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Abstract

For any given integer r > 3, let k = k(n) be an integer with r 6 k 6 n. A

hypergraph is r-uniform if each edge is a set of r vertices, and is said to be linear if two

edges intersect in at most one vertex. Let A1, . . . , Ak be a given k-partition of [n] with

|Ai| = ni > 1. An r-uniform hypergraph H is called k-partite if each edge e satisfies

|e ∩ Ai| 6 1 for 1 6 i 6 k. In this paper, the number of linear k-partite r-uniform

hypergraphs on n → ∞ vertices is determined asymptotically when the number of edges

is m(n) = o(n
4

3 ). For k = n, it is the number of linear r-uniform hypergraphs on vertex

set [n] with m = o(n
4

3 ) edges.

Keywords: asymptotic enumeration, linear hypergraph, multipartite hypergraph, switch-

ing method.

Mathematics Subject Classifications: 05A16

1 Introduction

For any given integer r > 3, a hypergraph H on vertex set [n] is an r-uniform hypergraph

(r-graph for short) if each edge is a set of r vertices, and is said to be a linear hypergraph if

two edges intersect in at most one vertex. Little is known about the number of distinct linear

hypergraphs. An asymptotic enumeration formula for the logarithm of the number of linear

hypergraphs on n → ∞ vertices is obtained by Grable and Phelps [5]. They also obtained

the logarithm of the number of partial Steiner (n, r, ℓ)-systems with 2 6 ℓ 6 r − 1, where

a partial Steiner (n, r, ℓ)-system is an r-graph H such that every subset of size ℓ lies in at

most one edge of H ; the (n, r, 2)-systems are linear hypergraphs. Asratian and Kuzjurin [1]

gave another proof. Blinovsky and Greenhill [3, 4] used the switching method to obtain the

asymptotic number of sparse uniform and linear uniform hypergraphs with given order and
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degree sequence. Balogh and Li [2] obtained an upper bound on the number of linear uniform

hypergraphs with given order and girth.

It is interesting to consider the enumeration of linear hypergraphs with given size. Let

Hr(n,m) denote the set of r-graphs on vertex set [n] with m edges. Let Lr(n,m) denote

the set of linear hypergraphs in Hr(n,m). The previous works most relevant to this one are

[7, 8]. Hasheminezhad and McKay [7] obtained the asymptotic number of linear hypergraphs

with a given number of edges of each size, assuming a constant bound on the edge size and

o(n
4

3 ) edges. McKay and Tian [8] obtained the asymptotic enumeration formula for the set

of Lr(n,m) as far as m = o(n
3

2 ). Let [x]t = x(x − 1) · · · (x − t + 1) be the falling factorial.

The standard asymptotic notations o and O refer to n → ∞. The floor and ceiling signs are

omitted whenever they are not crucial.

Let s and k = k(n) be integers with 1 6 s 6 r 6 k 6 n, and Ns be an abbreviation

for
(

n
s

)

. Let A1, . . . , Ak be a given k-partition of [n] with |Ai| = ni > 1, ñ = (n1, . . . , nk)

and σs(ñ) =
∑

16i1<···<is6k ni1 · · ·nis be the s-th elementary symmetric function of ñ. We use

Ai1 · · ·Ais to denote the set of s-sets Fs of [n] such that |Fs ∩ Aij | = 1 for all 1 6 j 6 s,

and Es(ñ) =
⋃

16i1<···<is6k Ai1 · · ·Ais for all 1 6 s 6 r. An r-graph H is called k-partite if

each edge e satisfies e ∈ Er(ñ). Let Hr(ñ, m) denote the set of k-partite r-graphs with m

edges and with vertex partition determined by ñ, and let Lr(ñ, m) denote the set of all linear

hypergraphs in Hr(ñ, m). In this paper, we obtain an asymptotic enumeration formula for

|Lr(ñ, m)| as far as m = o(n
4

3 ).

Theorem 1.1. For a fixed integer r > 3, let s and k = k(n) be integers with 1 6 s 6

r 6 k 6 n, and let m = m(n) be an integer with m = o(n
4

3 ). Let ñ = (n1, . . . , nk) and

σs(ñ) =
∑

16i1<···<is6k ni1 · · ·nis be the s-th elementary symmetric function of ñ. Suppose

that there exists a constant C > 0 such that
∑k

i=1
1
ni

6 C k2

n
. Then, as n → ∞

|Lr(ñ, m)| =
σm
r (ñ)

m!
exp

[

−
σ2(ñ)σ

2
r−2(ñ)[m]2

2σ2
r(ñ)

+O

(

m2

n3
+

m3

n4

)]

.

Note that if there exists a constant c > 0 such that ni > cn
k
for 1 6 i 6 k, Theorem 1.1

holds. Also, for example, if n1 = . . . = np = n
1

2 for some positive constant p < k, np+1 =

. . . = nk = 1, then k = n + p − pn
1

2 and Theorem 1.1 holds; if n1 = . . . = nℓ = c′n,

nℓ+1 = . . . = nk = 1 for some positive constants ℓ < k and c′ such that c′ℓ < 1, then

k = (1 − c′ℓ)n + ℓ and Theorem 1.1 holds. For n sufficiently large, many cases satisfy
∑k

i=1
1
ni

6 C k2

n
for some constant C > 0. In particular, for k = n, k-partite r-graphs are

general r-graphs, σ2(ñ) = N2, σr−2(ñ) = Nr−2 and σr(ñ) = Nr. We have the following

corollary on the number of linear r-graphs on [n] with m = o(n
4

3 ) edges, which coincides with

the uniform case in [7] and is a subcase in [8].

Corollary 1.2. For any fixed integer r > 3, let m = m(n) be an integer with m = o(n
4

3 ).

Then, as n → ∞,

|Lr(n,m)| =
Nm

r

m!
exp

[

−
[r]22[m]2
4n2

+O

(

m2

n3
+

m3

n4

)]

.
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The remainder of the paper is structured as follows. Lemmas are presented in Section 2.

In Section 3, we complete the enumeration of Lr(ñ, m) with m = o(n
4

3 ).

2 Some Lemmas

In order to identify several events which have low probabilities in the uniform probability

space Hr(ñ, m) with m = o(n
4

3 ), the following lemmas will be useful.

Lemma 2.1. For a fixed integer r > 3, let s and k = k(n) be integers with 1 6 s 6 r 6 k 6 n.

Let σs(ñ) be the s-th elementary symmetric function of ñ = (n1, . . . , nk). Suppose that there

exists a constant C > 0 such that
∑k

i=1
1
ni

6 C k2

n
. Then σs(ñ) = O(ns−r)σr(ñ).

Proof. Let Sj(ñ) =
(

k
j

)−1
σj(ñ) for all j = 0, . . . , k. It is clear that Sk−1(ñ) = k−1

∑k
i=1

n1···nk

ni

and Sk(ñ) = n1 · · ·nk. By Newton’s inequality, we have Sj−1(ñ)Sj+1(ñ) 6 S2
j (ñ), and then

Ss−1(ñ)

Ss(ñ)
6

Ss(ñ)

Ss+1(ñ)
6 · · · 6

Sk−1(ñ)

Sk(ñ)
=

1

k

k
∑

i=1

1

ni
6 C

k

n
.

Therefore
σs(ñ)

σr(ñ)
=

[r]r−s

[k − s]r−s

Ss(ñ)

Sr(ñ)
6

[r]r−s

[k − s]r−s

Cr−skr−s

nr−s
= O(ns−r),

where the last step holds since s 6 r = O(1) and k > r imply that kr−s = O([k − s]r−s).

The following two lemmas are vector forms of [8, Lemmas 2.1 and 2.2]. Their proofs are

similar to those in [8], but Lemma 2.1 is a key requirement in the proof of Lemma 2.3.

Lemma 2.2. For a fixed integer r > 3, let k = k(n) be an integer with r 6 k 6 n, and H

be chosen uniformly at random from Hr(ñ, m). Let t = t(n) > 1 be an integer and e1, . . . , et
be distinct r-sets in Er(ñ). Then the probability that {e1, . . . , et} are edges of H is at most
(

m
σr(ñ)

)t
.

Proof. Since H is a k-partite r-graph that is chosen uniformly at random from Hr(ñ, m), the

probability that e1, . . . , et are edges of H is

(

σr(ñ)−t
m−t

)

(

σr(ñ)
m

) =
[m]t

[σr(ñ)]t
=

t−1
∏

i=0

m− i

σr(ñ)− i
6

( m

σr(ñ)

)t

.

Lemma 2.3. Let r > 3, t and α be integers such that r, t, α = O(1) and 0 6 α 6 rt. For

any integer k = k(n) with r 6 k 6 n, let H be chosen uniformly at random from Hr(ñ, m).

If there exists a constant C > 0 such that
∑k

i=1
1
ni

6 C k2

n
, then the expected number of sets

of t edges whose union has rt− α or fewer vertices is O(mtn−α).
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Proof. Let e1, . . . , et be distinct r-sets in Er(ñ). We first bound the number of sequences

e1, . . . , et such that |e1 ∪ · · · ∪ et| = rt − β for some β with α 6 β < rt, regardless of

whether they are edges of H . For 2 6 i 6 t, define ai = |(e1 ∪ · · · ∪ ei−1) ∩ ei|, thus we

have
∑t

i=2 ai = β. The first r-set e1 can be chosen in σr(ñ) ways, then for 2 6 i 6 t, the

number of choices for ei given e1, . . . , ei−1 is at most (rt)aiσr−ai(ñ). Note that by Lemma 2.1,

σr−ai(ñ) = σr(ñ)O(n−ai). Therefore, the number of choices of e1, . . . , et for given β, a2, . . . , at
is at most O(1)σt

r(ñ)
∏t

i=2(rt)
ain−ai = O(σt

r(ñ)n
−β).

The number of choices of a2, . . . , at given β is at most O(1) by r, t = O(1). Also, by

Lemma 2.2, the probability that e1, . . . , et ∈ H is at most (m/σr(ñ))
t. Therefore, the expected

number of sets of t edges of H whose union has size rt − β is O(mtn−β), uniformly over β.

Finally, the sum of this expression over β > α is bounded by a decreasing geometric series

dominated by the term β = α. This completes the proof.

We also need the following Lemma from [6], which was used to enumerate some hyper-

graphs in [3, 4, 7, 8].

Lemma 2.4 ([6], Corollary 4.5). Let N > 2 be an integer, and for 1 6 i 6 N , let real numbers

A(i), B(i) be given such that A(i) > 0 and 1 − (i − 1)B(i) > 0. Define A1 = minN
i=1A(i),

A2 = maxNi=1A(i), C1 = minN
i=1A(i)B(i) and C2 = maxNi=1A(i)B(i). Suppose that there

exists a real number ĉ with 0 < ĉ < 1
3
such that max{A/N, |C|} 6 ĉ for all A ∈ [A1, A2],

C ∈ [C1, C2]. Define h0, h1, . . ., hN by h0 = 1 and hi

hi−1
= A(i)

i
(1 − (i − 1)B(i)) for 1 6

i 6 N , with the following interpretation: if A(i) = 0 or 1 − (i − 1)B(i) = 0, then hj = 0

for i 6 j 6 N . Then Σ1 6
∑N

i=0 hi 6 Σ2, where Σ1 = exp[A1 −
1
2
A1C2] − (2eĉ)N and

Σ2 = exp[A2 −
1
2
A2C1 +

1
2
A2C

2
1 ] + (2eĉ)N .

3 Enumeration of Lr(ñ,m) with m = o(n
4
3)

Let H be a k-partite r-graph in Hr(ñ, m). As defined in [8], a 2-set {x, y} ⊆ [n] is called a link

if there are two distinct edges e, f such that {x, y} ⊆ e∩ f . The two edges e and f are called

linked edges if |e ∩ f | > 2. Let GH be the simple graph whose vertices are the edges of H ,

with two vertices of G adjacent iff the corresponding edges of H are linked. An edge-induced

subgraph of H corresponding to a non-trivial component of GH is called a cluster of H .

Let Pr(ñ, m) denote the probability that a k-partite r-graph H ∈ Hr(ñ, m) chosen uni-

formly at random is linear. Hence,

|Lr(ñ, m)| =

(

σr(ñ)

m

)

Pr(ñ, m). (3.1)

We will prove that Pr(ñ, m) equals the exponential factor in Theorem 1.1.

Firstly, we show that most of Hr(ñ, m) has a simple structure. Define H+
r (ñ, m) ⊆

Hr(ñ, m) to be the set of k-partite r-graphs H which satisfy the following two properties

(a) and (b).
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(a) Every cluster of H consists of two edges overlapping by two vertices.

(b) The number of clusters in H is at most M , where M =
⌈

logn +
56σ2

r−2
(ñ)σ2(ñ)m2

σ2
r(ñ)

⌉

.

We show that the expected number of k-partite r-graphs in Hr(ñ, m) not satisfying the

properties of H+
r (ñ, m) is quite small.

Lemma 3.1. For a fixed integer r > 3, let k = k(n) and m = m(n) be integers with r 6 k 6 n

and m = o(n
4

3 ). Then, as n → ∞, |H+
r (ñ,m)|

|Hr(ñ,m)|
= 1− O

(

m2

n3 + m3

n4

)

.

Proof. Consider H ∈ Hr(ñ, m) chosen uniformly at random. We apply Lemma 2.3 several

times to show that H satisfies the properties (a) and (b) with probability 1−O
(

m2

n3 + m3

n4

)

.

If two edges overlap by three or more vertices, then they have at most 2r − 3 vertices

in total, which has probability O
(

m2

n3

)

by Lemma 2.3. Similarly if there is a cluster of more

than two edges, then three of those edges have at most 3r − 4 vertices in total, which has

probability O
(

m3

n4

)

by Lemma 2.3. Therefore, H satisfies the property (a) with probability

1− O
(

m2

n3 + m3

n4

)

.

Note that if (a) holds, all clusters have two edges and no two clusters share an edge or a

link. Define the event

D = {there exist at least d edge- and link-disjoint clusters in H},

where d = M + 1. Using Lemma 2.2, we have

P[D] = O

(

σ2d
r−2(ñ)

(

σ2(ñ)

d

)(

m

σr(ñ)

)2d)

= O

((

eσ2(ñ)σ
2
r−2(ñ)m

2

dσ2
r (ñ)

)d)

= O
(( e

56

)d)

= O
( 1

n3

)

,

where the last two inequalities are true because d >
56σ2

r−2
(ñ)σ2(ñ)m2

σ2
r(ñ)

and d > log n. The proof

is complete on noting that the event “(a) and (b) hold” is contained in the union of the events

“(a) holds” and “D doesn’t hold”.

From the proof of Lemma 3.1, we have |H+
r (ñ, m)| 6= 0. Hence, there exists a nonnegative

integer t such that the set of k-partite r-graphs with exactly t clusters inH+
r (ñ, m) is nonempty

and is denoted by C+
t . By the definition of H+

r (ñ, m) we have |H+
r (ñ, m)| =

∑M
t=0 |C

+
t |. By

the switching operations below, we will prove that Lr(ñ, m) = C+
0 6= ∅. It follows that

1

Pr(ñ, m)
=

(

1−O
(m2

n3
+

m3

n4

))

M
∑

t=0

|C+
t |

|Lr(ñ, m)|
=

(

1− O
(m2

n3
+

m3

n4

))

M
∑

t=0

|C+
t |

|C+
0 |

. (3.2)
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In order to find the ratio |C+
t |/|C

+
0 | when 1 6 t 6 M , we design switchings to find a

relationship between the sizes of C+
t and C+

t−1. Let H ∈ C+
t . A forward switching from H is

used to reduce the number of clusters in H . Take any cluster consisting of two edges e and

f , and remove them from H . Define H0 with the the same vertex set [n] and the edge set

E(H0) = E(H) \ {e, f}. Choose any r-set e1 from Er(ñ) such that e1 does not share a link

with any edge of H0, and define H ′ by setting E(H ′) = E(H0)∪ {e1}. Next, similarly choose

another r-set e2 from Er(ñ) such that e2 does not share a link with any edge of H ′. Add edge

e2 to H ′ to produce H ′′, which is the result of the forward switching from H . Note that the

two edges e1 and e2 may have at most one vertex in common and H ′′ ∈ C+
t−1.

A reverse switching is the reverse of a forward switching. Let H ′′ ∈ C+
t−1. Sequentially

choose two edges e1 and e2 of H ′′ such that neither of them contains a link. Define H0 with

the same vertex set [n] and E(H0) = E(H ′′) \ {e1, e2}. Take two r-sets e and f in Er(ñ) such

that |e ∩ f | = 2 and neither of them share a link with any edge of H0. Insert e and f into

H0. Call the resulting graph H . Then, H ∈ C+
t .

Lemma 3.2. For any fixed integer r > 3, let k = k(n) and m = m(n) be integers with

r 6 k 6 n and m = o(n
4

3 ). Let t be some positive integer with 1 6 t 6 M .

(a) Let H ∈ C+
t . The number of forward switchings for H is tσ2

r (ñ)
(

1 +O
(

m
n2

))

.

(b) Let H ′′ ∈ C+
t−1. The number of reverse switchings for H ′′ is

(

m−2(t−1)
2

)

σ2(ñ)σ
2
r−2(ñ)

(

1 +

O
(

1
n
+ m

n2

))

.

Proof. (a) Let H ∈ C+
t . Let R(H) be the set of all forward switchings which can be applied

to H . There are exactly t ways to choose a cluster; remove it from H to produce H0.

The number of choices for the r-set e1 is at most σr(ñ). From this we must subtract the

number of r-sets that overlap some edge of H0 in two or more vertices, which is at most
(

r
2

)

(m−2)σr−2(ñ) = O(m
n2 )σr(ñ) by Lemma 2.1 and r = O(1). Thus, there are σr(ñ)(1+O(m

n2 ))

ways to choose e1. Similarly, there are σr(ñ)(1+O(m
n2 )) ways to choose e2. We have |R(H)| =

tσ2
r (ñ)(1 +O(m

n2 )).

(b) Conversely, suppose that H ′′ ∈ C+
t−1. Similarly, let R′(H ′′) be the set of all reverse

switchings for H ′′. There are exactly 2
(

m−2(t−1)
2

)

ways to delete two edges in sequence such

that neither of them contains a link in H ′′. Let the resulting graph be H0. There are

at most 1
2
σ2(ñ)σ

2
r−2(ñ) ways to choose two r-sets e and f in Er(ñ) such that e and f are

linked edges. From this we firstly subtract the ones with |e ∩ f | > 3, which is at most
r
2
σ2(ñ)σr−2(ñ)σr−3(ñ) = σ2(ñ)σ

2
r−2(ñ)O( 1

n
) by Lemma 2.1, since r = O(1). Secondly, we

subtract the cases where at least one of e, f (say e) shares a link with one of the m − 2

edges e′ in H0. Let ℓ1 be the link shared by e, f and ℓ2 be the link shared by e, e′. The

number of cases for |ℓ1 ∪ ℓ2| = 2, 3, 4 is at most mr2σ2
r−2(ñ), mr2σ1(ñ)σr−3(ñ)σr−2(ñ) and

mr2σ2(ñ)σr−4(ñ)σr−2(ñ), respectively, where the last one is only possible if r > 4. By

Lemma 2.1, each of these expressions is σ2(ñ)σ
2
r−2(ñ)O(m

n2 ). This completes the proof.

Corollary 3.3. With notation as above, for some 1 6 t 6 M ,

(a) |C+
t | > 0 iff m > 2t.
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(b) Let t′ be the first value of t 6 M such that C+
t = ∅, or t′ = M + 1 if no such value exists.

Then, as n → ∞, uniformly for 1 6 t < t′,

|C+
t |

|C+
t−1|

=

(

m−2(t−1)
2

)

σ2(ñ)σ
2
r−2(ñ)

tσ2
r (ñ)

(

1 +O
(1

n
+

m

n2

))

.

Proof. (a) Firstly, m > 2t is necessary for |C+
t | > 0. By Lemma 3.1, there is some 0 6 t̂ 6 M

such that C+
t̂
6= ∅. We can move t̂ to t by a sequence of forward and reverse switchings while

no greater than M . Note that since the values given in Lemma 3.2 at each step of this path

are positive for any 0 6 t 6 M , we have |C+
t | > 0.

(b) By (a), if C+
t = ∅, then C+

t+1, . . . , C
+
M = ∅. By the definition of t′, if 1 6 t < t′, then the

left hand ratio is well defined. By Lemma 3.2 completes the proof.

At last, we estimate the sum
∑M

t=0 |C
+
t |/|C

+
0 | by applying Lemma 2.4, which is used to

count certain hypergraphs in [3, 4, 7, 8].

Lemma 3.4. For any given integer r > 3, let k = k(n) and m = m(n) be integers with

r 6 k 6 n and m = o(n
4

3 ). With notation above, as n → ∞,

M
∑

t=0

|C+
t |

|C+
0 |

= exp

[

σ2(ñ)σ
2
r−2(ñ)[m]2

2σ2
r(ñ)

+O
(m2

n3
+

m3

n4

)

]

.

Proof. Let t′ be as defined in Corollary 3.3 (b). We know that |C+
0 | 6= 0, then t′ > 1. If

t′ = 1, then we have m < 2 from Corollary 3.3 (a), and the conclusion is obviously true. In

the following, suppose t′ > 2. Define h0, . . . , hM by h0 = 1, ht = |C+
t |/|C

+
0 | for 1 6 t < t′ and

ht = 0 for t′ 6 t 6 M . By Corollary 3.3 (b), we have for 1 6 t < t′,

ht

ht−1

=
1

t

(

m− 2(t− 1)

2

)

σ2(ñ)σ
2
r−2(ñ)

σ2
r(ñ)

(

1 +O
(1

n
+

m

n2

))

. (3.3)

For 1 6 t 6 M , define

A(t) =
σ2(ñ)σ

2
r−2(ñ)[m]2

2σ2
r(ñ)

+O
(m2

n3
+

m3

n4

)

,

B(t) =

{

2(2m−2t+1)
m(m−1)

, for 1 6 t < t′;

(t− 1)−1, otherwise.
(3.4)

Using the equations shown in (3.3) and (3.4), for 1 6 t < t′, we further have

ht

ht−1
=

A(t)

t

(

1− (t− 1)B(t)
)

.

Following the notation of Lemma 2.4, we also have

A1, A2 =
σ2(ñ)σ

2
r−2(ñ)[m]2

2σ2
r(ñ)

+O
(m2

n3
+

m3

n4

)

. (3.5)
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For 1 6 t < t′, we have

A(t)B(t) =
σ2(ñ)σ

2
r−2(ñ)(2m− 2t+ 1)

σ2
r(ñ)

+O
(m

n3
+

m2

n4

)

.

Then A(t)B(t) = O
(

m
n2

)

because σ2
r−2(ñ)/σ

2
r(ñ) = O(n−4) by applying Lemma 2.1, and

σ2(ñ) = O(n2) based on the fact that σ2(ñ) is the number of edges of complete k-partite

graphs and its maximum value occurs at the approximately equal partition. For the case

t′ 6 t 6 M and t′ > 2, by Corollary 3.3 (a), we have 2 6 m < 2t, and then A(t)B(t) = O
(

m
n2

)

for t′ 6 t 6 M . In both cases, following the notation of Lemma 2.4, we have

C1, C2 = O
(m

n2

)

. (3.6)

Then |C| = o(1) for all C ∈ [C1, C2] when m = o(n
4

3 ).

Let ĉ = 1
110

. Note that M =
⌈

logn +
56σ2

r−2
(ñ)σ2(ñ)m2

σ2
r(ñ)

⌉

. We have A
M

6
1+O(1/n+m/n2)

112
for

all A ∈ [A1, A2] as shown in (3.5). Thus, max{ A
M
, |C|} < ĉ and (2eĉ)M = O( 1

n3 ) as n → ∞.

Using the equations shown in (3.5) and (3.6), we have

A1C2, A2C1 = O
(m2

n2
·
m

n2

)

= O
(m3

n4

)

and A2C
2
1 = O

(m2

n2
·
m2

n4

)

= O
(m4

n6

)

.

Lemma 2.4 applies to obtain

M
∑

t=0

|C+
t |

|C+
0 |

= exp
[σ2(ñ)σ

2
r−2(ñ)[m]2

2σ2
r (ñ)

+O
(m2

n3
+

m3

n4

)]

+O
( 1

n3

)

= exp
[σ2(ñ)σ

2
r−2(ñ)[m]2

2σ2
r (ñ)

+O
(m2

n3
+

m3

n4

)]

when m = o(n
4

3 ).

Proof of Theorem 1.1 . By applying Lemma 3.4, using the equations shown in (3.1) and (3.2),

we have

|Lr(ñ, m)| =

(

σr(ñ)

m

)

exp
[

−
σ2(ñ)σ

2
r−2(ñ)[m]2

2σ2
r(ñ)

+O
(m2

n3
+

m3

n4

)]

=
σm
r (ñ)

m!
exp

[

−
σ2(ñ)σ

2
r−2(ñ)[m]2

2σ2
r(ñ)

+O
(m2

n3
+

m3

n4

)]

,

since
(

σr(ñ)

m

)

=
σm
r (ñ)

m!
exp

[

O
( m2

σr(ñ)

)]

=
σm
r (ñ)

m!
exp

[

O
(m2

n3

)]

because σr(ñ) >
(

k
r

)

cr(n
k
)r and r > 3.

8



Proof of Corollary 1.2. If k = n, then σ2(ñ) = N2, σr−2(ñ) = Nr−2, σr(ñ) = Nr and k-partite

r-graphs are r-graphs. By applying Theorem 1.1, it follows that

|Lr(n,m)| =
Nm

r

m!
exp

[

−
[r]22[m]2
4n2

+O
(m2

n3
+

m3

n4

)]

when m = o(n
4

3 ).

Remark 3.5. The formula in Corollary 1.2 coincides with the uniform case in [7] and is a

subcase in [8]. Compared with the enumeration formula of |Lr(n,m)| in [8],

|Lr(n,m)| =
Nm

r

m!
exp

[

−
[r]22[m]2
4n2

−
[r]32(3r

2 − 15r + 20)m3

24n4
+O

(m2

n3

)

]

,

the term
[r]3

2
(3r2−15r+20)m3

24n4 = O
(

m3

n4

)

is under our conditions. It will take new ideas to handle

larger m in Lr(ñ, m) and they will be more complicated than those in [7, 8]. We leave these

problems for future work.
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