = r;(mod 3), where 0 <r; <2. For
n>2B, we have

pr(KmPl)

Il
7N
—_—
W ~
| I
|
—
~_
S
|
—_—
N W
| S
+
—_
+
=

For cycles, we slightly improve the lower bound of Conjecture 1 (See
Proposition 4). Also, We modify Conjecture 1 as follows.
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Conjecture 2 Let Cy be a cycle on k vertices and (k — 1) = r—;(mod 3), where
0<r_1<L2 Forn>k,

k—1

pr(Kn,Ck)—maX{<k;1> +n—k+1, {kg—lJn— ({3J +1> +1+rk1}.
2

It is easy to see that pr(K,, C3) = ar(K,, C3) = n — 1. Also, by Proposition 4 and
(1.2), one can check that for n > 3,

pr(Kp, C) = ar(K,, Cy) = <”; 1) i1, (1.3)

n—1
pr(K,i1,Cp) = ar(K,41,C,) = ( 5 ) + 2. (1.4)

Li, Broersma and Zhang [14], and later Xu, Magnant and Zhang [21] showed that
for n >4, pr(K,, C4) = n. We obtain the exact value of pr(K,, Cs) and pr(K,, Cs) in
Sect. 4.

Theorem 4 For n>5, pr(K,,Cs) = n+ 2.
Theorem 5 For n>6, pr(K,,Cs) =n+5.

Let K, be the diamond, the graph obtained from K; by deleting an edge. We
obtain the exact value of pr(K,, K; ) in Sect. 5.

Theorem 6 For n>3, pr(K,,K, ) = {@J

We also give a lower bound and an upper bound of pr(K,, K>3) in Section 5.
Theorem 7 For n>5, %n +0(1) <pr(K,,Kr3) <2n— 1.

Notations: Let G be a simple undirected graph. For x € V(G), we denote the
neighborhood and the degree of x in G by Ng(x) and dg(x), respectively. The
maximum degree of G is denoted by A(G). The common neighborhood of U C
V(G) is the set of vertices in V(G)\U that are adjacent to each vertex of U. We will
use G — x to denote the graph that arises from G by deleting the vertex x € V(G).
For a vertex set X C V(G), G[X] is the subgraph of G induced by X and G — X is the
subgraph of G induced by V(G)\X. Given a graph G = (V,E), for any (not
necessarily disjoint) vertex sets A,BCV, we let
EG(A,B) := {uv € E(G)|u # v,u € A,v € B}. We use G to denote the complement
of G. Given two vertex disjoint graphs G| and G, we denote by G| + G, the join of
graphs G and Gy, that is the graph obtained from G; U G, by joining each vertex of
G, with each vertex of G,.

Given an edge-coloring ¢ of K,,, we denote the color of an edge uv by c(uv). For
any vetex v € V(G), let C(v) := {c(vw) : w € V(K,,)\{v}} and d.(v) := |C(v)]. A
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color a is starred (at x) if all the edges with color a induce a star K , (centered at the
vertex x). We let d°(v) = [{a € C(v) : a is starred at v}|. For a subgraph H of G, we
denote C(H) = {c(uv) : uv € E(H)}. A representing subgraph of an edge-colored
K, is a spanning subgraph containing exactly one edge of each color. The weak
representing subgraph of an edge-colored K, is consisting of all the edges whose
color appears only once in K,,. Note that an edge xy is the unique edge with color a
in K, if and only if the color a is stared at both x and y. Thus, if G is the weak
representing subgraph of an edge-colored K, then we have

E(G)|> Y d(v) = |C(Ky)|- (L.5)

veV(K,)

2 The Proof of Theorem 2

In this section, we will prove Theorem 2 by a similar argument used in the proof of
Theorem 1 in [15].

Theorem 2 Let G be a graph and G = {G — M : M is a matching of G}, then
pr(K,, G) >ex(n,G) + 1 and pr(K,,G) = (&L + o(1))n?, where d = ¥(G).

Proof Let F be a graph in EX(n,G'). We color the edges of K,, as follows. Take a
subgraph F of K,,, and assign distinct colors to all of E(F) and a new color ¢ to all
the remaining edges. Suppose there is a properly colored G, then M = {e €
E(G),e is colored with ¢} is a matching of G, and G — M C F. By the definition
of G, we have G — M € @, and this is a contradiction with F being G'-free. Thus we
have pr(K,,G) >ex(n,G') + 1 = (% + o(1))n? by (1.1).

Let Gy = G — M, where M), is a p-matching of G and x(Go) = d + 1. We prove
that for every fixed ¢ > 0, and for n large enough with respect to ng = |V(G)| and ¢,
there is a properly colored copy of G in any (‘12;011 + &)n*-edge-coloring of K,,. In a
representing subgraph of K,, with (% + ¢)n® edges, for an arbitrarily fixed s, and for
n sufficiently large, by (1.1), there exists a complete (d + 1)-partite subgraph K
with s vertices in each class. We take s = 204+

Denote by V the vertex set of K, and by Vi, Vs, ..., Vgy its vertex classes.
We apply the following procedure.

For each i = 1,2,...,d 4+ 1 do sequentially the following:

,,,,,

(1) Select arbitrarily 2"*4*1=1 pairwise disjoint pairs {u, vy} in Vi
j=1,2,... 2mFdtl=i

(2) Forj=1,2,...,20++ 1= delete from K., the (at most one) vertex z €
V\V; for which either c(zu;) = c(u;v;) or c(zvy) = c(uyvy), and if z has
already been selected in a previous pair {uy;, vy}, for some i’ <i, then also
delete the other member of its pair.

Claim 1 The above procedure can be executed smoothly and there are at least 2™
pairs remains undeleted in each V; at the end of the execution.
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The Proof of Claim 1 In the beginning, each V; contains 2%+l vertices,
i=1,2,...,d+ 1. In the first iteration, i = 1, we can carry out (1) and (2) easily.
Suppose we have carried out up to the (i — 1)-st iteration. Before executing the i-th
iteration observe that at most Y, ;27T = 2rordtl _ prord 2ol yertices

have been deleted from V;. Thus, V; contains at least 2t4+2~1 vertices and it is
enough to execute instruction (1) in the ith iteration.

On the other hand, for any i = 1,2,...,d, from the (i + 1)-st iteration up to the
end, due to instructions of type (2), at most Y-, | 4y, 270 4T = 2motdI=
2™ pairs in V; have been deleted and thus at least 2" pairs in V; remains undeleted.
Note also that V| contains 2™ pairs of vertices and there is no deletion of pair in
Vit U

For 1<i<d+1, let {x;y;: 1 <j<2™} be the 2" pairs in V; which remain
undeleted and V] = {x;;,y; : 1 <j<2"}. Let H be the graph obtained by adding the
edge set {x;y;:1<i<d+1,1<j<2"} to the graph K, [ViU---UV, ]

Then H is properly colored by Claim 1. Since Gy = G — M, and %(Gy) = d + 1, we
have H O G. Thus pr(K,, G) < (52 + o(1))n?. O

3 Paths

In this section, we study the maximum number of colors in an edge-colored
complete graph without properly edge-colored paths, and prove Theorem 3. Before
doing so, we determine pr(K,, P;) for some small values of /.

Proposition 1

(@) pr(K,,P3) =1, for n>3.
(b) pr(K,,Ps) =2, for n >4.
(c) pr(Kn,Ps) =3, forn>5.

Proof

(a) The conclusion holds trivially.

(b) Choose a vertex v of K, color all edges incident to v with color ¢; and color
all the remaining edges with color ¢;. We use two colors and there is no
properly colored P4. Hence pr(K,, Ps) > 2.

For n>5, we have pr(K,,Ps)<ar(K,,Ps)=2 (see [3]). For n=4, let
V(K4) = {u,v,x,y}. Given a 3-edge-coloring of K4, there exists at least one edge
in E({u,v},{x,y}), we say wux, such that c¢(ux) # c(uv) and c(ux) # c(xy). Thus
vuxy is a properly colored P4 and pr(K,, P,) <2.

(¢) Choose two vertices u and v of K,,, assign one color c¢; to all edges incident
with u#, one new color ¢, to all edges incident with v (except the edge uv) and
the other new color c¢3 to all the remaining edges. We use three colors and
there is no properly colored Ps. Hence pr(K,, Ps) > 3.
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Let n>5. Given a 4-edge-coloring of K, there is always a rainbow P4 = ujuruzuy
since ar(K,,Ps) =2 (see [3]). Since |C(P4)| =|E(P4)| =3, there is a color
co € C(K,)\C(P4). Suppose there is no properly colored Ps in the 4-edge-coloring
of K, Then for all ue€V(K,)\V(Ps), it must be c(uu)=cl(ujuy),
c(uug) = c(usuy), c(uuy) € {c(uuz), c(upuz)} and c(uuz) € {c(uauz), c(uszuq)}. If
c(uruyg) = co, then uujusuzu; is a properly colored Ps, a contradiction. If ¢(uju3) =
co or c(upug) = co, say c(ujuz) = co, then uguujusuy is a properly colored Ps, a
contradiction. So we may assume that there are two vertices x,y € V(K,)\V(P4)
such that ¢(xy) = co. In this case, ugyxusu; or ugyxupus is a properly colored Ps, a
contradiction. Hence pr(K,, Ps) <3. O

Here, we give the lower bound of pr(K,, P;) by the following proposition.

Proposition 2 Let P; be a path on [ vertices and | = ri(mod 3), where 0<r; <2.
For n>1 we have

l

ity maxd (152 1 ([ - o= () 41

2

Proof We color the edges of K,, as follows. For the first lower bound, we choose a
K;_3 and color it rainbow, and use one extra color for all the remaining edges. In

such way, we use exactly (Z -3 ) + 1 colors and do not obtain a properly colored

2
P;.

For the second lower bound, we partition K, into two graphs K -1+ Kl,g |41
and K141 First we color LI KF%HI rainbow. Then we color K, 14 by
(1 4+ r;) new colors without producing a properly colored Ps.,, (See the proof of

/

Proposition 3.1). In such way, we use exactly (Lﬂ — l)n — EJ +14+n
2

colors and do not obtain a properly colored P;. O

The proof of the following proposition is trivial. We will use it to prove
Theorem 3.

Proposition 3 Let P; be a path with [ vertices, and I = r;(mod 3), where 0 <r; <2.
If an edge-colored K,, contains a rainbow copy of KL%J*LZHJH but does not contain
a properly colored P;. We denote by Q the vertices of K,, — KL%j—l,ZLéJ-H’ by X the
smaller class of K|y, 1,3 and by Y the other one. Then |C(K,[Y])| <1+ r.
Furthermore, we have |C(K,[Y]) UC(Ek,(Y,0)| <14n and
|C(K,[YUQ])| <1+ r. We get the most colors if the colors of all the edges
between X and Y U Q and all the edges in X are different, they differ from all the
other edges and we use exactly 1 4 r; colors in Y U Q such that there is no properly

colored P3.,, in Y U Q. Then the number of colors is
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U, U, Us

Fig. 1 The structure of graph G

l

(1) (B} +14m

2

Now, we will prove Theorem 3, and the idea comes from [20] (Fig. 1).

Theorem 3 Let P; be a path on [ vertices and | = r;(mod 3), where 0 <r; <2. For
n>28, we have
l

pr(KrHPl) J +1+r.

I
/N
—
W ~
| I
|
—_
"
S
|
—
N W

Proof We just need prove the upper bound for /> 6. We shall use the following
famous results of Erdos and Gallai (see [5]): for n>r>2,

\S]

(3.1)

r—
n

P)< ,
ex(n, ) <

r(n—l).

. (3.2)

ex(na {Cr+1 ) Cr+27 .. }) S

Let ¢ be an edge-coloring of K, using pr(K,, P;) colors without producing a properly
colored P;. Take a longest properly colored path P; = viv; - --v,, where s <[ — 1.
Denote by G the graph obtained by choosing one edge from each remaining color
such that the number of edges joining Py to the remaining n — s vertices is as large
as possible. We would partition V(G)\V(P;) into three sets U;, U, and U; as
follows:

(a) U is the vertex set of V(K,)\V(Ps) not jointed to Py at all: neither by edges
nor by paths;
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(b) U, is the set of isolated vertices of V(K,)\V(P;) jointed to P, by edges;
©) Us=V(EK)\V(P,)UU UU,).

Claim 1 For any vertex uc Uy UU,UUs, we have c(uvi) = c(viva) and
c(uvy) = c(vs_1vs). Moreover, Eg(Uy U Uz, {vi,v2,vs_1,v5}) = 0.

Proof of Claim 1 1t is obvious that c¢(uvy) = ¢(viv2) and c(uvy) = c(vs_1vs) for any
vertex u€ U UU,UU; by the maximality of P, thus we have
Eg(Uy U Us, {vi,vs}) = (. Suppose that there is a vertex u € U, U Us such that
uvy € E(G) or uvs_y € E(G), we say uv, € E(G). Notice that c(uv) = c(viv2) #
c(uvy) by the definition of G, it follows that viuv; - - - vy is a properly colored path of
order s + 1, a contradiction to the maximality of P;. O

Claim 2 G[U] contains no P\y.

Proof of Claim 2 Suppose P|s| = uuz. . .u|5) is a path in G[U;]. By the definition of
G, the colors of C(G[U,]) can not appear in any edges between U; and V(Py). Thus,
c(uvyy) # clmuz), c(upgvi) # c(ugupsy—1) and c(uyvs) # c(upsus ). Since
c(vs lvm) # (v ]+1) at most one of ¢(vpy_1vys)) and ¢(vsvys41) is the same

as (M[ﬁ“ H)' So at least one of wiva...vpjuiuy...u5 vy and
VsVs—1. . V[g|UIUD. . U3 V] is a properly colored path of order at least s+ 1, a
contradlctlon to the maximality of P;. Hence, G[U,] contains no P|y. O

By Claim 2 and (3.1), we have

i< (5] -2)wi< (5|5 -1 )wl 6

Claim 3 For any vertex u € Uy UU; and any three consecutive vertices
Vi, Vi1, Visa € V(Ps), we have |Eg(u, {vi,vit1,vis2})| < 1.

Proof of Claim 3 Suppose there exist a vertex u € U, U Uz and three consecutive
vertices Vi, Vii1,vita € V(P;) such that |[Eg(u, {vi,vis1,viz2})| > 2, that is at least
two of uv;, uvii1,uvii, are edges of G, then whatever c(vv;) is, at least one of
Vi.. VillVigVisa. . Vg and vi.. Vv uviis. . Vs 1S a properly colored path of order
s+ 1, a contradiction to the maximality of P,. [

By Claims 1 and 3, we have |Eg(u, P,)| < [5*] < [53] = [4] — L forall u € U,.

Eo(vs.Pl< ([5] - 1)l (3.4

Let H be any component of G[U3] and r be the length of the longest cycle in H. If H
contains no cycles, then we write r = 2. By (3.2), we have

Thus, we have
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rlVH)| - r
5 :

Now we will estimate the number of edges between V(H) and V(P;) in G by the
following two claims.

[E(H)| < (3-5)

Claim 4 For any vertex u € V(H), we have

EG(M7 {Vl, sy Vordly Vs—2ry - - oy vs}) = @ (36)

Proof of Claim 4 Since H is connected and the length of the longest cycle in H is r,
we can always find a path P, C H starting from u in H. Let P, = uju,. . .u, be such a
path, where u#; = u. By an argument very similar to the one in Claim 1, we have
Eg(u,{vi,. .y Vrs1,Vs—ry ..., vs ) = 0. By the symmetry, we just need to show that
there is no edge between u and {v,,2, ..., va11 }. If there exists v; € {v,12,...,v2,}
such that uv; € E(G), we have i>r+2>4. By the definition of G, we have
c(uvsy) # c(ur—1uy). Since (v _yviy) # (Vg vig41), at most one of c(vis_;v i)
and c(vyvyyy) is the same as c(uvy). Thus at least one of
VIV2e o Vg Uy U ViVig s - Vs and v, (v .. V0ijUse - UViVig1- . Vs is a properly
colored path of order at least s 4+ 1, a contradiction to the maximality of P;. If
uvy,11 € E(G), then we have c(uvyy) # c(Varvarsn)s otherwise
VIVy -+ VUV Varsa - - - Vg 1S @ properly colored path of order s + 1, a contradiction
to the maximality of P,. Also, we have c(uvy,) # c(uuy). By an argument similar to
the above, one can find a properly colored path of order at least s+ 1, a
contradiction to the maximality of P;. O

Claim 5 For any six consecutive vertices Vi, Vi1, Viia, Vit3, Vita, Virs € V(Ps), all
edges between {v;,vii1,Vi12,Vi3,Vita, Viys} and V(H) of G induce a star.

Proof of Claim 5 1If not, suppose xv; and yv; are two independent edges between
V(H) and {v;, Vi1, Vii2,Vit3,Visa, Vigsp in G, where x,y € V(H) and
je{i+1,i+2,i+3,i+4,i+5}. Let P, be a path of H which connect x and
y. If je{i+1,i+2,i+3}, then whatever c(xv;1;) is, at least one of
Vi..Vixvigr oo v and vi.. vy (XPyyv;. . vg is a prorperly colored path of order
at least s + 1, a contradiction to the maximality of P,. If j =i+ 4, then we have
c(xviys) = c(Vigavies) and c(yvit1) = c(viz1vig2), otherwise,
VIVa. . Vig3XPyyVigsa. . Vg Or viva. . Vi1 YPyxviys. . vy is a properly colored path
of order at least s+ 2, a contradiction to the maximality of P,. It follows that
Vi..Vig1YPyxvips. . v is a properly colored path of order at least s+ 1, a
contradiction to the maximality of P;. If j =i+ 5, by a similar argument of the

former case, we have c(xvizs) = c(yvita) = c(vigavies) and
ViVa. . VigoyPyxvigs. . .vg is a properly colored path of order at least s+ 2, a
contradiction to the maximality of P;. O
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By Claim 3, for any six consecutive vertices v;, Vi1, Vit2, Vi+3, Vitd, Virs € V(Py)
and any vertex u € V(H), we have |Eg(u, {vi, Vit1, Vii2, Vi+3, Vitd, Vits })| < 2. Thus,
by Claim 5, we have

|E(V(H), {vis Vit viea, Vies, Vies, vies D) < max{2, [V(H)[} < |V(H)|.  (3.7)
Combining (3.6) and (3.7), we have

otV vieo) < [*=2E v (38
Combining (3.5) and (3.8), we have
otV v(e))| + ot < [“=2CE 4 T

< (=225 wan
(

< (=52 v

The last inequality holds since r>2. Note that |Eg(V(H),V(Py))|+
|E(H)| < [55]|V(H)| holds for each component H of G[U3]. Thus, we have

-1 [-2
Eo(vs, Pl + Bl < | [l < |2 el 39)
By (3.3), (3.4) and (3.9), we have

pr(Ky, Pr) = |C(K,)| <[C(Py)| + |E(G)]

s<;>+4E«ﬂumn+-Edubpor+wbahivl+““G“”>

< (5) G- e (4o 2o

Note that § |5 — 1< |4 =1 =1 for i>6 and [Z2] <[] =11 for all 1>12.

When [ <11, we have s <10, by Claim 4, U3 = . Let U* = {u € U, : dg(u) =
|4| = 1}. Then we have

pr(Ky, 1) < (;) + (EJ —1 —%) (n—s—|U|)+ (EJ - 1>|U*|. (3.10)

Since n > 2P, by Proposition 2, we have

@ Springer



2298 Graphs and Combinatorics (2021) 37:2287-2304

l
/ e
wiory (|4 - (W) o1en 6
2
Combining (3.10) and (3.11), since n > 283, we have |U*| > B. By Claims 1 and 3,
I
s—4=-2(z]-1-1)
there are at most ) 3 distinct (|£] — 1)-subset of V(P;) can
lz) -1
3

be the neighborhood of some vertex in U*. Since s </ —1and 6 <I<3 L%J + 2, we
have

s—4—2(L§J—1—1) 1—1—2L§J § L§J+1 (L£J+1) r

[ l - [
511 511 51 -1
Note that |U*| > > £(2[4] +3), by Pigeonhole Principle, U* contains at least
2[4] + 3 vertices which have a common neighborhood of size [£] — 1 in G. That is,

we find a rainbow K1, 51 13. By Proposition 3, the proof is complete.

O

4 Cycles

The lower bound of pr(K,, C;) was given roughly by Manoussakis, Spyratos, Tuza
and Voigt in [15]. Here we prove the lower bound precisely again.

Proposition 4 Let Cy be a cycle on k vertices and (k — 1) = ry_1(mod 3), where
0<r,_1 <2 Forn>k,

k—1

k—1 — A
pr(Kn,Ck)zmax{< 5 )+n—k+1,v31Jn_(L 3 J+1>+1+rk1}.

2

Proof We color the edges of K,, as follows. For the first lower bound, we choose a
Ki—1 and color it rainbow, and use one extra color for all the remaining edges. In

k —
such way, we use exactly ’

! ) + 1 colors and do not obtain a properly colored
Cy.

For the second lower bound, we partition K,, into two graphs K 1) + Fn*[% | and
K, |1). First we color Ky + fnﬂ% | rainbow. Then we color K, |1 by (1+
rk—1) new colors without producing a properly colored Ps.,,_, (See the proof of
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k—1
Proposition 3.1). In such way, we use exactly [451]n — < | 3 I+ 1) + 1+ ey
2

colors and do not obtain a properly colored Cj. U

Conjecture 3 Let Cy be a cycle on k vertices and (k — 1) = r—;(mod 3), where
0<r,_1 <2 Forn>k,

k—1
k—1 k—1 -
pr(K,, Cy) = max < 5 )+n—k+l7t 3 Jn—(\‘ 3 J+1)+1—|—rk1

2

Now we prove Conjecture 2 holds for Cs and Cg, respectively.
Theorem 4 Forn>5, pr(K,,Cs) =n+2.

Proof By Proposition 4, we have pr(K,,Cs)>n+2 for n>5. We will prove
pr(K,, Cs) <n+ 2 by induction on n. The base cases n = 5 and n = 6 follow from
(1.3) and (1.4), respectively. For n > 7, assume that the conclusion holds for order
less than n. Let ¢ be an (n 4 3)-edge-coloring of K. If there is a vertex v such that
d°(v)<1, then |C(K, —Vv)|>n+3—1=(n—1)+3 and there is a properly
colored Cs by the induction hypothesis. Thus we assume that d¢(v) >2, for all
v € V(K,). Let G be the weak representing subgraph of K,. By (1.5), we have
|E(G)| >2n — (n+3) =n —3>4. Thus, G contains a 2-matching. Let {xy,zw} be
a 2-matching of G. Choose a vertex u € V(K,)\{x,y,z,w}. We consider the
following two cases.

Case 1. There are at least two edges of {ux, uy, uz,uw} are colored with distinct
colors.

In this case, there are at least one edge of {ux,uy}, we say ux, and at least one
edge of {uz,uw}, we say uz, such that c(ux) # c(uz). By the definition of G, we
have c(ux) # c(xy), c(uz) # c(zw) and c(xy) # c(yw) # c(zw). Thus, uxywzu is a
properly colored Cs.

Case 2. The four edges ux, uy, uz and uw are colored with the same color.

If c(ux) is starred at u, since d°(u)>2, there exists a vertex v €
V(K,)\{x,y,z,w,u} such that c(uv) is starred at u and c(uv) # c(ux). Also, we
have c(ux) # c(xz) # c(zw) and c(zw) # c(vw) # c(uv). Thus, uxzwvu is a properly
colored Cs. If c(ux) is not starred at u, since d(u)>2, there exists two vertices
vi,v2 € V(K,)\{x,y,z,w,u} such that c(uv,) and c(uv,) are starred at u and
c(uvy) # c(uvy). Also, we have c(uvy) # c(vix) # c(xy) and
c(uvz) # c(vaz) # c(xy). Thus, uvixyvau is a properly colored Cs.

O

For Cg, we consider more cases to prove it.

Theorem 5 For n>6, pr(K,,Cs) =n+5.
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Proof By Proposition 4, we have pr(K,,Cs) >n+5 for n>6. We will prove
pr(K,, Cs) <n + 5 by induction on n. The base cases n = 6 and n = 7 follow from
(1.3) and (1.4), respectively. For n > 8, assume that the conclusion holds for order
less than n. Let ¢ be an (n + 6)-edge-coloring of K,,. If there is a vertex v such that
d°(v)<1, then |C(K, —Vv)|>n+6—1=(n—1)+6 and there is a properly
colored Cg by the induction hypothesis. Thus we assume that d°(v) >2 for all
v € V(K,). Let G be the weak representing subgraph of K,. By (1.5), we have
|E(G)|>2n—(n+6)=n—6>2.

Case 1. A(G) >2.

In this case, G contains a path of order 3. Let P3 = xyz be such a path of G and
U = V(K,)\{x,y,z}. Let H be a subgraph K, obtained by choosing one edge from
the colors which are starred at some vertex of U such that the number of edges
between {x,y,z} and U is as large as possible.

Case 1.1 |[E(H[U])| >2.

Let ujup, vivy € E(H[U)). If ujuy and viv, have a common end vertex, we say
uy = vy, then c(xuy) # c(uyvy) and c(zv2) # c¢(viv2) by the choice of H. Thus
xyzvaviuix is a properly colored Cg. Now we may assume that {ujup,viv,} is a 2-
matching of H. Assume that c(ujup) and c(viv,) are starred at u; and v
respectively. Thus c(uyv,) # c(ujuz) and c(uav2) # c(viv2). By the choice of H, we
have c(xuy) # c(ujup) and c(yvy) # c¢(viv2). Thus, xyvivaupuix is a properly
colored Cg.

Case 1.2 |[E(H[U))| = 1.

Assume uv € E(H[U]) and c(uv) is starred at u. Then we have c(xu) # c(uv).
Also, c(vz) # c(uv). Take a vertex w € U\{u,v}. Since d°(w)>2, we have
|En(w, {x,y,2})| > 2. There is at least one of {x, z}, say x, such that c(wx) is starred
at w and c(wx) # c(wy). Also, we have ¢(wx) # c(ux). Thus wxuvzyw is a properly
colored Cg.

Case 1.3 E(H[U]) = 0.

For all v e U, since d°(v)>2, we have |Egy(v,{x,y,z})|>2. Notice that
|U| >n —3>5. If there are three vertices in U, say u;,u,u3 € U, such that they
have a common neighborhood {x,z} in H, then at least one of {ux,u,z}, say ux,
such that c(u;y) # c(u1x). Also, at most one edge of {uox,urz, usx,u3z} has the
same color as ¢(upu3). Thus, at least one of xu;yzusuyx and xu;yzuusx is a properly
colored Cg.

Now we may assume that there are at least two vertices in U, say uj, u,, such that
they have a common neighborhood {x,y} or {y,z} in H, say {x,y}. If there is a
vertex uz € U\{uj,up} such that wusy,usz€ E(H), we have c(zx)¢
{c(xuy), c(xuz), c(zus3)} and at most one edge of {u;x,u1y, usx,usy} has the same
color as c(ujuy). Thus, at least one of xujupyuszx and xupuyyuszzx is a properly
colored Cg. If there is a vertex uz € U\{uj,u;} such that usx,usz € E(H), at least
one of xujupyzusx and xupu;yzusx is a properly colored Cg. Now we may assume
that U has a common neighborhood {x,y} in H. Take four distinct vertices
uy, Uy, uz, uy € U. At most one edge of {u1x,u1y, urx, upy} has the same color as
c(uruy) and at most one edge of {usx, usy, usx, usy} has the same color as c(uzug).
Thus the graph induced by the edges set {ujuy, uzuq, xu;, yu; : 1 <i <4} contains a a
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properly colored Cs.

Case 2. A(G) = 1.

Note that if G has three independent edges, then we can find a properly colored
Ce. Recall that |[E(G)| > n — 6 > 2. Now we may assume that n = 8 and |E(G)| = 2.
Let E(G) = {xy,zw} and U = V(Kg)\{x,y,z, w} = {u1, ua, u3,us}.

Case 2.1 There is an edge w;u; such that c(u;u;) is starred at u;, say c(ujuz) is
starred at u;.

If there is one vertex in {x,y,z,w}, say x, such that c(u;x) # c(ujuz), then
uyxyzwup iy is a properly colored Cq. We assume that c(u1x) = c(uyy) = c(u1z) =
c(uyw) = c(uuz). Since d°(uy) > 2, we can assume that c(uu3) is starred at u; and
c(uyusz) # c(ujup). Thus uxyzwusuy is a properly colored Ce.

Case 2.2 For all edge uuj, c(u;u;) is not starred at u; or u;.

Since d°(u;)>2 and d(up) >2, we can find two distinct vertices vy, v, €
{x,y,z,w} such that c¢(u;vy) is starred at u; and c(uyv,) is starred at u,. If vi = x and
v, =y, then ujxzwyupu; is a properly colored Cg. If vi =x and v, =z, then
uixywzupu, is a properly colored Cg. O

5 K4_ and Kz,g

In this section, we will prove Theorems 6 and 7. First, we determine the exact value
of pr(K,,K; ).

Theorem 6 For n>4, pr(K,,K, ) = f(nzil)J'

Proof The lower bound: Consider an edge-coloring of K, as follows. Take a
triangle C3 = xyz of K, and a maximum matching M = {x;y;, x2y2, . . "xL%JyL%J}
of K, — {x,y,z}. There is one vertex w in V(K,)\(V(M) U {x,y,z}) when n is even.
For 1<i< L%J, color all the edges of {ux; :u €
{x,¥,2,%1,¥1,%2, 2, - - -, Xi—1,Yi—1 } } With color ¢;; and all the edges of {uy; : u €
{x,y,2,%1,¥1,%2,¥2, - . -, Xi—1, i1} } With color ¢y;. If n is even, color all edges of
{uw : u € V(K, — w)} with a new color. Finally, assign distinct new colors to all
edges of C3 UM. In such a coloring, there is no properly colored K;, and the
number of colors is L@j

The upper bound: We will prove that for any L3”2’ L|-edge-coloring of K,, there
is a properly colored K, by induction on n. The base case n = 4 is trivial. For n > 5,
assume that the conclusion holds for order less than n. Let ¢ be a |32 |-edge-
coloring of K,. If there is a vertex v such that d°(v)<I, then
|C(Ky —v)| > |25 — 1> {%J, and there is a properly colored K, in K, —
v by the induction hypothesis. We may assume that d°(v) >2 for all v € V(K,,). Let
G be the weak representing subgraph of K,. By (1.5), we have
|E(G)| >2n — |2%-1| = [2£L], which implies there is a path P3 =xyz in G. By
the construction of G, if e = uv € E(G), the c(e) is starred at u and v. We consider
the following two cases.
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Case 1. xz € E(G).

In this case, c(xz) is not starred at x or z, say x. Since d°(x) > 2, there is a vertex
w¢ {x,y,z} such that c(xw) is starred at x. Then c(xz),c(yw) &
{c(xy),c(yz),c(xw)} and the edge set {xy,yz,xz,xw,yw} induces a properly
colored K, .

Case 2. xz € E(G).

In this case, we can assume c(ux) = c(uy) = c(uz) for all u € V(K,)\{x,,z2};
otherwise we easily have a properly colored copy of K, in K,[x,y,z,u]. Thus we

have
|C(Ky — {x,y})[ > {3;12— 1J —3= {%J

If n =5, then 3 = |E(Ks — {x,y})| > |C(Ks — {x,y})| >4, a contradiction. Thus we
may assume that n>6, there is a properly colored K; in K, — {x,y} by the
induction hypothesis. O

Now we prove the lower bound and upper bound of pr(K,, K> 3). We conjecture
that the exact value is closer to the lower bound.

Theorem 7 Forn>5, in+ O(1) <pr(K,,K»3) <2n — 1.

Proof The lower bound: Let n = 4k + r, where 1 <r<4.Set V(K,) =V, U---U
ViU Viyy such that Vi NV, = (0 for i #j, |V;] = 4 for 1 <i<k and |Viy| =r. We
r
2
color the remaining edges with k addition colors ¢y, ¢y, ..., c; such that all edges
between V; and V; are colored with cpin(;jy, where i # j. The total number of colors

color the edges with end-vertices in the same set with 6k + ) distinct colors and

is 714+ O(1) and there is no properly colored K 3.

The upper bound: We will prove that for any 2n edge-coloring of K, there is a
properly colored K>3 by induction on n. The base case n = 5 is trivial. For n > 6,
assume that the conclusion holds for order less than n. Let ¢ be a 2n-edge-coloring
of K,,. If there is a vertex v such that d°(v) <2, then |C(K, — v)| > 2n — 2 and there
is a properly colored K53 in K, — v by the induction hypothesis. We may assume
that d°(v) >3 for all v € V(K,,). Let G be the weak representing subgraph of K,,. By
(1.5), we have |E(G)|>3n —2n =n. Note that for n>4,ex(n,Ps) <n and the
equality holds for the graph of disjoint copies of C; (see [5]). So we will consider
the following two cases.

Case 1. G contains a Py = xyzw.

If G[V(P4)] = K4, then we can assume c(ux) = c(uy) = c(uz) = c(uw) for all
u € V(K,)\{x,y,z,w}; otherwise we easily have a properly colored copy of K 3.
Therefore

|C(K, — {x,y,2})| >2n— 6 =2(n — 3).

If n =6, then 3 = |E(Ks — {x,y,2})| > |C(Ks — {x,y,2})| > 6, a contradiction. If
n =717, then 6 = |E(Ks — {x,y,2})| > |C(Ks — {x,y,z})| > 8, a contradiction. Thus
we may assume that n > 8, there is a properly colored K33 in K, — {x,y,z} by the
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induction hypothesis.

Now we consider the case G[V(P4)] 2 K4. Since d°(x) >3 and d°(w) > 3, there
is a vertex u € V(K,)\{x,y,z, w} such that c(xu) or c(wu), say c(xu) is starred at x
and c(xu) € {c(xy),c(xw)}. Therefore, the edges between {x,z} and {y,u,w}
induce a properly colored K5 3.

Case 2. G is the graph of disjoint copies of Cs.

Let T} =xyzx be a triangle of G. Since d(x)>3, there is a vertex u €
V(K,)\{x,y, z} such that c(xu) is starred at x and c(xu) & {c(xy), c(xz)}. Suppose u
belong to the triangle T, = uvwu of G. Therefore, the edges between {y,u} and
{x,z,v} induce a properly colored K> 3.

O

6 Conclusion

In this paper, we obtain the relationship of pr(K,, G) and ex(n,G') by Theorem 2.
We also determine the value of pr(K,, G) for some small graphs. Since the lower
bound of pr(K,, Cy) is very similar to the paths, we expect that the idea of the proof
of Theorem 3 would be helpful to prove Conjecture 2 for large n.

Another interesting open problem is determining the behavior of pr(K,,Ks).
Theorem 1 shows that pr(K,,K;) =o(n*) and Theorem 2 shows that
pr(K,, Ks) >ex(n,Cs) + 1. Since ex(n,Cs) = 1n*? + 0(n*?) (See [4, 6]), one
can prove that pr(K,, K4) = O(n*?). The main idea is that for an edge-coloring of
K,, if the weak representing subgraph contains a Cy4, then there exists a properly
colored K, in K,,.
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