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Abstract
We present two new sufficient conditions in terms of the spectral radius qðGÞ
guaranteeing that a k-connected graph G is Hamilton-connected, unless G belongs to

a collection of exceptional graphs. We use the Bondy–Chvátal closure to charac-

terize these exceptional graphs.

Keywords k-connected graph � Hamilton-connected graph � Spectral
radius

Mathematics Subject Classification 05C50 � 05C45 � 05C40

1 Introduction

Before we recall some of the basic terminology and notation that is necessary to

understand the details, we start with a short introduction to the topic and our

motivation for this research.

Hamiltonian properties of graphs and sufficient conditions that guarantee these

properties have been a central topic within graph theory since the 1950s, and have
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been a popular and expanding field of study ever since the first results appeared. The

arising field of computational complexity gave another boost to the area since the

discovery in the 1970s that checking whether a given graph has a hamiltonian

property is NP-complete for all commonly studied hamiltonian properties. A good

source for more background and information, providing a wealth of results on

hamiltonian properties, are the two over 45 pages surveys by Gould [10, 11] and the

references therein.

The presented results in this paper are motivated by more recent work, in which

hamiltonian properties are guaranteed by sufficient conditions involving the spectral

radius of the graph, i.e., the largest eigenvalue of its adjacency matrix. During the

last decade, many different groups of authors have published results on spectral

radius conditions that guarantee hamiltonian properties of graphs. For hamiltonian

graphs, we refer the reader to [1, 8, 14–16, 18, 19, 23], and for Hamilton-connected

graphs to [5, 21, 22].

Our starting point and main motivation for the current work is a recent result

(Theorem 1.1 below) due to Chen et al. [5], involving a sufficient condition for

Hamilton-connected graphs based on their spectral radius and their minimum

degree. In the current paper, we relax the spectral radius condition in the result of

[5] by imposing a connectivity constraint instead of a minimum degree constraint.

Before we present our results and proofs, we next recall some terminology and

notation that is mainly based on the textbook of Bondy and Murty [3].

We start with some basic definitions and notation. We use G ¼ ðVðGÞ;EðGÞÞ to
denote an undirected simple graph with vertex set V(G) and edge set E(G). We let

eðGÞ ¼ jEðGÞj denote the number of edges of G. For a nonempty set X � VðGÞ,
G[X] denotes the subgraph of G induced by X. For two vertex subsets X and Y, we
say that X is adjacent to Y if every vertex of X is adjacent to every vertex of Y. For
v 2 VðGÞ and two subgraphs H and R, we use NHðvÞ ¼ fu 2 VðHÞ j uv 2 EðGÞg
and NHðRÞ ¼ ð

S
u2VðRÞ NHðuÞÞ n VðRÞ to denote the neighbors of the vertex v and

the subgraph R in H, respectively. When H ¼ G, jNGðvÞj is called the degree of the

vertex v, and denoted by d(v). We also use NG½v� ¼ NGðvÞ [ fvg. We let dðGÞ
denote the minimum degree of G. We say G is k-connected (k� 1) if G is connected

and deleting any k � 1 vertices (and their incident edges) results in a connected

graph. The connectivity jðGÞ of G is the maximum value of k for which G is k-
connected. The independence number aðGÞ of G is the cardinality of a largest

independent (mutually nonadjacent) set of vertices. We use xðGÞ to denote the

clique number of G, that is the cardinality of a largest clique, i.e., a set of mutually

adjacent vertices. For two graphs G1 and G2, we use G1 þ G2 and G1 _ G2 to denote

the disjoint union and the join of G1 and G2, respectively.

For a graph G with vertex set VðGÞ ¼ fv1; v2; . . .; vng, the adjacency matrix A(G)
is the symmetric n� n matrix with entries Aði; jÞ ¼ 1 if and only if vivj 2 EðGÞ and
zeros elsewhere. We use qðGÞ to denote the largest eigenvalue of A(G), which is

called the spectral radius of G.
A Hamilton cycle (path) of a graph G is a cycle (path) in G containing all vertices

of G. A graph is called hamiltonian if it contains a Hamilton cycle, and traceable if

it contains a Hamilton path. We are mainly dealing with the following stronger
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hamiltonian property. A graph G is called Hamilton-connected if every two distinct

vertices of G are the endpoints of a Hamilton path in G. Obviously, by considering

two adjacent vertices, all Hamilton-connected graphs on at least three vertices are

hamiltonian, whereas the converse statement is not true in general. For example, the

balanced complete bipartite graph Kn;n is hamiltonian for all n� 2 but not Hamilton-

connected.

As we indicated above, our starting point and motivation for the current work is

the following recent result due to Chen et al. [5].

Theorem 1.1 ([5]) Let G be a graph of order n� 6k2 � 8k þ 5 with dðGÞ� k� 2. If

qðGÞ[ k�1
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ð3k � 1Þnþ k2þ10k�15

4

q
, then G is Hamilton-connected, unless

clnþ1ðGÞ ¼ K2 _ ðKn�k�1 þ Kk�1Þ or clnþ1ðGÞ ¼ Kk _ ðKn�2kþ1 þ ðk � 1ÞK1Þ.

Here clnþ1ðGÞ denotes the ðnþ 1Þ-closure, i.e., the Bondy–Chvátal closure [2]

for Hamilton-connected graphs, the definition of which we will recall in the next

section. But first we will present our two main results.

Inspired by the above result, we considered whether the spectral radius condition

in Theorem 1.1 could be relaxed by imposing a stronger condition instead of the

minimum degree condition dðGÞ� k. A natural candidate for this is the condition

jðGÞ� k, since it is well-known that dðGÞ� jðGÞ for every graph G (cf. [3]). This

was our motivation for studying sufficient conditions for Hamilton-connectivity of

k-connected graphs based on the spectral radius, thereby relaxing the bound for

qðGÞ in Theorem 1.1. We note here that we still have to exclude the graphs

Kk _ ðKn�2kþ1 þ ðk � 1ÞK1Þ, since they are clearly k-connected and not Hamilton-

connected. Our first main result shows that we can indeed relax the bound on qðGÞ
in Theorem 1.1 when considering k-connected graphs, but we also have to exclude

more different types of exceptional graphs, which we will define in the next section.

Theorem 1.2 Let G be a k-connected graph of order n� 11k þ 11 with k� 2. If

qðGÞ[ k�1
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ð3k þ 3Þnþ 13k2þ38kþ25

4

q
, then G is Hamilton-connected,

unless clnþ1ðGÞ 2 fH1
n;k;H

3
n;k;H

4
n;k;H

5
n;k;H

7
n;k;H4 ðk ¼ 2; 3Þ;Gi ð1� i� 5Þg.

As we will see from the definition in the next section, the exceptional graph H1
n;k

in the above theorem is precisely the k-connected graph Kk _ ðKn�2kþ1 þ ðk � 1ÞK1Þ
that was excluded in the conclusion of Theorem 1.1. For sufficiently large n, the
lower bound on qðGÞ in Theorem 1.2 is indeed better (lower) than the lower bound

on qðGÞ in Theorem 1.1. However, the different role of k in the conditions dðGÞ� k
in Theorem 1.1 and jðGÞ� k in Theorem 1.2 makes it hard to compare the two

results.

To further specify the exceptional graphs, we also prove the following theorem.

Theorem 1.3 Let G be a k-connected graph of order

n� maxf11k þ 11; k3 � k2 þ k þ 2g. If qðGÞ[ n� k � 1
n, then G is Hamilton-

connected unless G ¼ H1
n;k.
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The rest of the paper is organized as follows. In Sect. 2, we will give some useful

techniques and necessary lemmas which will be used in our proofs, and we start by

defining the exceptional graphs. In Sect. 3, we present an important structural

theorem, a useful lemma, and the proofs of Theorems 1.2 and 1.3. In Sect. 4, we

give some proofs that we have postponed in Sect. 3.

2 Preliminaries

We start this section by defining several families of exceptional graphs that appear

in our main results and their proofs.

For n� 2k and k� 2, we define H1
n;k ¼ Kk _ ðKn�2kþ1 þ ðk � 1ÞK1Þ. For the other

classes, we start with a graph consisting of two vertex-disjoint graphs ðk � 1ÞK1 and

Kn�k, and an additional new vertex v. Let Vððk � 1ÞK1Þ ¼ X, VðKn�kÞ ¼ Y , and

Y2 � Y with jY2j ¼ k � 1. Then by H2
n;k we denote the graph obtained from ðk �

1ÞK1 þ Kn�k þ fvg by joining X to Y2, and v to X, Y2, and an arbitrary vertex in

Y n Y2 (See the graph sketched in Fig. 1).

Similarly, for n� 2k þ 1, let Vððk � 1ÞK1Þ ¼ X, VðKn�kÞ ¼ Y , where X1 	 X

with jX1j ¼ k � 2 and X2 ¼ X n X1, and Y2 � Y with jY2j ¼ k. We use H3
n;k to denote

the graph obtained from ðk � 1ÞK1 þ Kn�k þ fvg by joining X to Y2, and v to X2 and

Y2 (See the graph sketched at the left side in Fig. 2).

For the next class, let VðkK1Þ ¼ X, VðKn�kÞ ¼ Y , where X1 	 X with jX1j ¼
k � 1 and X2 ¼ X n X1, and let Y1 and Y2 be disjoint subsets of Y, with jY1j ¼ k and

jY2j ¼ 1. Denote by H4
n;k the graph obtained from kK1 þ Kn�k by joining X to Y1 and

X2 to Y2 (See the right side of Fig. 2). We also define H5
n;k ¼ Kk _ ðKn�2k þ kK1Þ

and H6
n;k ¼ Kk _ ðKn�2k þ K1;k�1Þ. For n� 2k þ 2, we define

H7
n;k ¼ Kkþ1 _ ðKn�2k�1 þ kK1Þ.
We also need the five special graphs Gi ð1� i� 5Þ that are sketched in Fig. 3,

where the ellipses denote a Kn�2.

Next we introduce some useful techniques and lemmas. We start by recalling a

technique that is based on the concept of equitable partitions.

Fig. 1 The graph H2
n;k
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Let M be a symmetric real n� n matrix. The rows and columns of M are indexed

by X ¼ f1; . . .; ng. Suppose p ¼ fX1; . . .;Xmg is a partition of X. Let M be

partitioned according to fX1; . . .;Xmg, i.e.,

Fig. 2 The graphs H3
n;k and H4

n;k

Fig. 3 The graphs G1–G5

123

Graphs and Combinatorics (2021) 37:2467–2485 2471



M ¼
M11 . . . M1m

..

. ..
.

Mm1 . . . Mmm

0

B
B
@

1

C
C
A;

where Mij denotes the block of M formed by the rows in Xi and the columns in Xj.

Let bij ¼ 1TMij1
jXij , i.e., the average row sum ofMij, where 1 is the column vector (of the

correct dimension) with all entries equal to 1. Then the matrix M=p ¼ ðbijÞm�m is

called the quotient matrix of M. If the row sum of each block Mij is a constant, then

the partition is called equitable.

The following lemma gives a simple way to calculate the spectral radius of a

large matrix if it has a suitable equitable partition.

Lemma 2.1 ([9]) Let G be a graph, and let p be an equitable partition of G. Then
qðGÞ ¼ qðAðGÞÞ ¼ qðAðGÞ=pÞ.

Next we introduce the concept of a Kelmans’ transformation [13]. Given a graph

G and two specified vertices u and v, construct a new graph G
 by replacing all

edges vx by ux for x 2 NGðvÞ n NG½u�. Obviously, the new graph G
 has the same

number of vertices and edges as G, and all vertices different from u and v retain

their degrees. The vertices u and v are adjacent in G
 if and only if they are adjacent

in G. If u and v are nonadjacent and have no common neighbors in G, then v will be
an isolated vertex in G
.

Lemma 2.2 ( [7]) Let G be a graph, and let G
 be a graph obtained from G by some
Kelmans’ transformation. Then qðGÞ� qðG
Þ.

We will also frequently use the following lemmas for qðGÞ.

Lemma 2.3 ([4, 9]) Let G be a connected graph. If H is a subgraph of G, then
qðHÞ� qðGÞ, with strict inequality in case H is a proper subgraph of G.

Lemma 2.4 ([12]) Let G be a graph on n vertices and m edges with minimum

degree d. Then qðGÞ� d�1
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m� ndþ ðdþ1Þ2
4

q

.

In conjunction with Lemma 2.4, we also use the following property.

Lemma 2.5 ([12, 17]) For nonnegative integers p and q with 2q� pðp� 1Þ and

0� x� p� 1, the function f ðxÞ ¼ x�1
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q� pxþ ðxþ1Þ2
4

q

is decreasing with

respect to x.

The following is a generalization of the Hamilton-connected counterpart of

Dirac’s theorem due to Chvátal [6].

Lemma 2.6 ([6]) A graph G with at least three vertices is Hamilton-connected if
jðGÞ� aðGÞ þ 1.

In the statement of our main result Theorem 1.2, we used the closure clnþ1ðGÞ of
a graph G to characterize the exceptional graphs, but postponed its definition. This
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ðnþ 1Þ-closure clnþ1ðGÞ of a graph G on n vertices is defined as the (unique) graph

obtained from G by recursively adding edges between nonadjacent pairs of vertices

with degree sum at least nþ 1, adapting their degrees, and continuing this process

until no such pair remains in the latest obtained graph. We give some examples to

illustrate the closure operation for the unexperienced reader.

To begin with, consider the graph Gp (with p� 4) obtained from two disjoint

copies of a Kp by adding two edges between a specified vertex u of the first copy and
two specified vertices of the second copy. Then no pair of nonadjacent vertices has

degree sum (at least) 2pþ 1 in Gp, so cl2pþ1ðGpÞ ¼ Gp.

Adding one new edge from u to a third vertex of the second copy, in the new

graph G0
p, the vertex u has degree pþ 2. For any vertex v of the second copy that is

nonadjacent to u, in the graph G0
p the vertices u and v have degree sum 2pþ 1. So, in

cl2pþ1ðG0
pÞ, u and v are adjacent. Repeating the argument, all vertices of the second

copy will be adjacent to u in cl2pþ1ðG0
pÞ. No other nonadjacent pairs of G0

p will

become adjacent pairs in cl2pþ1ðG0
pÞ.

On the other hand, suppose we start with three specified vertices u1; u2; u3 in the

first copy of the Kp and all having three or more neighbors in the second copy. Then

in the ð2pþ 1Þ-closure of this new graph G

p, using the same arguments, any vertex

v of the second copy will be adjacent to u1; u2; u3. This will increase the degree of v
to (at least) pþ 2. Since all vertices of G


p have degree at least p� 1, it is clear that

in this case cl2pþ1ðG

pÞ ¼ K2p.

The following useful result is due to Bondy and Chvátal [2].

Lemma 2.7 ([2]) A graph G of order n is Hamilton-connected if and only if
clnþ1ðGÞ is Hamilton-connected.

We end this section with the following lemma that gives upper bounds for the

spectral radius of some special graphs.

Lemma 2.8 Let G be a k-connected graph of order n, where k� 2.

(i) For n� k3 � k2 þ k þ 2, if G is a proper subgraph of H1
n;k, then

qðGÞ\n� k � 1
n.

(ii) For n� k3 � k2 þ k þ 2, if G 2 fH3
n;k;H

4
n;k;H

5
n;k;H

7
n;k;H4g, then

qðGÞ\n� k � 1
n.

(iii) For k ¼ 2, if G ¼ Gi ð1� i� 5Þ, then qðGÞ\n� 2� 1
n.

Proof (i) For G ¼ H1
n;k, let X be the set of vertices with degree k, let Y be the

neighbor set of X, and let Z be the remaining set of vertices. Suppose G0 is the

subgraph obtained from G by deleting one edge. There are three types for G0, which
are denoted by G0

1;G
0
2;G

0
3 and depicted in Fig. 4. We have G0

2 ¼ G0
1 � vzþ uz and

G0
3 ¼ G0

2 � vzþ uz, which are Kelmans’ transformations. Then, by Lemma 2.2, we

know that qðG0
1Þ� qðG0

2Þ� qðG0
3Þ. So it is sufficient to prove qðG0

3Þ\n� k � 1
n.
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Consider the following partition, denoted by p, of VðG0
3Þ: X1 ¼ X, X2 ¼ Y , X3 ¼

Z n fv; zg and X4 ¼ fv; zg. This partition can easily be checked to be equitable, and

the adjacency matrix of the quotient matrix of G0
3 is as follows:

AðG0
3=pÞ ¼

0 k 0 0

k � 1 k � 1 n� 2k � 1 2

0 k n� 2k � 2 2

0 k n� 2k � 1 0

0

B
B
B
@

1

C
C
C
A
:

The characteristic polynomial of AðG0
3=pÞ is equal to:

f ðxÞ¼x4þðk�nþ3Þx3�ðk2�4kþ3n�4Þx2þð4k�2n�knþk2n�2k3þ2Þx
þ2k�2knþ2k2nþ2k2�4k3:

By simple calculations, we obtain

f 0ðxÞ¼4x3þ3ðk�nþ3Þx2�2ðk2�4kþ3n�4Þxþ4k�2n�knþk2n�2k3þ2;

f ð2ÞðxÞ¼12x2þ6ðk�nþ3Þx�2ðk2�4kþ3n�4Þ;
f ð3ÞðxÞ¼24xþ6ðk�nþ3Þ;
f ð4ÞðxÞ¼24:

By using the software package Mathematica, we can get

f n� k � 1

n

� �

¼ n2 � ðk3 � k2 þ k þ 1Þnþ k4 � 3k3 þ 5k � 3

þ k3 � k2 � 2k þ 4

n
þ 2k2 � 5k þ 1

n2
þ 3k � 3

n3
þ 1

n4

[ n2 � ðk3 � k2 þ k þ 1Þnþ k4 � 3k3 þ 5k � 3� 1

4

¼ g1ðnÞ� g1ðk3 � k2 þ k þ 2Þ

¼ k4 � 2k3 � k2 þ 6k � 5

4
[ 0;

ð1Þ

where g1ðxÞ ¼ x2 � ðk3 � k2 þ k þ 1Þxþ k4 � 3k3 þ 5k � 3. It is obvious that

Fig. 4 The graphs G0
1, G

0
2 and G0

3
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g1ðxÞ is increasing when x� k3 � k2 þ k þ 2. Since n� k3 � k2 þ k þ 2, the

inequality (1) holds.

f 0 n� k � 1

n

� �

¼ n3 � ð3k � 3Þn2 þ ð2k2 � 5kÞn� 4k2 � 10k � 1

n
� 9k � 9

n2
� 4

n3

� k3 þ k2 þ 8k � 10

¼ g2ðnÞ� g2ðk3 � k2 þ k þ 2Þ
¼ k9 � 3k8 þ 3k7 þ 8k6 � 19k5 þ 11k4 þ 22k3 � 27k2 þ 10k þ 10

� 4k2 � 10k � 1

k3 � k2 þ k þ 2
� 9k � 9

ðk3 � k2 þ k þ 2Þ2
� 4

ðk3 � k2 þ k þ 2Þ3

[ k9 � 3k8 þ 3k7 þ 8k6 � 19k5 þ 11k4 þ 22k3 � 27k2 þ 10k þ 10

� 1� 1� 4

513

[ 0;

ð2Þ

where g2ðxÞ ¼ x3 � ð3k � 3Þx2 þ ð2k2 � 5kÞ
x� 4k2�10k�1

x � 9k�9
x2

� 4
x3
� k3 þ k2 þ 8k � 10. For inequality (2), since g02ðxÞ ¼

3x2 � 2ð3k � 3Þxþ 2k2 � 5k þ 4k2�10k�1
x2

þ 18k�18
x3

þ 12
x4
and

g02ðk3�k2þkþ2Þ¼3k6�6k5þ3k4þ18k3�19k2þkþ24

þ 4k2�10k�1

ðk3�k2þkþ2Þ2
þ 18k�18

ðk3�k2þkþ2Þ3
þ 12

ðk3�k2þkþ2Þ4

[3k6�6k5þ3k4þ18k3�19k2þkþ24� 5

64

[0;

we obtain that g2ðxÞ is an increasing equation when x�k3�k2þkþ2. Because

n�k3�k2þkþ2, the inequality (2) holds.

f ð2Þ n� k � 1

n

� �

¼ 6n2 � ð12k � 12Þnþ 18k � 18

n
þ 12

n2
þ 4k2 � 10k � 10

[ 6n2 � ð12k � 12Þnþ 4k2 � 10k � 10

¼ g3ðnÞ� g3ðk3 � k2 þ k þ 2Þ
¼ 6k6 � 12k5 þ 6k4 þ 36k3 � 38k2 þ 2k þ 38

[ 0;

where g3ðxÞ ¼ 6x2 � ð12k � 12Þxþ 4k2 � 10k � 10.
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f ð3Þ n� k � 1

n

� �

¼ 18n� 24

n
� 18k þ 18[ 0

f ð4Þ n� k � 1

n

� �

¼ 24[ 0:

Hence, by the Fourier-Budan Theorem (See, e.g., [20]), there is no root of f(x) in the

interval n� k � 1
n ;þ1

� �
. Then by Lemma 2.3, all subgraphs of H1

n;k have spectral

radius less than n� k � 1
n.

(ii) For G ¼ H4 (we give the definition in Sect. 3), it will be obvious that H4 �
K2k�1 _ ðKn�3kþ1 þ kK1Þ and similarly as before, we can prove that

qðK2k�1 _ ðKn�3kþ1 þ kK1ÞÞ\n� k � 1
n. Then by Lemma 2.3, we have

qðH4Þ\n� k � 1
n.

For the other graphs in (ii) and (iii), the proofs are very similar, hence we omit

the details. h

3 The Proofs of Our Results

We begin this section with a lemma about four families of Hamilton-connected

graphs. Firstly we need to define these four types of special graphs, in a similar way

as we introduced the exceptional graphs in the previous section. We also refer to

Fig. 5 to clarify the graphs. As before, let Vððk � 1ÞK1Þ ¼ X and VðKn�kÞ ¼ Y .
Suppose Y2 � Y and jY2j ¼ k � 2. Then H1 (sketched in the left part of Fig. 5) is the

graph obtained from ðk � 1ÞK1 þ Kn�k þ fvg by joining Y2 to X and v, and joining

each of a (a� 1) vertices of X to two (distinct) vertices in Y n Y2 (meaning that the

neighbors of these a vertices do not overlap), and each of b (b� 1) vertices in X with

v and one (distinct) vertex in Y n Y2, where aþ b ¼ k � 1. Then denote by Y1 the

neighbor set of X in Y n Y2. Set X ¼ X1 [ X2, where jX1j ¼ a� 1 and jX2j ¼ b� 1,

and Y2 � Y with jY2j ¼ k � 1. The graph H2 is obtained from ðk � 1ÞK1 þ Kn�k þ
fvg by joining Y2 to X and v, and v to X2, and then joining each vertex of X1 to one

(distinct) vertex in Y n Y2, and denoting by Y1 the neighbor set of X1 in Y n Y2 (See
the right part of Fig. 5).

For the next pair of graph families, we refer to Fig. 6 for further clarification.

Here, let VðkK1Þ ¼ X and VðKn�kÞ ¼ Y . Suppose X ¼ X1 [ X2 and Y1; Y2 � Y ,
where jX1j ¼ k � 2, jX2j ¼ 2, jY1j ¼ k and jY2j ¼ 2. Now, H3 is the graph obtained

from kK1 þ Kn�k by joining Y1 to X, then joining each vertex of X2 to one (distinct)

vertex of Y2. Suppose Y11; Y12 � Y , where jY11j ¼ k and jY12j ¼ k � 1. Now, H4 is

the graph obtained from kK1 þ Kn�k by joining Y12 to X, and then joining each

vertex of X to one (distinct) vertex of Y11 (See the right part of Fig. 6).

We first state the following lemma.

Lemma 3.1 Let Hi be defined as above (i ¼ 1; 2; 3; 4). Then

(i) H1;H2;H3 are all Hamilton-connected.

(ii) H4 ðk� 4Þ is Hamilton-connected.
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Proof Since the proofs for all graphs in (i) are straightforward and similar but

rather tedious, in (i) below we only give some of the details for H1, and postpone the

details for the other graphs in (i) to the appendix.

(i) We first introduce some additional notation. For two distinct vertices u and v
in a graph G, we use uPv to denote a Hamilton path in G connecting u and v. Let Puv

and Pwz be two disjoint paths. Then, we denote by Puv

F
Pwz a path obtained from

Puv and Pwz by joining v and w with an edge.

We start by labeling the vertices of the earlier defined sets X and Yi ði ¼ 1; 2Þ of
H1 (referring to Fig. 5) as x11; . . .; x1a; x21; . . .; x2b; y

1
11; y

1
12; . . .; y

a
11; y

a
12;

y121; . . .; y
b
21; y31; . . .; y3a; y41; . . .; y4;b�1, where a� 1, b� 1 and aþ b ¼ k � 1. Since

H1½Y� is a clique, in the remaining subgraph H0 of H1½Y� after possibly some vertices

have been deleted there exists aHamilton path (inH0) between any two of the remaining

vertices (if jVðH0Þj � 2). Such a path picking up the remaining vertices is indicated byP0

at the right hand side in the below list of Hamilton paths in H1. We also define the

following paths which we will frequently use in the below list of Hamilton paths inH1.

LetRi ¼ yi11x1iy
i
12,Q1 ¼ x11y31. . .x1ay3a andQ2 ¼ x21y41. . .x2;b�1y4;b�1. We recall the

partition of VðH1Þ into five sets Y1; Y2;X; fvg; Y n fY1 [ Y2g. It is sufficient to indicate
one typical example of a Hamilton path between any pair of vertices, where these pairs

are arbitrarily chosen from the five sets. By the above observation, we can discard

vertices inY n fY1 [ Y2g fromour considerations.We also note that the set fvg consists
of one vertex, sowe can not choose both vertices of a pair from this set. Hence it suffices

to consider three pairs consisting of v and one vertex of Y1, Y2 or X, another three pairs
consisting of two vertices from eitherY1,Y2 orX, and a final three pairswith two vertices
from different sets in Y1 [ Y2 [ X. In the following list we indicate a typical Hamilton

path for all these nine cases, with the first four starting inY1 and terminating in Y1,X, Y2,
and fvg, the next three starting in X and terminating in X, Y2, and fvg, and the final two
starting in Y2 and terminating in Y2 and fvg, respectively.

y111Py
1
12 ¼ y111Q1Q2vx2by

b
21P

0y112;

y111Px11 ¼ y111
Ga

i¼2

Ri

 !

y121Q2vx2by
b
21P

0y112x11;

y111Py31 ¼
Ga

i¼1

Ri

 !

y121Q2vx2by
b
21P

0y31;

y111Pv ¼
Ga

i¼1

Ri

 !

y121Q2x2by
b
21P

0y31v;

x11Px21 ¼ x11y
1
11

Ga

i¼2

Ri

 !

y221ðQ2 � y21y41Þx2bvy31P0y121x21;

x11Py31 ¼ x11y
1
11

Ga

i¼2

Ri

 !

y121Q2vx2by
b
21P

0y31;
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x11Pv ¼ x11y
1
11

Ga

i¼2

Ri

 !

y121Q2x2by
b
21P

0y31v; y31Py32

¼ y31x11y
1
11

Ga

i¼2

Ri

 !

y121Q2vx2by
b
21P

0y32; y31Pv

¼ y31x11y
1
11

Ga

i¼2

Ri

 !

y121Q2P
0yb21x2bv:

These nine cases represent all possible cases, so we conclude that H1 is Hamilton-

connected.

(ii) The proof for H4 (k� 4) is similar to the above proof. Referring to Fig. 6, we

label the vertices of X; Y11; Y12 of H4 as x11; . . .; x1k;y11; . . .; y1k;y21; . . .; y2;k�1. As in

the above proof, we will frequently use the paths Ri ¼ y2ix1;2i�1y1;2i�1y1;2ix1;2i and
Q ¼ x11y21 � � � x1;k�1y2;k�1. We recall that VðH4Þ is partitioned into four sets

Y11; Y12;X; Y n fY11 [ Y12g. By similar arguments as in the proof of (i), it suffices to

prove that the subgraph induced by Y11 [ Y12 [ X is Hamilton-connected. The fol-

lowing list indicates seven typical Hamilton paths between pairs of vertices chosen

from these three vertex sets.

y11Py12 ¼ y11Qx1ky1kP
0y12;

y11Py2;k�1 ¼ y11ðQ� x1;k�1y2;k�1Þx1;k�1y1;k�1P
0y1kx1ky2;k�1;

y11Px1k ¼ y11QP
0y1kx1k;

x11Px1k ¼ x11y11P
0y12ðQ� y21x11Þy1kx1k;

x11Py2;k�1 ¼ ðQ� x1;k�1y2;k�1Þx1;k�1y1;k�1P
0y1kx1ky2;k�1;

y21Py2;k�1 ¼
Gk=2

i¼1

Ri

 !

y2;kþ2
2
P0y2;k�1(when k is even and k� 4Þ;

y21Py2;k�1 ¼
Gðk�1Þ=2

i¼1

Ri

 !

y2;kþ1
2
P0y1kx1ky2;k�1(when k is odd and k� 5Þ:

This list of Hamilton paths represents all cases, hence when k� 4, H4 is Hamilton-

connected. h

Next, we state and prove one of the key results of this paper.

Theorem 3.1 Let G be a k-connected graph of order n� 11k þ 11, where k� 2. If

eðGÞ[ n� k � 1

2

� �

þ ðk þ 1Þðk þ 2Þ, then G is Hamilton-connected unless

clnþ1ðGÞ 2 fH1
n;k;H

3
n;k;H

4
n;k;H

5
n;k;H

7
n;k;H4 ðk ¼ 2; 3Þ;Gi ð1� i� 5Þg.

Proof Let H ¼ clnþ1ðGÞ. If H is Hamilton-connected, then by Lemma 2.7, so is G.
Now we suppose H is not Hamilton-connected. Noting that H is k-connected, using
Lemma 2.6, we have aðHÞ[ k � 1. Since
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eðHÞ� eðGÞ[ n� k � 1

2

� �

þ ðk þ 1Þðk þ 2Þ, as in the proof of Theorem 3.1 in

[24], we get xðHÞ� n� k. We claim that xðHÞ� n� k þ 1. In fact, if

xðHÞ� n� k þ 2, then aðHÞ� k � 1, a contradiction. Hence we divide the proof

into two cases.

Case 1. xðHÞ ¼ n� k þ 1.

In this case, we have aðHÞ ¼ k. Set VðHÞ ¼ X [ Y , where H½X� ¼ ðk � 1ÞK1,

H½Y � ¼ Kn�kþ1, and X together with a vertex w 2 Y is a maximum independent set.

Let Y1 ¼ NH½Y �ðXÞ. Then dHðyÞ� n� k þ 1 for y 2 Y1. Note that dðHÞ� jðHÞ� k,

we get that X is adjacent to Y1. Since dHðwÞ ¼ n� k, we have dHðxÞ ¼ k for each

x 2 X. Hence jY1j ¼ k and we obtain that H ¼ H1
n;k ¼ Kk _ ðKn�2kþ1 þ ðk � 1ÞK1Þ.

Case 2. xðHÞ ¼ n� k.
In this case, we have aðHÞ ¼ k or k þ 1. We complete the proof by considering

these two subcases separately.

Subcase 2.1. aðHÞ ¼ k.
The first situation is that VðHÞ ¼ X [ Y , where H½X� ¼ kK1, H½Y � ¼ Kn�k, and X

is a maximum independent set. So every vertex in Y must be adjacent to some x in

X; otherwise aðHÞ ¼ k þ 1. Set Y ¼ Y1 [ Y2, where y 2 Y1 has only one neighbor in

X, and y 2 Y2 has at least two neighbors in X. Hence dHðyÞ ¼ n� k for y 2 Y1, and
dHðyÞ� n� k þ 1 for y 2 Y2. Then X is adjacent to Y2. Let X1 ¼ NH½X�Y1 and

X2 ¼ X n X1. If Y1 ¼ ;, then H ¼ kK1 _ Kn�k, which is Hamilton-connected, a

contradiction. If Y2 ¼ ;, due to the assumptions, every vertex of Y has precisely one

neighbor in X. Then dHðyÞ ¼ n� k for each y 2 Y , and dHðxÞ ¼ k for each x 2 X (if

dHðxÞ ¼ k þ 1, then x is adjacent to Y, a contradiction). Hence the subgraph induced

by NH ½x� is Kk _ K1 for each x 2 X. This forces that jY j ¼ k2. Then

jVðHÞj ¼ k2 þ k� 11k þ 11, which leads to k� 11. See the graph sketched in

Fig. 7. We have H½X� ¼ kK1, H½Y� ¼ Kn�k and every vertex in X has k� 11

neighbors in Y. It is easy to see H is Hamilton-connected.

Hence, Y1 6¼ ; and Y2 6¼ ;. Now we claim that jX1j � 2. If jX1j ¼ 1, then the only

vertex in X1 is adjacent to Y, which contradicts that xðHÞ ¼ n� k. The claim holds.

Then jY2j � k � 1; otherwise x 2 X1 would have more than k neighbors in Y. Since
every x 2 X2 is adjacent to Y2 and has no neighbors in Y1, this leads to dHðxÞ� k � 1

for x 2 X2, a contradiction.

The second situation is that VðHÞ ¼ X [ Y [ fvg, where H½X� ¼ ðk � 1ÞK1,

H½Y � ¼ Kn�k, v 62 X [ Y , and X together with a vertex w 2 Y is a maximum

independent set. We use X1;X2; Y1; Y2 to denote the same sets as in the first

situation. Similarly, X is adjacent to Y2, and v is adjacent to Y2 and has at least one

neighbor in X. If v is adjacent to Y n ðY1 [ Y2Þ, then all possible w have degree

n� k. Hence, dHðxÞ ¼ k for every x 2 X. We have Y1 6¼ ;; otherwise v is adjacent

to Y, which contradicts that xðHÞ ¼ n� k. So X1 6¼ ;. If X2 ¼ ;, then jY2j � k � 1.

When jY2j ¼ k � 1, every vertex in X1 has only one neighbor in Y1, which results in

v having no neighbor in X, a contradiction. So jY2j � k � 2. Let jY2j ¼ t. Then
x 2 NH½X�ðvÞ has k � t � 1 neighbors in Y1, and x 2 X n NH½X�ðvÞ has k � t neighbors

in Y1. When t� k � 3, since every vertex in X has at least two neighbors in Y2, it is
easy to check that H is Hamilton-connected. When t ¼ k � 2, we have H1 � H, and
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by Lemma 3.1 (i), H is Hamilton-connected, a contradiction. If X2 6¼ ;, then we

claim jY2j ¼ k � 1. Indeed, if jY2j � k � 2, then x 2 X2 has degree at most k � 1, a

contradiction. If jY2j � k, then x 2 X1 has degree at least k þ 1, a contradiction.

Therefore, every vertex in X1 has a one-to-one neighbor in Y1, and v is adjacent to

X2. Then H2 � H, and by Lemma 3.1 (ii), we get that H is Hamilton-connected, a

contradiction.

Next, we discuss the case that there exists a vertex w with degree n� k � 1. Then

dHðxÞ ¼ k or k þ 1 for x 2 X.
If Y1 ¼ ;, then X1 ¼ ;, and X2 is adjacent to Y2. If dHðxÞ ¼ k þ 1 for all x 2 X,

then jY2j ¼ k and v is adjacent to X. When v has no neighbors in Y n Y2, we have

H ¼ H6
n;k. It is easy to check that H6

n;k is Hamilton-connected when k� 3. We can

get a contradiction except for k ¼ 2. In this case, H ¼ H6
n;2 ¼ G2. When v has at

least one neighbor in Y n Y2, we can easily see that H is Hamilton-connected, a

contradiction. If dHðxÞ ¼ k for all x 2 X, then jY2j ¼ k � 1 and v is adjacent to X.
Also, v must have at least one neighbor in Y n Y2; otherwise Y2 is a cut set. If v has
only one neighbor in Y n Y2, then dHðvÞ þ dHðwÞ ¼ nþ k � 2. When k� 3, v and w

are adjacent, a contradiction. When k ¼ 2, H ¼ H2
n;kðk ¼ 2Þ ¼ G1. If v has more

than one neighbor in Y n Y2, then dHðvÞ� 2k and dHðvÞ þ dHðwÞ
� 2k þ n� k � 1� nþ 1, which means v is adjacent to all vertices in Y n Y2, a
contradiction. If dHðxÞ ¼ k for some vertices in X, and dHðxÞ ¼ k þ 1 for the other

vertices in X, then jY2j ¼ k and the vertices that have degree k þ 1 are adjacent to v.
If v has at least two neighbors in X or has a neighbor in Y n Y2, then it is easy to

check that H is Hamilton-connected, a contradiction. If v has only one neighbor in X

and has no neighbors in Y n Y2, then H ¼ H3
n;k.

If Y2 ¼ ;, then X2 ¼ ;. When k� 3, then it is obvious that H is Hamilton-

connected, a contradiction. When k ¼ 2, we can see that there is only one vertex x1
in X, and x1 must be adjacent to v. If dHðx1Þ ¼ k þ 1 ¼ 3, then there are two

neighbors of x1 in Y1, say y1 and y2. In this case, if v is adjacent to at least one vertex
in Y n Y1, then H is Hamilton-connected, a contradiction. If v is only adjacent to y1
or y2, then H ¼ G1. If v has no neighbors in Y n Y1 and is adjacent to y1 and y2, then
H ¼ G2. If dHðx1Þ ¼ k ¼ 2, then there is one neighbor of x1 in Y1, say y1. We have

that v has neighbors in Y n Y1; otherwise fy1g will be a cut vertex. In this case, if v is
adjacent to y1, then there is only one neighbor of v in Y n Y1 and H ¼ G1. If v is not
adjacent to y1, then there are at most two neighbors of v in Y n Y1 and H ¼ G3 or G4.

If Y1 6¼ ; and Y2 6¼ ;, when X2 ¼ ;, then dHðxÞ ¼ k for x 2 X1 and jY2j � k � 2.

If jY2j � k � 3, then every vertex in X has at least two neighbors in Y1, and it is easy

to check that H is Hamilton-connected, a contradiction. If jY2j ¼ k � 2, set

X1 ¼ X11 [ X12, and v is adjacent to X12. Then every vertex in X11 has two neighbors

in Y1, and every vertex in X12 has only one neighbor in Y1. It is easy to see that

H1 � H, and by Lemma 3.1 (i), we get a contradiction. When X2 6¼ ;, we have

dHðxÞ ¼ k for x 2 X2 since dHðyÞ ¼ n� k for y 2 Y1. Hence jY2j ¼ k � 1 and v is

adjacent to X2. In this case, we have H2 � H, and by Lemma 3.1 (i), H is Hamilton-

connected, a contradiction.

Subcase 2.2. aðHÞ ¼ k þ 1.

Set VðHÞ ¼ X [ Y , where H½X� ¼ kK1, H½Y � ¼ Kn�k, and X together with one
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vertex w 2 Y is a maximum independent set. Since dHðwÞ ¼ n� k � 1, we have

dHðxÞ ¼ k or k þ 1 for x 2 X. Let X1 ¼ fx j dHðxÞ ¼ k; x 2 Xg,
X2 ¼ fx j dHðxÞ ¼ k þ 1; x 2 Xg, Y1 ¼ NH½Y �ðX1Þ, and Y2 ¼ NH½Y �ðX2Þ n Y1.

If X1 ¼ ;, then X is adjacent to Y2 and jY2j ¼ k þ 1. Hence

H ¼ H7
n;k ¼ Kkþ1 _ ðKn�2k�1 þ kK1Þ.

If X1 6¼ ; and X2 6¼ ;, then dHðyÞ� n� k þ 1 for y 2 Y1, since y has neighbors

both in X1 and X2. So every vertex in X1 is adjacent to every vertex in Y1, and
jY1j ¼ k. Then every vertex in X2 has a one-to-one neighbor in Y2, and jX2j ¼ jY2j.
When jX2j ¼ jY2j ¼ 1, H ¼ H4

n;k. When jX2j ¼ jY2j � 2, then H3 � H, where H3 is

the graph when jX2j ¼ jY2j ¼ 2. By Lemma 3.1 (i), H is Hamilton-connected, a

contradiction.

If X2 ¼ ;, then Y2 ¼ ;. Let Y11 � Y1 be the set of vertices with only one neighbor

in X, and Y12 � Y1 be the set of vertices with at least two neighbors in X. Then Y12 is

Fig. 5 H1 and H2

Fig. 6 H3 and H4

Fig. 7 H
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adjacent to X1. If Y11 ¼ ;, then jY12j ¼ k and H ¼ H5
n;k ¼ Kk _ ðKn�2k þ kK1Þ. If

Y12 ¼ ;, then obviously H is Hamilton-connected when k� 3, a contradiction.

When k ¼ 2, G ¼ G5. If Y11 6¼ ; and Y12 6¼ ;, then jY12j � k � 1. When

jY12j � k � 2, then every vertex in X1 has at least two neighbors in Y11, and it is

easy to check that H is Hamilton-connected, a contradiction. When jY12j ¼ k � 1,

then every vertex in X1 has a one-to-one neighbor in Y11. In this case, we have

H ¼ H4, and by Lemma 3.1 (ii), we get a contradiction except for k ¼ 2; 3. h

Proof of Theorem 1.2 Combining Lemmas 2.4 and 2.5, we have

k � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � ð3k þ 3Þnþ 13k2 þ 38k þ 25

4

r

\qðGÞ

� k � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eðGÞ � nk þ ðk þ 1Þ2

4

s

:

By simple straightforward calculations, we obtain that

eðGÞ[ n� k � 1

2

� �

þ ðk þ 1Þðk þ 2Þ. Then, using Theorem 3.1, we get that G is

Hamilton-connected or clnþ1ðGÞ 2 fH1
n;k;H

3
n;k;H

4
n;k;H

5
n;k;H

7
n;k;H4 ðk ¼ 2; 3Þ;Gi

ð1� i� 5Þg. h

Proof of Theorem 1.3 Suppose that G is not Hamilton-connected. Combining this

with Lemmas 2.4 and 2.5, we have

n� k � 1

n
\qðGÞ� k � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eðGÞ � nk þ ðk þ 1Þ2

4

s

:

Hence

eðGÞ[ 1

2
½n2 � ð2k � 1Þnþ 3k � 1

n
þ 1

n2
þ 2k2 � 2k � 2�

[
1

2
½n2 � ð2k þ 3Þnþ 3k2 þ 9k þ 6�

¼
n� k � 1

2

� �

þ ðk þ 1Þðk þ 2Þ:

By Theorem 3.1, we know clnþ1ðGÞ 2 fH1
n;k;H

3
n;k;H

4
n;k;H

5
n;k;H

7
n;k;H4 ðk ¼ 2; 3Þg.

Since Kn�kþ1 � H1
n;k, using Lemma 2.3, we have qðH1

n;kÞ[ qðKn�kþ1Þ ¼ n� k.

Furthermore, for clnþ1ðGÞ$H1
n;k and G 2 fH3

n;k;H
4
n;k;H

5
n;k;H

7
n;k;H4 ðk ¼ 2; 3Þ;Gi

ð1� i� 4Þg, using Lemmas 2.3 and 2.8, we can get a contradiction. h

4 Appendix

Proof of Lemma 3.1 (i) For H2, similarly as in the given proofs for some cases of

Lemma 3.1, we label the vertices of Xi, Yi (i ¼ 1; 2) of H2 as
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x11; . . .; x1a; x21; . . .; x2b; y11; . . .; y1a; y21; . . .; y2a; y31; . . .; y3b (referring to Fig. 5),

where a� 1, b� 1 and aþ b ¼ k � 1. Since H2½Y � is a clique, there always is a

Hamilton path between any two vertices in the remaining subgraph of H2½Y � where
possibly some vertices are deleted. As before, this is indicated by the P0 in the right

hand side of the below equations. When a is even and a� 4, let

R1i ¼ y2ix1;2iy1;2iy1;2iþ1x1;2iþ1, R2i ¼ y2ix1;2i�1y1;2i�1y1;2ix1;2i, Q1 ¼ x21y31. . .x2by3b
and Q2 ¼ y31x21. . .y3bx2b. VðH2Þ has a partition into six sets

Y1; Y2;X1;X2; fvg; Y n fY1 [ Y2g. Similar to the proof of Lemma 3.1 (i), we only

need to prove that the subgraph induced by Y1 [ Y2 [ X1 [ X2 [ fvg is Hamilton-

connected. The following list contains 14 typical Hamilton paths between these five

vertex sets.

y11Py1a ¼ y11x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay2;aþ2

2
vQ1P

0y1a;

y11Py3b ¼ y11x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay1aP

0ðQ2 � y3bx2bÞvx2by3b;

y11Px11 ¼ y11Q2v
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay1aP

0y2;aþ2
2
x11;

y11Px21 ¼ y11x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay1aP

0y2;aþ2
2
x22ðQ1 � x21y31Þvx21;

y11Pv ¼ y11x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay1aP

0Q2v;

x11Px1a ¼ x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
vQ1P

0y1ax1a;

x11Px2b ¼ x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay1aP

0ðQ2 � y3bx2bÞy3bvx2b;

x11Py3b ¼ x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay1aP

0ðQ2 � y3bx2bÞvx2by3b;

x11Pv ¼ x11
Gða�2Þ=2

i¼1

R1i

 !

y2;a
2
x1ay1aP

0Q2v;

x21Px2b ¼ x21
Ga=2

i¼1

R2i

 !

y2;aþ2
2
P0y31vðQ2 � x21y31Þ;

x21Pv ¼ x21
Ga=2

i¼1

R2i

 !

y2;aþ2
2
P0y31ðQ1 � x21y31Þv;

y21Py3b ¼ y21x11y11P
0y12x12

Ga=2

i¼2

R2i

 !

y2;aþ2
2
x21vðQ1 � x21y31Þ;

y21Pv ¼
Ga=2

i¼1

R2i

 !

y2;aþ2
2
P0Q2v;

y21Px2b ¼ y21x11y11P
0y12x12

Ga=2

i¼2

R2i

 !

y2;aþ2
2
ðQ2 � y3bx2bÞy3bvx2b:

This list represents all the possible cases, hence H2 is Hamilton-connected. When

123

Graphs and Combinatorics (2021) 37:2467–2485 2483



a ¼ 2, the proof is simpler and therefore omitted. When a is odd, the proof is

similar, and also omitted.

For H3, as before, we label the vertices of Xi and Yi (i ¼ 1; 2) of H3 as

x11; . . .; x1;k�2; x21; x22; y11; . . .; y1k; y21; y22 (referring to Fig. 6). Let Q1 ¼
y11x11. . .y1;k�2x1;k�2 and Q2 ¼ x11y11. . .x1;k�2y1;k�2. VðH2Þ has a partition into five

sets Y1; Y2;X1;X2; Y n fY1 [ Y2g. Similar to the proof of Lemma 3.1(i), we only

need to prove that the subgraph induced by Y1 [ Y2 [ X1 [ X2 is Hamilton-con-

nected. The following are ten typical Hamilton paths between these four vertex

sets.:

y11Py1k ¼ y11x21y21P
0y22x22ðQ1 � y11x11Þy1;k�1x11y1k;

y11Py22 ¼ Q1y1;k�1x21y21P
0y1kx22y22;

y11Px11 ¼ y11ðQ2 � x11y11Þx21y21P0y1;k�1x22y22y1kx11;

y11Px22 ¼ Q1y1;k�1x21y21P
0y22x22;

x11Px1;k�2 ¼ ðQ2 � x1;k�2y1;k�2Þy1;k�2y21x21y1;k�1x22y22P
0y1kx1;k�2;

x11Py22 ¼ Q2y21x21y1;k�1P
0y1kx22y22;

x11Px22 ¼ Q2x21y1;k�1P
0y22x22;

y21Py22 ¼ y21x21Q1y1;k�1x22y1kP
0y22;

y21Px22 ¼ y21x21Q1y1;k�1P
0y22x22;

x21Px22 ¼ x21Q1y1;k�1P
0y22x22:

This list represents all possible cases, hence H3 is Hamilton-connected. h
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