
ar
X

iv
:2

00
4.

09
69

2v
1 

 [
m

at
h.

C
O

] 
 2

1 
A

pr
 2

02
0

MODULAR TERWILLIGER ALGEBRAS OF

ASSOCIATION SCHEMES

AKIHIDE HANAKI

Abstract. We define modular Terwilliger algebras of association
schemes, Terwilliger algebras over a positive characteristic field,
and consider basic properties. We give a condition for the mod-
ular Terwilliger algebra to be non-semisimple. We show that the
dimension of a Terwilliger algebra of a Johnson scheme depends on
the characteristic of the coefficient field. We also give some other
examples.

1. Introduction

In a series of papers [6, 7, 8], P. Terwilliger defined and studied sub-
constituent algebras of commutative association schemes for the theory
of distance regular graphs. Now the algebras are called Terwilliger al-
gebras. Terwilliger algebras are finite-dimensional semisimple algebras
over the complex number field. Since the Terwilliger algebra is de-
fined for an association scheme and a fixed point, we can expect that it
has more combinatorial information than the adjacency algebra. The
Terwilliger algebra is defined as a matrix algebra generated by some
matrices all whose entries are in {0, 1}. Thus, for a commutative ring
R with the identity 1, we can define an R-algebra generated by these
matrices. We call it the Terwilliger algebra over R. Especially, we
call it the modular Terwilliger algebra when R is a field of positive
characteristic.
Let (X,S) be an association scheme, x ∈ X , and K be a field.

We denote by KT (x) the Terwilliger algebra of (X,S) at the point
x over K. If K is of positive characteristic, KT (x) is not necessary
semisimple. A natural question is when it is semisimple. It is known
that the dimension of CT (x) is depending on the choice of the point
x [9]. By example, we can see that the semisimplicity of KT (x) also
depends on the choice of the point x. Thus the question seems to
be difficult, in general. We will give a sufficient condition for KT (x)
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to be non-semisimple in Theorem 4.1, KT (x) is not semisimple if the
characteristic of K divides a valency of some element of S.
In Section 4, we will consider Johnson schemes J(n, 2). Let K be

a field of characteristic p. We will see that the dimension of the Ter-
williger algebra is 16 if p = 0 or p ∤ n − 4 and 15 if p | n − 4. These
examples give a negative answer to Terwilliger’s small question in [8,
Conjecture 10]. In Section 5, we will give some other examples.

2. Preliminaries and definitions

Let X be a finite set, and let R be a commutative ring with the
identity 1. We denote by MX(R) the full matrix ring over R, rows and
columns of whose matrices are indexed by the set X . For sinMX(R),
we denote the transposed matrix of σ by σT .
For s ⊂ X × X , the adjacency matrix σs ∈ MX(Z) is defined by

(σs)xy = 1 if (x, y) ∈ s and 0 otherwise. We often regard σs is in
MX(R) for a suitable R.
For s ⊂ X × X , we set s∗ := {(y, x) | (x, y) ∈ s}. Clearly we have

σs∗ = σT
s . For s ⊂ X×X and x ∈ X , we set xs := {y ∈ X | (x, y) ∈ s}

and sx := {y ∈ X | (y, x) ∈ s}.

2.1. Association schemes. Let X be a finite set, and let X × X =
⋃

s∈S s be a partition of X ×X . We call the pair (X,S) an association
scheme if

(1) 1 := {(x, x) | x ∈ X} ∈ S,
(2) s∗ := {(y, x) | (x, y) ∈ s} ∈ S if s ∈ S,
(3) for s, t, u ∈ S, there is a non-negative integer pust such that

pust = |xs ∩ ty| when (x, y) ∈ u.

The condition (3) means that σsσt =
∑

u∈S p
u
stσu by the usual matrix

multiplication. For s ∈ S, ns := p1ss∗ = |xs| is independent of the
choice of x ∈ X , and we call this number the valency of s.
We say an association scheme (X,S) is commutative if pust = puts for

all s, t, u ∈ S, symmetric if s∗ = s for all s ∈ S. Symmetric association
schemes are commutative.
By the condition (3), RS :=

⊕

s∈S Rσs is an R-algebra. We call RS
the adjacency algebra of (X,S) over R.
It is well known that strongly regular graphs correspond to symmet-

ric association schemes with |S| = 3. We often identify them.

2.2. Terwilliger algebras. Let (X,S) be an association scheme. Fix
x ∈ X . We have a partition X =

⋃

s∈S xs. We set the diagonal matrix
E∗

s ∈ MX(Z) whose (y, y)-entry is 1 if y ∈ xs and 0 otherwise.
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Let R be a commutative ring with 1. We regard σs and E∗

s are ele-
ments in MX(R) and set RT (x) the R-algebra generated by {E∗

sσtE
∗

u |
s, t, u ∈ S}. We call RT (x) the Terwilliger algebra of (X,S) over R
at x. The original definition of a Terwilliger algebra in [6] is CT (x).
When R is a field of positive characteristic we call RT (x) a modu-
lar Terwilliger algebra. Remark that E∗

s (RT (x))E∗

s is a subalgebra of
RT (x) with the identity element E∗

s .
If K and K ′ have the same characteristic, then the dimensions of

the Terwilliger algebras over them are equal. Semisimplicity is also
depending only on the characteristic of the coefficient field, because
the algebra is defined over the prime field and the prime field is perfect
(see [5, Chap. II, Sect. 5], for example).
Let p be a prime number, and let Fp be a field of order p. By our

definition, FpT (x) is isomorphic to ZT (x)/p(QT (x) ∩ MX(Z)). This
is different from ZT (x)/pZT (x) ∼= Fp ⊗Z ZT (x), in general. We have
dimFp

Fp ⊗Z ZT (x) = rankZZT (x) = dimC CT (x), but we have many
examples such that dimCCT (x) 6= dimFp

FpT (x) (see Section 4 and
Section 5). It is easy to see that ZT (x) is a Z-submodule of QT (x) ∩
MX(Z) of full rank. Let e1, . . . , er be the elementary divisors (r =
dimC CT (x)). Then

dimFp
FpT (x) = |{i | p is prime to ei}|

= dimCCT (x)− |{i | p divides ei}|.

Especially, dimC CT (x) = dimFp
FpT (x) if and only if p does not divide

the index |QT (x) ∩MX(Z) : ZT (x)|.
Now, the following proposition holds.

Proposition 2.1. Let (X,S) be an association scheme. We fix x ∈
X. Then QT (x) ∩ MX(Z) = ZT (x) if and only if dimC CT (x) =
dimK KT (x) for any field K.

3. Semisimplicity

The Terwilliger algebra over the complex number field is semisim-
ple since it is closed by transposition and complex conjugate. The
Terwilliger algebra over a positive characteristic field is not necessary
semisimple. Moreover it depends on the choice of the point x ∈ X . For
example, (26, 10, 3, 4)-strongly regular graphs (see Subsection 5.4) give
such examples in characteristic 7 and 11.

Proposition 3.1. Let (X,S) be an association scheme and fix x ∈ X.
Let K be a field. If the Terwilliger algebra KT (x) of (X,S) over K is
semisimple, then E∗

s (KT (x))E∗

s is also semisimple for every s ∈ S.
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Proof. Suppose E∗

s (KT (x))E∗

s is not semisimple for some s ∈ S. The
Jacobson radical J of E∗

s (KT (x))E∗

s is non-zero. Since J is nilpotent,
assume J ℓ = 0. It is enough to show that ((KT (x))J (KT (x)))ℓ = 0.
For ai, bi ∈ KT (x) and ji ∈ J , we have

(a1j1b1)(a2j2b2) . . . (aℓjℓbℓ)

= a1E
∗

s j1(E
∗

s b1a2E
∗

s )j2(E
∗

s b2a3E
∗

s ) . . . (E
∗

sbℓ−1aℓE
∗

s )jℓE
∗

sbℓ

∈ (KT (x))J ℓ(K(T (x)) = 0

and thus ((KT (x))J (KT (x)))ℓ = 0. �

The converse of Proposition 3.1 is not true, in general. We will
give an example of order 15 in Subsection 5.1. We could find similar
examples also of order 19, 23, 27 and 30. The examples are non-
symmetric. The author does not know the converse is true or not for
symmetric association schemes.
For s, t, u ∈ S, write

σu =





xt

xs σst
u



.

Lemma 3.2. For s, t, u ∈ S, σu
st is an incidence matrix of a tactical

configuration. Every row of σu
st contains p

s
tu∗ ones and every column of

σu
st contains p

t
su ones.

Proof. For y ∈ xs, equivalent to (x, y) ∈ s, the y-th row of σu
st contains

♯{z ∈ xt | (y, z) ∈ u} = ♯{z ∈ X | (x, z) ∈ t, (z, y) ∈ u∗} = pstu∗

ones. Similarly, for z ∈ xt, the z-th column of σu
st contains

♯{y ∈ xs | (y, z) ∈ u} = ♯{y ∈ X | (x, y) ∈ s, (y, z) ∈ u} = ptsu

ones. �

Lemma 3.3. For s ∈ S, KE∗

sJE
∗

s is a one-dimensional two-sided ideal
of E∗

sKT (x)E∗

s , where J is the square matrix all whose entries are one.

Proof. The statement holds by Lemma 3.2. �

Theorem 3.4. Let K be a field of positive characteristic p. Suppose
that p divides the valency ns for some s ∈ S. Then KT (x) is not
semisimple.

Proof. Suppose p divides |xs| for s ∈ S. Then the ideal KE∗

sJE
∗

s of
E∗

sKT (x)E∗

s is nilpotent. Thus E∗

sKT (x)E∗

s is not semisimple, and so
is KT (x) by Proposition 3.1. �
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4. Johnson graphs J(n, 2)

The structures of Terwilliger algebras of Johnson schemes J(n, k)
were determined in [3, 4]. We focus only on the case k = 2 and consider
their modular Terwilliger algebras. The structure is independent of the
choice of a point x, because the automorphism group acts on points
transitively. We will write T instead of T (x) in this section.
Let (X,S) be the Johnson scheme J(n, 2) (n ≥ 5). This gives an

(n(n − 1)/2, 2(n − 2), n − 2, 4)-strongly regular graph. By definition,
we set X := {{i, j} | 1 ≤ i < j ≤ n}, S := {s0, s1, s2}, s0 := {(y, y) |
y ∈ X}, s1 := {(y, z) | |y ∩ z| = 1}, and s2 := {(y, z) | y ∩ z = ∅}.
We often write 1 instead of s1, and so on. For example, σ1 is σs1 . Fix
x := {1, 2}. We have

xs0 = {{1, 2}},

xs1 = {{1, i} | 2 ≤ i ≤ n} ∪ {(2, i) | 2 ≤ i ≤ n},

xs2 = {{i, j} | 3 ≤ i < j ≤ n}.

Valencies are n0 = 1, n1 = 2(n− 2) and n2 = (n− 2)(n− 3)/2. We fix
{1, 3}, {1, 4}, . . . , {1, n}, {2, 3}, {2, 4}, . . . , {2, n} the order of xs1. Then
we have

σ1 =









0 j2(n−2) 0n2

jT2(n−2)

Jn−2 − In−2 In−2

In−2 Jn−2 − In−2
D

0T
n2

DT C









,

where In−2 is the identity matrix of degree n − 2, Jn−2 is the square
matrix of degree (n − 2) all whose entries are one, j2(n−2) is the row
vector of degree 2(n − 2) all whose entries are one, 0n2

is the zero
row vector of degree n2, C is the adjacency matrix of J(n− 2, 2), and
D is a incidence matrix of a tactical configuration, every row of D
contains n − 3 ones and every column of D contains 4 ones. We set
ZT ′ :=

∑

i,j,k ZE
∗

i σjE
∗

k . This is not closed by multiplication. It is

not so hard to check that all products (E∗

i σjE
∗

k)(E
∗

i′σ′jE∗

k′) are in ZT ′

except for

(E∗

1σ1E
∗

1)(E
∗

1σ1E
∗

1) = (n− 2)E∗

1σ0E
∗

1 + (n− 4)E∗

1σ1E
∗

1

+2E∗

1σ2E
∗

1 − (n− 4)M,

(E∗

1σ1E
∗

1)(E
∗

1σ2E
∗

1) = E∗

1σ1E
∗

1 + (n− 4)E∗

1σ2E
∗

1 + (n− 4)M,

(E∗

1σ2E
∗

1)(E
∗

1σ1E
∗

1) = E∗

1σ1E
∗

1 + (n− 4)E∗

1σ2E
∗

1 + (n− 4)M,

(E∗

1σ2E
∗

1)(E
∗

1σ2E
∗

1) = (n− 3)E∗

1s0E
∗

1 + (n− 4)E∗

1σ1E
∗

1 − (n− 4)M,



6 AKIHIDE HANAKI

where

M =









0 02(n−2) 0n2

0T
2(n−2)

On−2 In−2

In−2 On−2
O

0T
n2

O O









,

O are zero matrices. Now we can see that

ZT = Z〈E∗

i σjE
∗

k | 0 ≤ i, j, k ≤ 2〉 =
∑

i,j,k

ZE∗

i σjE
∗

k + Z(n− 4)M.

On the other hand,

QT ∩MX(Z) =
∑

i,j,k

ZE∗

i σjE
∗

k + ZM ) ZT.

This gives a negative answer to Terwilliger’s small question “(is gen-
erated by?)” in [8, Conjecture 10]. We can get infinitely many such
examples in this way.

Theorem 4.1. For the Terwilliger algebra of the Johnson scheme
J(n, 2) (n ≥ 5), the following statements hold.

(1) The structure of the Terwilliger algebra does not depend on the
choice of the point.

(2) ZT =
∑

i,j,k ZE
∗

i σjE
∗

k+Z(n−4)M and QT∩MX(Z) =
∑

i,j,k ZE
∗

i σjE
∗

k+
ZM .

(3) For a field K, dimK KT = 16 if charK = 0 or charK ∤ n− 4, and
dimK KT = 15 if charK | n− 4.

Proof. Statements (1) and (2) are already proved. The statement (3)
holds by counting non-zero E∗

i σjE
∗

k and (2). �

5. Examples

5.1. The non-symmetric association scheme of order 15 and

rank 3. There is a unique non-symmetric association scheme of order
15 and rank 3, that is No. 5 in [2]. Set X = {1, . . . , 15}. The automor-
phism group acts onX intransitively and the orbits are {1, 3, 5, 8, 12, 13, 15},
{2, 4, 6, 7, 9, 10, 14}, {11}. Let K be a field of characteristic 2. Then

dimQ QT (1) = 33, dimK KT (1) = 31,

dimQQT (2) = dimK KT (2) = 17,

dimQ QT (11) = 17, dimK KT (11) = 15.

For all cases, KT (x) (x = 1, 2, 11) are not semisimple,

dimK J(KT (1)) = 10, dimK J(KT (2)) = 4, dimK J(KT (11)) = 2,
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where J(KT (x)) is the Jacobson radical ofKT (x). However, allE∗

i KT (x)E∗

i

(i = 0, 1, 2, x = 2, 11) are semisimple. This shows that the converse of
Proposition 3.1 is not true.

5.2. Chang graphs. There are four (28, 12, 6, 4)-strongly regular graphs.
One is J(8, 2) and others are Chang graphs [1, 3.11 (vii)]. In the fol-
lowing table, we will only give dimensions of their Terwilliger algebras
KT (x).

charK J(8, 2) Chang1 Chang2 Chang3

0, 3, 5, 7 16 20, 27 23, 27 23, 35
2 15 19 23 23

A remarkable fact is that the dimensions are independent of the choice
of the points in characteristic 2. For irreducible CT (x)-modules, see
[9].

5.3. (16, 6, 2, 2)-strongly regular graphs. There are two (16, 6, 2, 2)-
strongly regular graphs [1, 3.11 (vi)]. For them, the automorphism
groups act transitively on points and thus the Terwilliger algebras are
independent of the choice of the fixed points. One of them has

dimQ QT (x) = dimK KT (x) = 15

and the other has

dimQQT (x) = 20, dimK KT (x) = 19,

where K is the field of characteristic 2.

5.4. (26, 10, 3, 4)-strongly regular graphs. There are ten (26, 10, 3, 4)-
strongly regular graphs. In the following table, we will give dimensions
of their Terwilliger algebras KT (x). We use the numbering of them in
[2]. We will write “. . . ” if the dimensions are same with in character-
istic 0.

charK No. 3 No. 4 No. 5

0, 13 19, 24, 28, 31, 39, 47 19, 24, 29, 31, 39, 47 24, 31, 35, 39, 47
2 19, 22, 23, 28, 29, 30 19, 23, 26, 29, 30 22, 27, 29, 30
3 . . . 19, 24, 28, 31, 39, 47 . . .
5 19, 24, 27, 31, 39, 47 . . . 24, 31, 35, 38, 47
7 . . . . . . 24, 31, 34, 39, 47
11 19, 24, 27, 31, 39, 47 . . . 24, 30, 31, 35, 39, 47
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charK No. 6 No. 7 No. 8

0, 13 19, 24, 28, 29, 35, 47 19, 24, 28, 29, 35, 47 19, 28, 29, 35, 47
2 19, 23, 26, 27, 28, 30 19, 23, 25, 26, 27, 28, 30 19, 26, 28, 30
3 19, 24, 28, 35, 47 19, 24, 28, 35, 47 19, 28, 35, 47
5 . . . . . . . . .
7 . . . . . . . . .
11 19, 24, 27, 29, 35, 47 19, 24, 27, 29, 35, 47 19, 27, 29, 35, 47

charK No. 9 No. 10 No. 11 No. 12

0, 13 31, 35 24, 28 19, 28, 29, 35, 47 28, 29, 35, 47
2 29, 30 23, 28 19, 25, 26, 27, 28, 30 26, 27, 28, 30
3 . . . . . . 19, 28, 35, 47 28, 35, 47
5 . . . 23, 27 . . . . . .
7 31, 34 . . . . . . . . .
11 . . . 24, 27 19, 27, 29, 35, 47 27, 29, 35, 47
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