The Chromatic Number of Joins of Signed Graphs *

Amelia R.W. Mattern

Binghamton University, Binghamton, New York, U.S.A.

June 1, 2020

Abstract

We introduce joins of signed graphs and explore the chromatic number of the all-positive and all-negative joins. We prove an analogue to the theorem that the chromatic number of the join of two graphs equals the sum of their chromatic numbers. Given two signed graphs, the chromatic number of the all-positive and all-negative join is usually less than the sum of their chromatic numbers, by an amount that depends on the new concept of deficiency of a signed-graph coloration.

1 Introduction

A signed graph is a graph in which every edge has an associated sign. We write a signed graph Σ as the triple (V, E, σ) where V is the vertex set, E

^{*}This paper originates from a doctoral thesis written under the supervision of Thomas Zaslavsky.

is the edge set, and $\sigma : E \to \{+, -\}$ is the signature. Our graphs are signed simple graphs: with no loops and no multiple edges.

We define signed-graph coloring as in [3], and chromatic number as in [1]. A proper coloration of a signed graph Σ is a function, $\kappa : V \to \{\pm 1, \pm 2, \ldots, \pm k, 0\}$, such that for any edge $e_{ab} \in E$, $\kappa(a) \neq \sigma(e)\kappa(b)$. The chromatic number of Σ , written $\chi(\Sigma)$, is the size of the smallest set of colors which can be used to properly color Σ . A graph with chromatic number k is called k-chromatic. A coloration is minimal if it is proper and uses a set of colors of size $\chi(\Sigma)$. If $\chi = 2k$ then a minimal color set is $\{\pm 1, \pm 2, \ldots, \pm k\}$, and if $\chi = 2k + 1$ then a minimal color set is $\{\pm 1, \pm 2, \ldots, \pm k, 0\}$. If $\chi = 2k + 1$, there must be at least one vertex colored 0 in every minimal coloration.

The deficiency of a coloration, $def(\kappa)$, is the number of unused colors from the color set of κ . The deficiency set, $D(\kappa)$, is the set of unused colors. The maximum deficiency of a graph, $M(\Sigma)$, is max{ $def(\kappa) | \kappa$ is a minimal proper coloration of Σ }. For more about deficiency, see [2].

Let Σ_1 and Σ_2 be signed graphs. The σ^* -join of Σ_1 and Σ_2 , written $\Sigma_1 \vee_{\sigma^*} \Sigma_2$, is the signed graph with

$$V = V(\Sigma_1) \cup V(\Sigma_2),$$

$$E = E(\Sigma_1) \cup E(\Sigma_2) \cup \{e_{vw} \mid v \in V(\Sigma_1), w \in V(\Sigma_2)\},$$

and
$$\sigma(e) = \begin{cases} \sigma_1(e) & \text{if } e \in E(\Sigma_1), \\ \sigma_2(e) & \text{if } e \in E(\Sigma_2), \\ \sigma^*(e) & \text{otherwise,} \end{cases}$$

where σ^* is a function from the new join edges to the set $\{+, -\}$.

We explore joins of signed graphs and prove an analogue to the theorem that the chromatic number of the join of two graphs equals the sum of their chromatic numbers. In this case, the chromatic number of the join of two signed graphs depends on both the chromatic numbers and the maximum deficiencies of the two graphs.

2 Joins of Signed Graphs

Unlike in ordinary graph theory, there are many ways to join two signed graphs. The result of joining two signed graphs depends on the signs of the new edges. In this paper we focus on the *all-positive join* of two signed graphs, where each new join edge has positive sign. We write the all-positive join of Σ_1 and Σ_2 as $\Sigma_1 \vee_+ \Sigma_2$.

Let Σ be a signed graph with even chromatic number and maximum deficiency M. Then Σ is an *exceptional graph* if in every proper coloration using $\chi(\Sigma) - M$ colors, every color that is used appears at both ends of some negative edge. Figure 1 shows two examples of exceptional graphs. Graph A is a 6-chromatic graph with maximum deficiency 3. Graph B is a 4-chromatic graph with maximum deficiency 2. In both colorations, every color used appears on both endpoints of some edge. In depictions we use solid lines for positive edges and dashed lines for negative edges.

Figure 1: Two properly colored exceptional graphs.

There exist infinitely many exceptional graphs. For example, for non-negative k, if $\chi = 2k$, the complete graph on 4k vertices with a negative perfect matching and all other edges positive is an exceptional graph with maximum

deficiency 0. It remains an open problem to characterize exceptional graphs in terms of their structure.

Theorem 2.1. Let Σ_1 and Σ_2 be signed graphs with maximum deficiencies M_1 and M_2 , respectively. Assume that $M_1 \ge M_2$. Then, with one exception,

$$\chi(\Sigma_1 \vee_+ \Sigma_2) = \max\{\chi_1 + \chi_2 - M_1 - M_2, \chi_1\}$$

Exception: If Σ_1 and Σ_2 both have even chromatic number, exactly one of M_1 and M_2 is odd, and both Σ_1 and Σ_2 are exceptional graphs, then

$$\chi(\Sigma_1 \vee_+ \Sigma_2) = \max\{\chi_1 + \chi_2 - M_1 - M_2 + 1, \chi_1\}.$$

Note that in Theorem 2.1, χ_2 can never be larger than $\chi_1 + \chi_2 - M_1 - M_2$. If $\chi_2 > \chi_1 + \chi_2 - M_1 - M_2$, this would imply that $M_2 > \chi_1 - M_1$. Since $M_1 \leq \frac{1}{2}\chi_1$, we then would have $M_2 > \frac{1}{2}\chi_1 \geq M_1$. This contradicts our assumption that $M_1 \geq M_2$.

Let A be a set of vertices of a signed graph Σ . Switching A is negating the signs of the edges with exactly one endpoint in A. Two signed graphs are switching equivalent if they are related by switching. The chromatic number of a signed graph is the same as the chromatic number of the switched graph. A minimal coloration of the switched graph is simply a byproduct of switching the graph; given a minimal coloration of Σ , the signs of the colors on A are negated during the switching process. Two colorations of Σ , κ and κ^* , are switching equivalent if they are related by switching.

Remark. Theorem 2.1 also holds for the all-negative join of signed graphs. The possible joins of Σ_1 and Σ_2 come in switching equivalent pairs. For a signature σ , let $-\sigma$ be the signature in which the sign of an edge e is $-\sigma(e)$. Then $\Sigma_1 \vee_{\sigma^*} \Sigma_2$ switches to $\Sigma_1 \vee_{-\sigma^*} \Sigma_2$. Thus, $\Sigma_1 \vee_{-} \Sigma_2$ switches to $\Sigma_1 \vee_{+} \Sigma_2$ by switching the vertices of Σ_1 . Furthermore, switching all the vertices of Σ_1 does not change the signs of the edges in Σ_1 or Σ_2 , and thus does not change the maximum deficiencies.

3 Preliminaries

When coloring the graph $\Sigma_1 \vee_+ \Sigma_2$, one cannot use the same color on both the vertices of Σ_1 and Σ_2 . This gives a straightforward lower bound for the chromatic number of the all-positive join.

Lemma 3.1. Let Σ_1 and Σ_2 be signed graphs with maximum deficiencies M_1 and M_2 , respectively. Then $\chi(\Sigma_1 \vee_+ \Sigma_2) \ge \chi_1 + \chi_2 - M_1 - M_2$.

Throughout the proofs of Theorem 2.1, we use several recoloration tools in order to give a proper coloration of the correct size. Define the following replacement types:

Type 1: Let $r \in \mathbb{Z} \setminus \{0\}$. For *i* in the color set of κ , recolor the *i*-color set with the color *r*.

Type 2: For $i \neq 0$ in the color set of κ , such that *i* does not appear on both endpoints of an edge, recolor the *i*-color set with the color 0.

Type 3: Let $r \in \mathbb{Z} \setminus \{0\}$. For *i* and -i in the color set of κ , such that $i \neq 0$, recolor the *i*-color set with the color *r* and the (-i)-color set with the color -r.

Type 4: Let $r_1, r_2 \in \mathbb{Z} \setminus \{0\}$ such that $r_1 \neq -r_2$. For *i* and -i in the color set of κ , such that $i \neq 0$, recolor the *i*-color set with the color r_1 and the (-i)-color set with the color r_2 .

Proposition 3.2. Let Σ be a signed graph with even chromatic number and non-zero maximum deficiency. Then in every minimal coloration with maximum deficiency, the negative of every color in the deficiency set appears on both endpoints of some negative edge.

Proof. Let Σ be a signed graph with even chromatic number χ and non-zero maximum deficiency M. Let κ be a coloration of Σ such that def $(\kappa) = M$. Suppose to the contrary that there exists some $i \in D(\kappa)$ such that -i does not appear on both endpoints of a negative edge. Thus, if $\kappa(v) = -i$, then no neighbor of v is colored -i. Recoloring all vertices colored -i with the color 0 yields a proper coloration since κ did not use the color 0 and no two vertices colored 0 are adjacent. But, the size of the new color set is $\chi - 1$. \Box

4 Chromatic Number χ_1 and the Exceptional Case

Lemma 4.1. If $\chi_1 \ge \chi_1 + \chi_2 - M_1 - M_2$, then $\chi(\Sigma_1 \vee_+ \Sigma_2) = \chi_1$.

Proof. Let κ be a coloration of $\Sigma_1 \vee_+ \Sigma_2$. Then κ restricted to Σ_1 is a proper coloration of Σ_1 . Therefore, the size of the color set must be at least χ_1 .

Now we show there exists a proper coloration of $\Sigma_1 \vee_+ \Sigma_2$ using a color set of size χ_1 . Color $\Sigma_1 \vee_+ \Sigma_2$ in the following way.

- 1. Properly color Σ_1 using $\chi_1 M_1$ colors. Call this coloration κ .
- 2. Properly color Σ_2 using the colors in the deficiency set of κ . This is possible since the deficiency set is made up of M_1 colors with distinct absolute values, and $M_1 > \chi_2 - M_2$, because $\chi_1 > \chi_1 + \chi_2 - M_1 - M_2$.

This coloration is proper on Σ_1 and Σ_2 by definition. Since every join edge is positive, and every color used on Σ_2 does not appear on a vertex of Σ_1 , the coloration is proper on $\Sigma_1 \vee_+ \Sigma_2$. Furthermore, the size of the color set is χ_1 , and therefore, $\chi(\Sigma_1 \vee_+ \Sigma_2) = \chi_1$.

Lemma 4.2 (Exception). Assume that χ_1 and χ_2 are even, $M_1 > M_2$, and $\chi_1 \leq \chi_1 + \chi_2 - M_1 - M_2 + 1$. If exactly one of M_1 and M_2 is odd, and both Σ_1 and Σ_2 are exceptional, then $\chi(\Sigma_1 \vee_+ \Sigma_2) = \chi_1 + \chi_2 - M_1 - M_2 + 1$.

Proof. Let $\chi_1 = 2k_1$ and $\chi_2 = 2k_2$ for some positive integers k_1 and k_2 . By Lemma 3.1 we know that $\chi(\Sigma_1 \vee_+ \Sigma_2) \ge \chi_1 + \chi_2 - M_1 - M_2$.

Suppose that $\chi(\Sigma_1 \vee_+ \Sigma_2) = \chi_1 + \chi_2 - M_1 - M_2$. Note that $\chi_1 + \chi_2 - M_1 - M_2$ is odd. Thus a minimal coloration of $\Sigma_1 \vee_+ \Sigma_2$ must use 0 as a color. Let

 κ be such a coloration. Because all join edges are positive, no color can be used on both Σ_1 and the vertices of Σ_2 . Thus, κ must use $2k_1 - M_1$ colors on Σ_1 and $2k_2 - M_2$ different colors on the vertices of Σ_2 . Therefore κ restricted to Σ_i is a proper coloration using $\chi_i - m_i$ colors. Since both Σ_1 and Σ_2 are exceptional graphs, every color must appear on both endpoints of some negative edge. But the color 0 cannot appear on both endpoints of an edge in a proper coloration. Therefore, $\chi(\Sigma_1 \vee_+ \Sigma_2) > \chi_1 + \chi_2 - M_1 - M_2$.

Now we show that there exists a proper coloration of $\Sigma_1 \vee_+ \Sigma_2$ using a color set of size $\chi_1 + \chi_2 - M_1 - M_2 + 1$. Although the size of the color set will be $\chi_1 + \chi_2 - M_1 - M_2 + 1$, we will only use $\chi_1 + \chi_2 - M_1 - M_2$ colors. Color $\Sigma_1 \vee_+ \Sigma_2$ in the following way.

- 1. Properly color Σ_1 with colors $\pm 1, \pm 2, \ldots, \pm k_1$ using $2k_1 m_1$ colors. Let the M_1 unused colors be $x_1, x_2, \ldots, x_{M_1}$.
- 2. Properly color Σ_2 with colors $\pm 1, \pm 2, \ldots, \pm k_2$ using $2k_2 M_2$ colors. Let the M_2 unused colors be $y_1, y_2, \ldots, y_{M_2}$.
- 3. Make the following Type 1 color replacements on the vertices of Σ_2 :

Old Color	New Color
$-y_1$	$\overline{x_1}$
$-y_2$	$\overline{x_2}$
:	:
$-y_{M_2}$	x_{M_2}

- 4. Using Type 4 replacements, recolor $\frac{M_1-M_2-1}{2}$ more pairs of color in Σ_2 using colors $x_{M_2+1}, \ldots, x_{M_1-1}$. Note that we only go up to x_{M_1-1} since we need an even number of colors for this step.
- 5. Replace the remaining pairs of colors in Σ_2 using Type 3 replacements and colors $\pm (k_1 + 1), \ldots, \pm (k_1 + k_2 \frac{M_1 M_2 1}{2})$.

Call the new coloration κ . Since no colors were changed in Σ_1 , κ is proper on Σ_1 . In Σ_2 all of the color sets were recolored using Type 1, Type 3, and Type 4 replacements, and the original partition of $V(\Sigma_2)$ into color sets was maintained. Thus, the subgraph induced by every color set of κ on Σ_2 is allnegative. Furthermore, if r is a color of κ resulting from a Type 1 or Type 4 replacement, then there are no vertices colored -r in Σ_2 . If r and -r are colors resulting from a Type 3 replacement, then there are no negative edges between the two color sets. Therefore, κ is proper on Σ_2 . Finally, no color is used on the vertices of both Σ_1 and Σ_2 . Thus, κ is proper on $\Sigma_1 \vee_+ \Sigma_2$. Furthermore, the color set is $\{\pm 1, \ldots, \pm (k_1 + k_2 - \frac{M_1 - M_2 - 1}{2})\}$. Therefore,

$$\chi(\Sigma_1 \vee_+ \Sigma_2) = 2\left(k_1 + k_2 - \frac{M_1 - M_2 - 1}{2}\right) = \chi_1 + \chi_2 - M_1 - M_2 + 1. \quad \Box$$

Remark. In the case where $M_2 = 0$, one would simply skip step 3 in the recoloration procedure.

Because it is similar to the proof in the exceptional case, for the remaining cases we leave the proof that the new coloration is both proper and of correct size as an exercise for the reader.

5 Non-Exceptional Cases

Lemma 5.1 $(M_2 = 0)$. Let $M_2 = 0$. Assume Σ_1 and Σ_2 do not satisfy the conditions of the exception and that $\chi_1 < \chi_1 + \chi_2 - M_1 - M_2$. Then $\chi(\Sigma_1 \vee_+ \Sigma_2) = \chi_1 + \chi_2 - M_1 - M_2$.

Proof. We need only show a proper coloration using a color set of size $\chi_1 + \chi_2 - M_1 - M_2$. We have two cases to consider.

Case 1: Suppose M_1 is even. We have two subcases.

Case 1.1: Suppose at least one of χ_1 and χ_2 is even. Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way.

1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1$, and 0 if χ_1 is odd, using $\chi_1 - M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . If χ_1 is odd, 0 must be used.

2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2$, and 0 if χ_1 is even and χ_2 is odd, using χ_2 colors.

Old Color	New Color	Old Color	New Color
1	x_1	$\frac{M_1}{2} + 1$	$k_1 + 1$
-1	x_2	$-(\frac{M_1}{2}+1)$	$-(k_1+1)$
÷	:	÷	÷
$\frac{M_1}{2}$	x_{M_1-1}	k_2	$k_1 + k_2 - \frac{M_1}{2}$
$-\frac{M_1}{2}$	x_{M_1}	$-k_2$	$-(k_1+k_2-\frac{M_1}{2})$

3. Make the following Type 1 and Type 3 replacements on Σ_2 .

Case 1.2: Suppose both χ_1 and χ_2 are odd. That is, $\chi_1 = 2k_1 + 1$ and $\chi_2 = 2k_2 + 1$ for some positive integers k_1 and k_2 . Then create the coloration κ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1, 0$ using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . Note that 0 must be used.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2, 0$ using χ_2 colors.
- 3. Make the following Type 1 and Type 3 replacements on Σ_2 .

Old Color	New Color	Old Color	New Color
1	x_1	$\frac{M_1}{2} + 1$	$k_1 + 1$
-1	x_2	$-(\frac{M_1}{2}+1)$	$-(k_1+1)$
:		÷	
$\frac{M_1}{2}$	$x_{M_{1}-1}$	k_2	$k_1 + k_2 - \frac{M_1}{2}$
$-\frac{M_1}{2}$	x_{M_1}	$-\overline{k_2}$	$-(k_1+k_2-\frac{M_1}{2})$

4. Use Type 1 replacements to recolor the 0-color set in Σ_1 with $k_1 + k_2 - \frac{M_1}{2} + 1$ and to recolor the 0-color set in Σ_2 with $-(k_1 + k_2 - \frac{M_1}{2} + 1)$.

Case 2: Suppose M_1 is odd. We have several cases.

Case 2.1: Suppose both χ_1 and χ_2 are even. Let $\chi_1 = 2k_1$ and $\chi_2 = 2k_2$ for some positive integers k_1 and k_2 . Then either Σ_1 or Σ_2 is not exceptional.

Case: 2.1a: Suppose Σ_1 is not exceptional. Then there exists a coloration using $\chi_1 - M_1$ colors such that there is no edge with both endpoints colored a, for some a in the set of colors used. Call this coloration κ_1 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Color Σ_1 with κ_1 . Let the M_1 unused colors be x_1, \ldots, x_{M_1} . By choice of notation, let a = 1.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2$ using χ_2 colors.
- 3. Use a Type 2 replacement to replace a with 0 in Σ_1 .
- 4. Make the following Type 1 replacements on Σ_2 .

Old Color	New Color
-1	x_1
2	x_2
÷	•••
$\frac{M_1+1}{2}$	x_{M_1-1}
$-\frac{M_{1}+1}{2}$	x_{M_1}

5. Use Type 3 replacements to recolor the remaining $k_2 - \frac{M_1+1}{2}$ pairs of colors in Σ_2 with colors $\pm (k_1 + 1), \ldots, \pm (k_1 + k_2 - \frac{M_1+1}{2})$.

Case 2.1b: Suppose Σ_2 is not exceptional. Then there exists a proper coloration such that no edge has both endpoints colored *a* for some *a* in the color set. Call this coloration κ_2 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1$ and using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} .
- 2. Color Σ_2 with κ_2 using colors $\pm 1, \ldots, \pm k_2$ using χ_2 colors. By choice of notation, let a = 1.
- 3. Make the following Type 1, Type 2, and Type 3 replacements on Σ_2 .

Old Color	New Color	Old Color	New Color
1	0	$\frac{M_1+1}{2}$	$k_1 + 1$
-1	x_{M_1}	$-\frac{M_1+1}{2}$	$-(k_1+1)$
2	x_1	:	:
-2	x_2	$-k_2$	$-(k_1+k_2-\frac{M_1+1}{2})$
:			
$-\left(\frac{M_1-1}{2}\right)$	x_{M_1-1}		

Case 2.2: Suppose $\chi_1 = 2k_1 + 1$ and $\chi_2 = 2k_2$ for some positive integers k_1 and k_2 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1, 0$ using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . Note that 0 must be used.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2$ using χ_2 colors.
- 3. In Σ_1 use a Type 1 replacement to replace 0 with $-(k_1 + 1)$.
- 4. Make the following Type 1 and Type 3 replacements on Σ_2 .

Old Color	New Color	Old Color	New Color
1	x_1	$-\frac{M_1+1}{2}$	$k_1 + 1$
-1	x_2	$\frac{M_1+2}{2}$	$k_1 + 2$
:	•	$-\frac{M_1+2}{2}$	$-(k_1+2)$
$-\left(\frac{M_1-1}{2}\right)$	x_{M_1-1}	:	:
$\frac{M_1+1}{2}$	x_{M_1}	$-k_2$	$-(k_1+k_2-\frac{M_1-1}{2})$

Case 2.3: Suppose $\chi_2 = 2k_2 + 1$ for some positive integer k_2 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1$, and 0 if χ_1 is also odd, using $\chi_1 - M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . If χ_1 is odd, 0 must be used.

2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2, 0$ using χ_2 colors.

Old Color	New Color	Old Color	New Color
1	x_1	$\frac{M_1+1}{2}$	$k_1 + 1$
-1	x_2	$-\frac{M_1+1}{2}$	$-(k_1+1)$
:	•	•	÷
$-\left(\frac{M_1-1}{2}\right)$	x_{M_1-1}	$-k_2$	$-(k_1+k_2-\frac{M_1-1}{2})$
0	x_{M_1}		

3. Make the following Type 1 and Type 3 replacements on Σ_2 .

This concludes the non-exceptional cases where $M_2 = 0$..

Lemma 5.2 $(M_2 > 0)$. Let $M_2 > 0$. Assume that $M_1 \ge M_2$, Σ_1 and Σ_2 are not exceptional, and $\chi_1 < \chi_1 + \chi_2 - M_1 - M_2$. Then $\chi(\Sigma_1 \vee_+ \Sigma_2) = \chi_1 + \chi_2 - M_1 - M_2$.

Proof. We need only show a coloration using a color set of size $\chi_1 + \chi_2 - M_1 - M_2$. We have two cases to consider.

Case 1: Suppose M_1 and M_2 are either both even or both odd. This implies $M_1 - M_2$ is even.

Case 1.1: Suppose $\chi_1 = 2k_1 + 1$ and $\chi_2 = 2k_2 + 1$ for some positive integers k_1 and k_2 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1, 0$ using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . Note that 0 must be used.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2, 0$ using $\chi_2 M_2$ colors. Let the M_2 unused colors be y_1, \ldots, y_{M_2} . Note that 0 must be used.
- 3. In Σ_1 perform a Type 1 replacement and replace 0 with $k_1 + 1$.
- 4. Make the following Type 1 replacements on Σ_2 .

Old Color	New Color
0	$-(k_1+1)$
$-y_1$	x_1
$-y_{2}$	x_2
:	•
$-y_{M_2}$	x_{M_2}

- 5. Replace $\frac{M_1-M_2}{2}$ more pairs of colors in Σ_2 using Type 4 replacements and colors $x_{M_2+1}, \ldots, x_{M_1}$.
- 6. Use Type 3 replacements to recolor the remaining pairs of colors in Σ_2 using $\pm (k_1 + 2), \ldots, \pm (k_1 + k_2 M_2 \frac{M_1 M_2}{2} + 1)$.

Case 1.2: Suppose at least one of χ_1 and χ_2 is even. Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1$, and possibly 0 using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . If χ_1 is odd, 0 must be used.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2$, and possibly 0 using $\chi_2 M_2$ colors. Let the M_2 unused colors be y_1, \ldots, y_{M_2} . If χ_2 is odd, 0 must be used.
- 3. Make the following Type 1 replacements on Σ_2 .

Old Color	New Color
$-y_1$	x_1
$-y_{2}$	x_2
:	:
$-y_{M_2}$	x_{M_2}

- 4. Use Type 4 replacements to recolor $\frac{M_1-M_2}{2}$ more pairs of colors in Σ_2 using $x_{M_2+1}, \ldots, x_{M_1}$.
- 5. Replace the remaining pairs of colors in Σ_2 using Type 3 replacements and colors $\pm (k_1 + 1), \ldots, \pm (k_1 + k_2 M_2 \frac{M_1 M_2}{2})$.

Case 2: Now suppose exactly one of M_1 and M_2 is odd. This implies that $M_1 - M_2$ is odd.

Case 2.1: Suppose $\chi_1 = 2k_1$ and $\chi_2 = 2k_2$ for some positive integers k_1 and k_2 . Then either Σ_1 or Σ_2 is not exceptional.

Case 2.1a: Suppose Σ_1 is not exceptional. Then there exists a coloration using $\chi_1 - M_1$ colors such that there is no edge with both endpoints colored a, for some a in the set of colors used. Call this coloration κ_1 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Color Σ_1 using κ_1 . Let the M_1 unused colors be x_1, \ldots, x_{M_1} . By choice of notation, let a = 1.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2$ using $\chi_2 M_2$ colors. Let the M_2 unused colors be y_1, \ldots, y_{M_2} .
- 3. In Σ_1 perform a Type 2 replacement to replace *a* with 0.
- 4. Make the following Type 1 replacements on Σ_2 .

Old Color	New Color
$-y_1$	x_1
$-y_{2}$	x_2
•	•••
$-y_{M_2-1}$	x_{M_2-1}
$-y_{M_2}$	x_{M_2}

- 5. Use Type 4 replacements to recolor $\frac{M_1-M_2+1}{2}$ more pairs of colors in Σ_2 using $x_{M_2+1}, \ldots, x_{M_1}$ and a.
- 6. Replace the remaining pairs of colors in Σ_2 using Type 3 replacements and colors $\pm (k_1 + 1), \ldots, \pm (k_1 + k_2 - M_2 - \frac{M_1 - M_2 + 1}{2})$.

Case 2.1b: Suppose Σ_2 is not exceptional. Then there exists a coloration using $\chi_2 - M_2$ colors and such that no edge has both endpoints colored a, for some a in the set of used colors. Call this coloration κ_2 . By Lemma 3.2 we know that -a cannot be in the deficiency set of κ . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1$ using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} .
- 2. Color Σ_2 with κ_2 and colors $\pm 1, \ldots, \pm k_2$ Let the M_2 unused colors be y_1, \ldots, y_{M_2} .
- 3. In Σ_2 perform a Type 2 replacement to replace *a* with 0.
- 4. Make the following Type 1 replacements on Σ_2 .

Old Color	New Color
$-y_1$	x_1
$-y_2$	x_2
•••	••••
$-y_{M_2-1}$	x_{M_2-1}
$-y_{M_2}$	x_{M_2}
-a	x_{M_1}

- 5. Replace $\frac{M_1-M_2-1}{2}$ more pairs of colors in Σ_2 using Type 4 replacements and colors $x_{M_2+1}, \ldots, x_{M_1-1}$.
- 6. Use Type 3 replacements to replace the remaining pairs of colors in Σ_2 using $\pm (k_1 + 1), \ldots, \pm (k_1 + k_2 M_2 \frac{M_1 M_2 1}{2} 1)$.

Case 2.2: Suppose $\chi_1 = 2k_1 + 1$ and $\chi_2 = 2k_2$ for some positive integers k_1 and k_2 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1$, and 0 using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . Note that 0 must be used.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2$ using $\chi_2 M_2$ colors. Let the M_2 unused colors be y_1, \ldots, y_{M_2} .
- 3. Make the following Type 1 replacements on Σ_2 .

Old Color	New Color
$-y_1$	x_1
$-y_{2}$	x_2
:	:
$-y_{M_2}$	x_{M_2}

- 4. Use Type 4 replacements to recolor $\frac{M_1-M_2-1}{2}$ more pairs of colors in Σ_2 using $x_{M_2+1}, \ldots, x_{M_1-1}$.
- 5. Of the remaining pairs of colors in Σ_2 , let c, -c be one. Use a Type 4 replacement to replace c with x_{M_1} and -c with $k_1 + 1$.
- 6. In Σ_1 use a Type 1 replacement to replace 0 with $-(k_1 + 1)$.
- 7. Replace the remaining pairs of colors in Σ_2 using Type 3 replacements and colors $\pm (k_1 + 2), \ldots, \pm (k_1 + k_2 M_2 \frac{M_1 M_2 1}{2})$.

Case 2.3: Suppose $\chi_2 = 2k_2 + 1$ for some positive integer k_2 . Then color $\Sigma_1 \vee_+ \Sigma_2$ in the following way:

- 1. Properly color Σ_1 with $\pm 1, \ldots, \pm k_1$, and possibly 0 using $\chi_1 M_1$ colors. Let the M_1 unused colors be x_1, \ldots, x_{M_1} . If χ_1 is odd, 0 must be used.
- 2. Properly color Σ_2 with $\pm 1, \ldots, \pm k_2$, and 0 using $\chi_2 M_2$ colors. Let the M_2 unused colors be y_1, \ldots, y_{M_2} . Note that 0 must be used.
- 3. Make the following Type 1 replacements on Σ_2 .

Old Color	New Color
0	x_{M_1}
$-y_1$	x_1
$-y_2$	x_2
:	
$-y_{M_2}$	x_{M_2}

- 4. Replace $\frac{M_1-M_2-1}{2}$ more pairs of colors in Σ_2 using Type 4 replacements and colors $x_{M_2+1}, \ldots, x_{M_1-1}$.
- 5. Use Type 3 replacements to recolor the remaining pairs of colors in Σ_2 using $\pm (k_1 + 1), \ldots, \pm (k_1 + k_2 M_2 \frac{M_1 M_2 1}{2})$.

This concludes the non-exceptional cases where $M_2 > 0$.

Lemmas 4.1, 4.2, 5, and 5 together prove Theorem 2.1.

References

- Edita Máčajová, André Raspaud, and Martin Škoviera The chromatic number of a signed graph. *Electronic J. Combin.* 23 (2016), no. 1, article P1.14, 10 pp.
- [2] Amelia R. W. Mattern. Deficiency in signed graphs. In preparation.
- [3] Thomas Zaslavsky, Signed graph coloring. Discrete Math. 39 (1982), 215– 228.