Ramsey numbers of 4-uniform loose cycles

G.R. Omidi^{a,b,1}, M. Shahsiah^b

^aDepartment of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran

^bSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran

romidi@cc.iut.ac.ir, m.shahsiah@math.iut.ac.ir

Abstract

Gyárfás, Sárközy and Szemerédi proved that the 2-color Ramsey number $R(\mathcal{C}_n^k, \mathcal{C}_n^k)$ of a k-uniform loose cycle \mathcal{C}_n^k is asymptotically $\frac{1}{2}(2k-1)n$, generating the same result for k=3 due to Haxell et al. Concerning their results, it is conjectured that for every $n \geq m \geq 3$ and $k \geq 3$,

$$R(\mathcal{C}_n^k, \mathcal{C}_m^k) = (k-1)n + \lfloor \frac{m-1}{2} \rfloor.$$

In 2014, the case k=3 is proved by the authors. Recently, the authors showed that this conjecture is true for $n=m\geq 2$ and $k\geq 8$. Their method can be used for case $n=m\geq 2$ and k=7, but more details are required. The only open cases for the above conjecture when n=m are k=4,5,6. Here we investigate to the case k=4and we show that the conjecture holds for k=4 when n>m or n=m is odd. When n=m is even, we show that $R(\mathcal{C}_n^4,\mathcal{C}_n^4)$ is between two values with difference one.

Keywords: Ramsey number, Uniform hypergraph, Loose path, Loose cycle.

AMS subject classification: 05C65, 05C55, 05D10.

Introduction 1

For given k-uniform hypergraphs \mathcal{G} and \mathcal{H} , the Ramsey number $R(\mathcal{G},\mathcal{H})$ is the smallest positive integer N such that in every red-blue coloring of the edges of the complete kuniform hypergraph \mathcal{K}_N^k , there is a red copy of \mathcal{G} or a blue copy of \mathcal{H} . A k-uniform loose cycle C_n^k (shortly, a cycle of length n) is a hypergraph with vertex set $\{v_1, v_2, \dots, v_{n(k-1)}\}$ and with the set of n edges $e_i = \{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \dots, v_{(i-1)(k-1)+k}\}, 1 \le i \le n$, where we use mod n(k-1) arithmetic. Similarly, a k-uniform loose path \mathcal{P}_n^k (shortly, a path of length n) is a hypergraph with vertex set $\{v_1, v_2, \dots, v_{n(k-1)+1}\}$ and with the set of n edges $e_i = \{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \dots, v_{(i-1)(k-1)+k}\}, 1 \le i \le n$. For an edge $e_i = \{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \dots, v_{i(k-1)+1}\}$ of a given loose path (also a given loose cycle) \mathcal{K} , the first vertex $(v_{(i-1)(k-1)+1})$ and the last vertex $(v_{i(k-1)+1})$ are denoted by $f_{\mathcal{K},e_i}$ and $l_{\mathcal{K},e_i}$, respectively. In this paper, we consider the problem of finding the 2-color Ramsey number of 4-uniform loose paths and cycles.

 $^{^{1}}$ This research is partially carried out in the IPM-Isfahan Branch and in part supported by a grant from IPM (No. 92050217).

The investigation of the Ramsey numbers of hypergraph loose cycles was initiated by Haxell et al. in [3]. They proved that $R(\mathcal{C}_n^3, \mathcal{C}_n^3)$ is asymptotically $\frac{5}{2}n$. This result was extended by Gyárfás, Sárközy and Szemerédi [1] to k-uniform loose cycles. More precisely, they proved that for all $\eta > 0$ there exists $n_0 = n_0(\eta)$ such that for every $n > n_0$, every 2-coloring of \mathcal{K}_N^k with $N = (1+\eta)\frac{1}{2}(2k-1)n$ contains a monochromatic copy of \mathcal{C}_n^k .

In [2], Gyárfás and Raeisi determined the value of the Ramsey number of a k-uniform loose triangle and quadrangle. Recently, we proved the following general result on the Ramsey numbers of loose paths and loose cycles in 3-uniform hypergraphs.

Theorem 1.1. [4] For every $n \ge m \ge 3$,

$$R(\mathcal{P}_n^3, \mathcal{P}_m^3) = R(\mathcal{P}_n^3, \mathcal{C}_m^3) = R(\mathcal{C}_n^3, \mathcal{C}_m^3) + 1 = 2n + \left\lfloor \frac{m+1}{2} \right\rfloor.$$

In [5], we presented another proof of Theorem 1.1 and posed the following conjecture.

Conjecture 1. Let $k \geq 3$ be an integer number. For every $n \geq m \geq 3$,

$$R(\mathcal{P}_n^k, \mathcal{P}_m^k) = R(\mathcal{P}_n^k, \mathcal{C}_m^k) = R(\mathcal{C}_n^k, \mathcal{C}_m^k) + 1 = (k-1)n + \lfloor \frac{m+1}{2} \rfloor.$$

Also, the following theorem is obtained on the Ramsey number of loose paths and cycles in k-uniform hypergraphs [5].

Theorem 1.2. [5] Let $n \geq m \geq 2$ be given integers and $R(\mathcal{C}_n^k, \mathcal{C}_m^k) = (k-1)n + \lfloor \frac{m-1}{2} \rfloor$. Then $R(\mathcal{P}_n^k, \mathcal{C}_m^k) = (k-1)n + \lfloor \frac{m+1}{2} \rfloor$ and $R(\mathcal{P}_n^k, \mathcal{P}_{m-1}^k) = (k-1)n + \lfloor \frac{m}{2} \rfloor$. Moreover, for n = m we have $R(\mathcal{P}_n^k, \mathcal{P}_m^k) = (k-1)n + \lfloor \frac{m+1}{2} \rfloor$.

Using Theorem 1.2, one can easily see that Conjecture 1 is equivalent to the following.

Conjecture 2. Let $k \geq 3$ be an integer number. For every $n \geq m \geq 3$,

$$R(\mathcal{C}_n^k, \mathcal{C}_m^k) = (k-1)n + \lfloor \frac{m-1}{2} \rfloor.$$

Recently, it is shown that Conjecture 2 holds for n=m and $k \geq 8$ (see [6]). As we mentioned in [6], our methods can be used to prove Conjecture 2 for n=m and $k \geq 7$. Therefore, based on Theorem 1.1, the cases k=4,5,6 are the only open cases for Conjecture 2 when n=m (the problem of determines the diagonal Ramsey number of loose cycles). In this paper, we investigate Conjecture 2 for k=4. More precisely, we extend the method that used in [5] and we show that Conjecture 2 holds for k=4 where n>m or n=m is odd. When n=m is even we show that $R(\mathcal{C}_n^4, \mathcal{C}_m^4)$ either is the value that is claimed in Conjecture 2 or is equal to this value minus one. Consequently, using Theorem 1.2, we obtained the values of some Ramsey numbers involving paths. Throughout the paper, by Lemma 1 of [2], it suffices to prove only the upper bound for the claimed Ramsey numbers. Throughout the paper, for a 2-edge colored hypergraph \mathcal{H} we denote by \mathcal{H}_{red} and \mathcal{H}_{blue} the induced hypergraphs on red edges and blue edges, respectively. Also we denote by $|\mathcal{H}|$ and $||\mathcal{H}||$ the number of vertices and edges of \mathcal{H} , respectively.

2 Preliminaries

In this section, we prove some lemmas that will be needed in our main results. Also, we recall some results from [2] and [5].

Theorem 2.1. [2] For every $k \geq 3$,

- (a) $R(\mathcal{P}_3^k, \mathcal{P}_3^k) = R(\mathcal{C}_3^k, \mathcal{P}_3^k) = R(\mathcal{C}_3^k, \mathcal{C}_3^k) + 1 = 3k 1,$
- (b) $R(\mathcal{P}_{A}^{k}, \mathcal{P}_{A}^{k}) = R(\mathcal{C}_{A}^{k}, \mathcal{P}_{A}^{k}) = R(\mathcal{C}_{A}^{k}, \mathcal{C}_{A}^{k}) + 1 = 4k 2.$

Theorem 2.2. [5] Let $n, k \geq 3$ be integer numbers. Then

$$R(C_3^k, C_n^k) = (k-1)n + 1.$$

In order to state our main results we need some definitions. Let \mathcal{H} be a 2-edge colored complete 4-uniform hypergraph, \mathcal{P} be a loose path in \mathcal{H} and W be a set of vertices with $W \cap V(\mathcal{P}) = \emptyset$. By a ϖ_{S} -configuration, we mean a copy of \mathcal{P}_{2}^{4} with edges

$${x, a_1, a_2, a_3}, {a_3, a_4, a_5, y},$$

so that $\{x,y\} \subseteq W$ and $S = \{a_j : 1 \leq j \leq 5\} \subseteq (e_{i-1} \setminus \{f_{\mathcal{P},e_{i-1}}\}) \cup e_i \cup e_{i+1}$ is a set of unordered vertices of 3 consecutive edges of \mathcal{P} with $|S \cap (e_{i-1} \setminus \{f_{\mathcal{P},e_{i-1}}\})| \leq 1$. The vertices x and y are called the end vertices of this configuration. A ϖ_S -configuration, $S \subseteq (e_{i-1} \setminus \{f_{\mathcal{P},e_{i-1}}\}) \cup e_i \cup e_{i+1}$, is good if at least one of the vertices of $e_{i+1} \setminus e_i$ is not in S. We say that a monochromatic path $\mathcal{P} = e_1e_2 \dots e_n$ is maximal with respect to (w.r.t. for short) $W \subseteq V(\mathcal{H}) \setminus V(\mathcal{P})$ if there is no $W' \subseteq W$ so that for some $1 \leq r \leq n$ and $1 \leq i \leq n-r+1$,

$$\mathcal{P}' = e_1 e_2 \dots e_{i-1} e'_i e'_{i+1} \dots e'_{i+r} e_{i+r} \dots e_n,$$

is a monochromatic path with n+1 edges and the following properties:

- (i) $V(\mathcal{P}') = V(\mathcal{P}) \cup W'$,
- (ii) if i = 1, then $f_{P',e'_i} = f_{P,e_i}$,
- (iii) if i + r 1 = n, then $l_{P',e'_{i+r}} = l_{P,e_n}$.

Clearly, if \mathcal{P} is maximal w.r.t. W, then it is maximal w.r.t. every $W' \subseteq W$ and also every loose path \mathcal{P}' which is a sub-hypergraph of \mathcal{P} is again maximal w.r.t. W. We use these definitions to deduce the following essential lemma.

Lemma 2.3. Assume that $\mathcal{H} = \mathcal{K}_n^4$ is 2-edge colored red and blue. Let $\mathcal{P} \subseteq \mathcal{H}_{red}$ be a maximal path w.r.t. W, where $W \subseteq V(\mathcal{H}) \setminus V(\mathcal{P})$ and $|W| \ge 4$. For every two consecutive edges e_1 and e_2 of \mathcal{P} there is a good ϖ_S -configuration, say C = fg, in \mathcal{H}_{blue} with end vertices $x \in f$ and $y \in g$ in W and $S \subseteq e_1 \cup e_2$. Moreover, there are two subsets $W_1 \subseteq W$ and $W_2 \subseteq W$ with $|W_1| \ge |W| - 2$ and $|W_2| \ge |W| - 3$ so that for every distinct vertices $x' \in W_1$ and $y' \in W_2$, the path $C' = \left((f \setminus \{x\}) \cup \{x'\} \right) \left((g \setminus \{y\}) \cup \{y'\} \right)$ is also a good ϖ_S -configuration in \mathcal{H}_{blue} with end vertices x' and y' in W.

Proof. Let

$$e_1 = \{v_1, v_2, v_3, v_4\}, e_2 = \{v_4, v_5, v_6, v_7\}.$$

Among different choices of 3 distinct vertices of W, choose a 3-tuple $X=(x_1,x_2,x_3)$ so that E_X has the minimum number of blue edges, where $E_X=\{f_1,f_2,f_3\}$ and

$$f_1 = \{v_1, x_1, v_2, v_5\},$$

$$f_2 = \{v_2, x_2, v_3, v_6\},$$

$$f_3 = \{v_3, x_3, v_4, v_7\}.$$

Note that for $1 \leq i \leq 3$, we have $|f_i \cap (e_2 \setminus \{f_{\mathcal{P},e_2}\})| = 1$. Since \mathcal{P} is a maximal path w.r.t. W, there is $1 \leq j \leq 3$ so that the edge f_j is blue. Otherwise, replacing e_1e_2 by $f_1f_2f_3$ in \mathcal{P} yields a red path \mathcal{P}' with n+1 edges; this is a contradiction. Let $W_1 = (W \setminus \{x_1, x_2, x_3\}) \cup \{x_j\}$. For each vertex $x \in W_1$ the edge $f_x = (f_j \setminus \{x_j\}) \cup \{x\}$ is blue. Otherwise, the number of blue edges in E_Y is less than this number for E_X , where Y is obtained from X by replacing x_j to x. This is a contradiction.

Now we choose h_1, h_2, h_3 as follows. If j = 1, then set

$$h_1 = \{v_1, v_6, v_3\}, h_2 = \{v_3, v_2, v_4\}, h_3 = \{v_4, v_5, v_7\}.$$

If i = 2, then set

$$h_1 = \{v_1, v_2, v_5\}, h_2 = \{v_5, v_6, v_4\}, h_3 = \{v_4, v_3, v_7\}.$$

If i=3, then set

$$h_1 = \{v_1, v_3, v_5\}, h_2 = \{v_5, v_4, v_2\}, h_3 = \{v_2, v_6, v_7\}.$$

Note that in each the above cases, for $1 \leq i \leq 3$, we have $|h_i \cap (f_j \setminus \{x_j\})| = 1$ and $|h_i \cap (e_2 \setminus (f_j \cup \{v_4\}))| \leq 1$. Let $Y = (y_1, y_2, y_3)$ be a 3-tuple of distinct vertices of $W \setminus \{x_j\}$ with minimum number of blue edges in F_Y , where $F_Y = \{g_1, g_2, g_3\}$ and $g_i = h_i \cup \{y_i\}$. Again since \mathcal{P} is maximal w.r.t. W, for some $1 \leq \ell \leq 3$ the edge g_ℓ is blue and also, for each vertex $y_a \in W_2 = (W \setminus \{x_j, y_1, y_2, y_3\}) \cup \{y_\ell\}$ the edge $g_a = (g_\ell \setminus \{y_\ell\}) \cup \{y_a\}$ is blue. Therefore, for every $x' \in W_1$ and $y' \in W_2$, we have C = fg which is our desired configuration, where $f = (f_j \setminus \{x_j\}) \cup \{x'\}$ and $g = (g_\ell \setminus \{y_\ell\}) \cup \{y'\}$. Since $|W_1| = |W| - 2$, each vertex of W, with the exception of at most 2, can be considered as an end vertex of C. Note that this configuration contains at most two vertices of $e_2 \setminus e_1$.

By an argument similar to the proof of Lemma 2.3, we have the following general result.

Lemma 2.4. Assume that $\mathcal{H} = \mathcal{K}_n^4$, is 2-edge colored red and blue. Let $\mathcal{P} \subseteq \mathcal{H}_{red}$ be a maximal path w.r.t. W, where $W \subseteq V(\mathcal{H}) \setminus V(\mathcal{P})$ and $|W| \geq 4$. Let $A_1 = \{f_{\mathcal{P},e_1}\} = \{v_1\}$ and $A_i = V(e_{i-1}) \setminus \{f_{\mathcal{P},e_{i-1}}\}$ for i > 1. Then for every two consecutive edges e_i and e_{i+1} of \mathcal{P} and for each $u \in A_i$ there is a good ϖ_S -configuration, say C = fg, in \mathcal{H}_{blue} with end vertices $x \in f$ and $y \in g$ in W and

$$S \subseteq \Big((e_i \setminus \{f_{\mathcal{P},e_i}\}) \cup \{u\} \Big) \cup \Big(e_{i+1} \setminus \{v\} \Big),$$

for some $v \in A_{i+2}$. Moreover, there are two subsets $W_1 \subseteq W$ and $W_2 \subseteq W$ with $|W_1| \ge |W| - 2$ and $|W_2| \ge |W| - 3$ so that for every distinct vertices $x' \in W_1$ and $y' \in W_2$, the path $C' = (f \setminus \{x\}) \cup \{x'\})(g \setminus \{y\}) \cup \{y'\})$ is also a good ϖ_S -configuration in $\mathcal{H}_{\text{blue}}$ with end vertices x' and y' in W.

The following result is an immediate corollary of Lemma 2.4.

Corollary 2.5. Let $\mathcal{H} = \mathcal{K}_l^4$ be two edge colored red and blue. Also let $\mathcal{P} = e_1 e_2 \dots e_n$, $n \geq 2$, be a maximal red path w.r.t. W, where $W \subseteq V(\mathcal{H}) \setminus V(\mathcal{P})$ and $|W| \geq 4$. Then for some $r \geq 0$ and $W' \subseteq W$ there are two disjoint blue paths \mathcal{Q} and \mathcal{Q}' , with $||\mathcal{Q}|| \geq 2$ and

$$\|Q \cup Q'\| = n - r = \begin{cases} 2(|W'| - 2) & \text{if } \|Q'\| \neq 0, \\ 2(|W'| - 1) & \text{if } \|Q'\| = 0, \end{cases}$$

between W' and $\overline{\mathcal{P}} = e_1 e_2 \dots e_{n-r}$ so that $e \cap W'$ is actually the end vertex of e for each edge $e \in \mathcal{Q} \cup \mathcal{Q}'$ and at least one of the vertices of $e_{n-r} \setminus e_{n-r-1}$ is not in $V(\mathcal{Q}) \cup V(\mathcal{Q}')$. Moreover, if $\|\mathcal{Q}'\| = 0$ then either $x = |W \setminus W'| \in \{1,2\}$ or $x \geq 3$ and $0 \leq r \leq 1$. Otherwise, either $x = |W \setminus W'| = 0$ or $x \geq 1$ and $0 \leq r \leq 1$.

Proof. Let $\mathcal{P} = e_1 e_2 \dots e_n$ be a maximal red path w.r.t. $W, W \subseteq V(\mathcal{H}) \setminus V(\mathcal{P})$, and $e_i = \{v_{(i-1)(k-1)+1}, v_{(i-1)(k-1)+2}, \dots, v_{i(k-1)+1}\}, \qquad i = 1, 2, \dots, n,$ are the edges of \mathcal{P} .

Step 1: Set $\mathcal{P}_1 = \mathcal{P}$, $W_1 = W$ and $\overline{\mathcal{P}}_1 = \mathcal{P}'_1 = e_1 e_2$. Since \mathcal{P} is maximal w.r.t. W_1 , using Lemma 2.3 there is a good ϖ_S -configuration, say $\mathcal{Q}_1 = f_1 g_1$, in $\mathcal{H}_{\text{blue}}$ with end vertices $x \in f_1$ and $y \in g_1$ in W_1 so that $S \subseteq \mathcal{P}'_1$ and \mathcal{Q}_1 does not contain a vertex of $e_2 \setminus e_1$, say u_1 . Set $X_1 = |W \setminus V(\mathcal{Q}_1)|$, $\mathcal{P}_2 = \mathcal{P}_1 \setminus \overline{\mathcal{P}}_1 = e_3 e_4 \dots e_n$ and $W_2 = W$. If $|W_2| = 4$ or $|\mathcal{P}_2| \le 1$, then $\mathcal{Q} = \mathcal{Q}_1$ is a blue path between $W' = W_1 \cap V(\mathcal{Q}_1)$ and $\overline{\mathcal{P}} = \overline{\mathcal{P}}_1$ with desired properties. Otherwise, go to Step 2.

Step 2: Clearly $|W_2| \geq 5$ and $||\mathcal{P}_2|| \geq 2$. Set $\overline{\mathcal{P}}_2 = e_3 e_4$ and $\mathcal{P}'_2 = \left((e_3 \setminus \{f_{\mathcal{P},e_3}\}) \cup \{u_1\}\right) e_4$. Since \mathcal{P} is maximal w.r.t. W_2 , using Lemma 2.4 there is a good ϖ_S -configuration, say $\mathcal{Q}_2 = f_2 g_2$, in $\mathcal{H}_{\text{blue}}$ with end vertices $x \in f_2$ and $y \in g_2$ in W_2 such that $S \subseteq \mathcal{P}'_2$ and \mathcal{Q}_2 does not contain a vertex of $e_4 \setminus e_3$, say u_2 . By Lemma 2.4, there are two subsets $W_{21} \subseteq W_2$ and $W_{22} \subseteq W_2$ with $|W_{21}| \geq |W_2| - 2$ and $|W_{22}| \geq |W_2| - 3$ so that for every distinct vertices $x' \in W_{21}$ and $y' \in W_{22}$, the path $\mathcal{Q}'_2 = \left((f_2 \setminus \{x\}) \cup \{x'\}\right) \left((g_2 \setminus \{y\}) \cup \{y'\}\right)$ is also a good ϖ_S -configuration in $\mathcal{H}_{\text{blue}}$ with end vertices x' and y' in W_2 . Therefore, we may assume that $\bigcup_{i=1}^2 \mathcal{Q}_i$ is either a blue path or the union of two disjoint blue paths. Set $X_2 = |W \setminus \bigcup_{i=1}^2 \mathcal{Q}_i$ and $\mathcal{P}_3 = \mathcal{P}_2 \setminus \overline{\mathcal{P}}_2 = e_5 e_6 \dots e_n$. If $\bigcup_{i=1}^2 \mathcal{Q}_i$ is a blue path \mathcal{Q} with end vertices x_2 and y_2 , then set

$$W_3 = (W_2 \setminus V(\mathcal{Q})) \cup \{x_2, y_2\}.$$

In this case, clearly $|W_3| = |W_2| - 1$. Otherwise, $\bigcup_{i=1}^2 Q_i$ is the union of two disjoint blue paths Q and Q' with end vertices x_2, y_2 and x'_2, y'_2 in W_2 , respectively. In this case, set

$$W_3 = (W_2 \setminus V(Q \cup Q')) \cup \{x_2, y_2, x_2', y_2'\}.$$

Clearly $|W_3| = |W_2|$. If $|W_3| \le 4$ or $||\mathcal{P}_3|| \le 1$, then $\bigcup_{i=1}^2 \mathcal{Q}_i = \mathcal{Q}$ and \emptyset or \mathcal{Q} and \mathcal{Q}' (in the case $\bigcup_{i=1}^2 \mathcal{Q}_i = \mathcal{Q} \cup \mathcal{Q}'$) are the paths between $W' = W \cap \bigcup_{i=1}^2 V(\mathcal{Q}_i)$ and $\overline{\mathcal{P}} = \overline{\mathcal{P}}_1 \cup \overline{\mathcal{P}}_2$ with desired properties. Otherwise, go to Step 3.

Step ℓ ($\ell > 2$): Clearly $|W_{\ell}| \geq 5$ and $||\mathcal{P}_{\ell}|| \geq 2$. Set

$$\overline{\mathcal{P}}_{\ell} = e_{2\ell-1}e_{2\ell},$$

$$\mathcal{P}'_{\ell} = \left((e_{2\ell-1} \setminus \{f_{\mathcal{P}, e_{2\ell-1}}\}) \cup \{u_{\ell-1}\} \right) e_{2\ell}.$$

Since \mathcal{P} is maximal w.r.t. W_{ℓ} , using Lemma 2.4 there is a good ϖ_S -configuration, say $\mathcal{Q}_{\ell} = f_{\ell}g_{\ell}$, in $\mathcal{H}_{\text{blue}}$ with end vertices $x \in f_{\ell}$ and $y \in g_{\ell}$ in W_{ℓ} such that \mathcal{Q}_{ℓ} does not contain a vertex of $e_{2\ell} \setminus e_{2\ell-1}$, say u_{ℓ} . By Lemma 2.4, there are two subsets $W_{\ell 1} \subseteq W_{\ell}$ and $W_{\ell 2} \subseteq W_{\ell}$ with $|W_{\ell 1}| \geq |W_{\ell}| - 2$ and $|W_{\ell 2}| \geq |W_{\ell}| - 3$ so that for every distinct vertices $x' \in W_{\ell 1}$ and $y' \in W_{\ell 2}$, the path $\mathcal{Q}'_{\ell} = \left((f_{\ell} \setminus \{x\}) \cup \{x'\}\right) \left((g_{\ell} \setminus \{y\}) \cup \{y'\}\right)$ is also a good ϖ_S -configuration in $\mathcal{H}_{\text{blue}}$ with end vertices x' and y' in W_{ℓ} . Therefore, we may assume that either $\bigcup_{i=1}^{\ell} \mathcal{Q}_i$ is a blue path \mathcal{Q} with end vertices in W_{ℓ} or we have two disjoint blue paths \mathcal{Q} and \mathcal{Q}' with end vertices in W_{ℓ} so that $\mathcal{Q} \cup \mathcal{Q}' = \bigcup_{i=1}^{\ell} \mathcal{Q}_i$.

Set $X_{\ell} = |W \setminus \bigcup_{i=1}^{\ell} V(\mathcal{Q}_i)|$ and $\mathcal{P}_{\ell+1} = \mathcal{P}_{\ell} \setminus \overline{\mathcal{P}}_{\ell} = e_{2\ell+1}e_{2\ell+2}\dots e_n$. If $\bigcup_{i=1}^{\ell} \mathcal{Q}_i$ is a blue path \mathcal{Q} with end vertices x_{ℓ} and y_{ℓ} , then set

$$W_{\ell+1} = (W_{\ell} \setminus V(\mathcal{Q})) \cup \{x_{\ell}, y_{\ell}\}.$$

Note that in this case, $|W_{\ell}| - 2 \le |W_{\ell+1}| \le |W_{\ell}| - 1$. Otherwise, $\bigcup_{i=1}^{\ell} Q_i$ is the union of two disjoint blue paths Q and Q' with end vertices x_{ℓ}, y_{ℓ} and x'_{ℓ}, y'_{ℓ} , respectively. In this case, set

$$W_{\ell+1} = \Big(W_{\ell} \setminus V(\mathcal{Q} \cup \mathcal{Q}')\Big) \cup \{x_{\ell}, y_{\ell}, x_{\ell}', y_{\ell}'\}.$$

Clearly, $|W_{\ell}| - 1 \le |W_{\ell+1}| \le |W_{\ell}|$.

If $|W_{\ell+1}| \leq 4$ or $||\mathcal{P}_{\ell+1}|| \leq 1$, then $\bigcup_{i=1}^{\ell} \mathcal{Q}_i = \mathcal{Q}$ and \emptyset or \mathcal{Q} and \mathcal{Q}' (in the case $\bigcup_{i=1}^{\ell} \mathcal{Q}_i = \mathcal{Q} \cup \mathcal{Q}'$) are the paths with the desired properties. Otherwise, go to Step $\ell+1$.

Let $t \geq 2$ be the minimum integer for which we have either $|W_t| \leq 4$ or $||\mathcal{P}_t|| \leq 1$. Set $x = X_{t-1}$ and $r = ||\mathcal{P}_t|| = n - 2(t-1)$. So $\bigcup_{i=1}^{t-1} \mathcal{Q}_i$ is either a blue path \mathcal{Q} or the union two disjoint blue paths \mathcal{Q} and \mathcal{Q}' between $\overline{\mathcal{P}} = e_1 e_2 \dots e_{n-r}$ and $W' = W \cap (\bigcup_{i=1}^{t-1} V(\mathcal{Q}_i))$ with the desired properties. If $\bigcup_{i=1}^{t-1} \mathcal{Q}_i$ is a blue path \mathcal{Q} , then either $x \in \{1,2\}$ or $x \geq 3$ and $0 \leq r \leq 1$. Otherwise, $\bigcup_{i=1}^{t-1} \mathcal{Q}_i$ is the union of two disjoint blue paths \mathcal{Q} and \mathcal{Q}' and we have either x = 0 or $x \geq 1$ and $0 \leq r \leq 1$.

3 Ramsey number of 4-uniform loose cycles

In this section we investigate Conjecture 2 for k=4. Indeed, we determine the exact value of $R(\mathcal{C}_n^4, \mathcal{C}_m^4)$, where $n > m \geq 3$ and n=m is odd. When n=m is even, we show that $R(\mathcal{C}_n^4, \mathcal{C}_n^4)$ is between two values with difference one. For this purpose we need the following essential lemma.

Lemma 3.1. Let $n \ge m \ge 3$, $(n, m) \ne (3, 3), (4, 3), (4, 4)$ and

$$t = \begin{cases} \lfloor \frac{m-1}{2} \rfloor & \text{if } n > m ,\\ \lfloor \frac{m}{2} \rfloor & \text{otherwise.} \end{cases}$$

Assume that $\mathcal{H} = \mathcal{K}_{3n+t}^4$ is 2-edge colored red and blue and there is no copy of \mathcal{C}_n^4 in \mathcal{H}_{red} . If $\mathcal{C} = \mathcal{C}_{n-1}^4 \subseteq \mathcal{H}_{red}$, then $\mathcal{C}_m^4 \subseteq \mathcal{H}_{blue}$.

Proof. Let $C = e_1 e_2 \dots e_{n-1}$ be a copy of C_{n-1}^4 in \mathcal{H}_{red} with edges

$$e_j = \{v_{3j-2}, v_{3j-1}, v_{3j}, v_{3j+1}\} \pmod{3(n-1)}, \qquad 1 \le j \le n-1,$$

and $W = V(\mathcal{H}) \setminus V(\mathcal{C})$. So we have |W| = t + 3. Consider the following cases:

Case 1. For some edge $e_i = \{v_{3i-2}, v_{3i-1}, v_{3i}, v_{3i+1}\}, 1 \le i \le n-1$, there is a vertex $z \in W$ such that at least one of the edges $e = \{v_{3i-1}, v_{3i}, v_{3i+1}, z\}$ or $e' = \{v_{3i-2}, v_{3i-1}, v_{3i}, z\}$ is red.

We can clearly assume that the edge $e = \{v_{3i-1}, v_{3i}, v_{3i+1}, z\}$ is red. Set

$$\mathcal{P} = e_{i+1}e_{i+2}\dots e_{n-1}e_1e_2\dots e_{i-2}e_{i-1}$$

and $W_0 = W \setminus \{z\}$ (If the edge $\{v_{3i-2}, v_{3i-1}, v_{3i}, z\}$ is red, consider the path

$$\mathcal{P} = e_{i-1}e_{i-2}\dots e_2e_1e_{n-1}\dots e_{i+2}e_{i+1}$$

and do the following process to get a blue copy of \mathcal{C}_m^4).

First let $m \leq 4$. Since $n \geq 5$, we have $t = \lfloor \frac{m-1}{2} \rfloor = 1$ and hence $|W_0| = 3$. Let $W_0 = \{u_1, u_2, u_3\}$. We show that $\mathcal{H}_{\text{blue}}$ contains \mathcal{C}_m^4 for each $m \in \{3, 4\}$. Set $f_1 = \{u_1, v_{3i-3}, v_{3i-1}, u_2\}$, $f_2 = \{u_2, v_{3i-4}, v_{3i}, u_3\}$ and $f_3 = \{u_3, z, v_{3i-2}, u_1\}$. Since there is no red copy of \mathcal{C}_n^4 , the edges f_1, f_2 and f_3 are blue. If not, let the edge $f_j, 1 \leq j \leq 3$, is red. Then $f_j e e_{i+1} \dots e_{n-1} e_1 \dots e_{i-1}$ is a red copy of \mathcal{C}_n^4 , a contradiction. So $f_1 f_2 f_3$ is a blue copy of \mathcal{C}_3^4 . Also, since there is no red copy of \mathcal{C}_n^4 , the path $\mathcal{P}' = e_{i-3} e_{i-2}$ (we use mod (n-1) arithmetic) is maximal w.r.t. $W = W_0 \cup \{z\}$. Using Lemma 2.4, there is a good ϖ_S -configuration, say C = fg, in $\mathcal{H}_{\text{blue}}$ with end vertices $x \in f$ and $y \in g$ in W and $S \subseteq e_{i-3} e_{i-2}$. Note that, by Lemma 2.4, there are two subsets W_1 and W_2 of W with $|W_1| \geq 2$ and $|W_2| \geq 1$ so that for every distinct vertices $x' \in W_1$ and $y' \in W_2$, the path $C' = \left((f \setminus \{x\}) \cup \{x'\}\right) \left((g \setminus \{y\}) \cup \{y'\}\right)$ is also a good ϖ_S -configuration in $\mathcal{H}_{\text{blue}}$ with end vertices x' and y' in W. Clearly, at least one of the vertices of W_0 , say u_1 , is an end

vertex of C. Let $u \in W_0 \setminus V(C)$. Set $g_1 = \{u_2, u_3, z, v_{3i-2}\}$ and $g_2 = \{u, v_{3i-3}, v_{3i-1}, u_1\}$. Since the edge e is red, the edges g_1 and g_2 are blue (otherwise, we can find a red copy of \mathcal{C}_n^4) and Cg_1g_2 is a blue copy of \mathcal{C}_4^4 .

Now let $m \geq 5$. Clearly $|W_0| = t + 2 \geq 4$. Since there is no red copy of C_n^4 , \mathcal{P} is a maximal path w.r.t. W_0 . Applying Corollary 2.5, there are two disjoint blue paths \mathcal{Q} and \mathcal{Q}' between $\overline{\mathcal{P}}$, the path obtained from \mathcal{P} by deleting the last r edges for some $r \geq 0$, and $W' \subseteq W_0$ with the mentioned properties. Consider the paths \mathcal{Q} and \mathcal{Q}' with $\|\mathcal{Q}\| \geq \|\mathcal{Q}'\|$ so that $\ell' = \|\mathcal{Q} \cup \mathcal{Q}'\|$ is maximum. Among these paths choose \mathcal{Q} and \mathcal{Q}' , where $\|\mathcal{Q}\|$ is maximum. Since $\|\mathcal{P}\| = n - 2$, by Corollary 2.5, we have $r = n - 2 - \ell'$.

Subcase 1. $\|Q'\| \neq 0$.

Set $T = W_0 \setminus W'$. Let x, y and x', y' be the end vertices of \mathcal{Q} and \mathcal{Q}' in W', respectively. Using Corollary 2.5, we have one of the following cases:

I. $|T| \ge 2$.
It is easy to see that $\ell' < 2t - 4$

It is easy to see that $\ell' \leq 2t - 4$ and so $r \geq 2$. Hence this case does not occur by Corollary 2.5.

II. |T| = 1.

Let $T = \{u\}$. One can easily check that $\ell' = 2t - 2$. If n > m, then $r \geq 2$, a contradiction to Corollary 2.5. Therefore, we may assume that n = m. If n is even, then $\ell' = n - 2$. Remove the last two edges of $\mathcal{Q} \cup \mathcal{Q}'$ to get two disjoint blue paths $\overline{\mathcal{Q}}$ and $\overline{\mathcal{Q}'}$ so that $\|\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'}\| = n - 4$ and $(\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'}) \cap ((e_{i-2} \setminus \{f_{\mathcal{P}, e_{i-2}}\}) \cup e_{i-1}) = \emptyset$ (note that by the proof of Corollary 2.5, this is possible). By Corollary 2.5, there is a vertex $w \in e_{i-3} \setminus e_{i-4}$ so that $w \notin V(\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'})$. We can without loss of generality assume that $\mathcal{Q} = \overline{\mathcal{Q}}$. First let $\|\overline{\mathcal{Q}'}\| > 0$ and x', y'' with $y'' \neq y'$ be end vertices of $\overline{\mathcal{Q}'}$ in W'. Set

$$f_1 = \{y'', v_{3i-3}, v_{3i-1}, u\}, f_2 = \{u, z, v_{3i-2}, y'\}, f_3 = \{y', v_{3i}, v_{3i-4}, x\}.$$

Since the edge e is red, then the edges f_i , $1 \leq i \leq 3$, are blue (otherwise we can find a red copy of \mathcal{C}_n^4 , a contradiction to our assumption). If the edge $f = \{y, w, v_{3i-7}, x'\}$ is blue, then $Qf\overline{Q'}f_1f_2f_3$ is a copy of \mathcal{C}_m^4 in $\mathcal{H}_{\text{blue}}$. Otherwise, the edge $g = \{y, v_{3i-6}, v_{3i-5}, y''\}$ is blue (if not, $fge_{i-1} \dots e_{n-1}e_1 \dots e_{i-3}$ is a red copy of \mathcal{C}_n^4 , a contradiction). Also, since there is no red copy of \mathcal{C}_n^4 , the edges

$$g_1 = \{x', v_{3i-3}, v_{3i-1}, u\}, g_2 = \{u, z, v_{3i-2}, y'\}, g_3 = \{y', v_{3i}, v_{3i-4}, x\},$$

are blue. Clearly $Qg\overline{Q'}g_1g_2g_3$ is a blue copy of \mathcal{C}_m^4 . Now, we may assume that $\|\overline{Q'}\| = 0$. In this case, set $f' = \{y, w, v_{3i-7}, x'\}$. If the edge f' is blue, then $Qf'g_1g_2g_3$ is a blue copy of \mathcal{C}_m^4 . Otherwise, the edge $g' = \{y, v_{3i-6}, v_{3i-5}, y'\}$ is blue (if not, $f'g'e_{i-1} \dots e_{n-1}e_1 \dots e_{i-3}$ makes a red \mathcal{C}_n^4). Similarly, since there is no red copy of \mathcal{C}_n^4 and the edge e is red,

$$Qg'\{y', v_{3i-3}, v_{3i-1}, u\}\{u, z, v_{3i-2}, x'\}\{x', v_{3i}, v_{3i-4}, x\},\$$

is a blue copy of \mathcal{C}_m^4 .

Therefore, we may assume that n is odd. Clearly, $\ell' = n - 3$ and $r \ge 1$. Again, since there is no red copy of \mathcal{C}_n^4 , the edges

$$h_1 = \{y, v_{3i-4}, v_{3i-1}, x'\}, h_2 = \{y', v_{3i-2}, z, u\}, h_3 = \{u, v_{3i}, v_{3i-3}, x\},\$$

are blue and $Qh_1Q'h_2h_3$, makes a copy of C_m^4 in $\mathcal{H}_{\text{blue}}$.

III. |T| = 0.

Clearly we have $\ell' = 2t$. First let m be odd. Therefore, we have $\ell' = m - 1$. Remove the last two edges of $Q \cup Q'$ to get two disjoint blue paths \overline{Q} and $\overline{Q'}$ so that $\|\overline{Q} \cup \overline{Q'}\| = m - 3$ and $(\overline{Q} \cup \overline{Q'}) \cap ((e_{i-2} \setminus \{f_{\mathcal{P}, e_{i-2}}\}) \cup e_{i-1}) = \emptyset$ (this is possible, by the proof of Corollary 2.5). We can without loss of generality assume that $Q = \overline{Q}$. First let $\|\overline{Q'}\| > 0$ and x', y'' with $y'' \neq y'$ be end vertices of $\overline{Q'}$ in W'. Since the edge e is red and there is no red copy of \mathcal{C}_n^4 , the edges

$$f_1 = \{y, v_{3i-3}, v_{3i-1}, x'\}, f_2 = \{y'', v_{3i-4}, v_{3i}, y'\}, f_3 = \{y', z, v_{3i-2}, x\},$$

are blue and so $Qf_1\overline{Q'}f_2f_3$ is a blue copy of C_m^4 . Now let $\|\overline{Q'}\| = 0$. Again, since there is no red copy of C_n^4 , the edge $g_1 = \{x', v_{3i-4}, v_{3i}, y'\}$ is blue and $Qf_1g_1f_3$, is a blue copy of C_m^4 .

Now let m be even. If n > m, then $\ell' = m - 2$ and $r \ge 1$. Clearly,

$$Q\{y, v_{3i-3}, v_{3i-1}, x'\}Q'\{y', v_{3i}, v_{3i-4}, x\},$$

is a blue copy of \mathcal{C}_m^4 . Therefore, we may assume that n=m. Thereby $\ell'=m$. Remove the last two edges of $\mathcal{Q}\cup\mathcal{Q}'$ to get two disjoint blue paths $\overline{\mathcal{Q}}$ and $\overline{\mathcal{Q}'}$ so that $\|\overline{\mathcal{Q}}\cup\overline{\mathcal{Q}'}\|=m-2$ and $(\overline{\mathcal{Q}}\cup\overline{\mathcal{Q}'})\cap((e_{i-2}\setminus\{f_{\mathcal{P},e_{i-2}}\})\cup e_{i-1})=\emptyset$. We can without loss of generality assume that $\mathcal{Q}=\overline{\mathcal{Q}}$. First let $\|\overline{\mathcal{Q}'}\|>0$ and x',y'' with $y''\neq y'$ be end vertices of $\overline{\mathcal{Q}'}$ in W'. Since there is no red copy of \mathcal{C}_n^4 , the edges $h_1=\{y,v_{3i-3},v_{3i-1},x'\}$ and $h_2=\{y'',v_{3i},v_{3i-4},x\}$ are blue and $\mathcal{Q}h_1\overline{\mathcal{Q}'}h_2$ forms a blue copy of \mathcal{C}_m^4 . If $\|\overline{\mathcal{Q}'}\|=0$, then $\mathcal{Q}h_1\{x',v_{3i},v_{3i-4},x\}$ is a blue copy of \mathcal{C}_m^4 .

Subcase 2. $\|Q'\| = 0$.

Let x and y be the end vertices of Q in W' and $T = W_0 \setminus W'$. Using Corollary 2.5 we have the following:

- I. $|T| \ge 3$. In this case, clearly $\ell' \le 2(t-2)$ and so $r \ge 2$. This is a contradiction to Corollary 2.5.
- II. |T| = 2. Let $T = \{u_1, u_2\}$. So we have $\ell' = 2t - 2$. First let m be odd. Hence, $\ell' = m - 3$ and $r \ge 1$. Since there is no red copy of \mathcal{C}_n^4 and the edge e is red, the edges

$$f_1 = \{y, v_{3i-4}, v_{3i-1}, u_1\}, f_2 = \{u_1, v_{3i-3}, v_{3i}, u_2\}, f_3 = \{u_2, z, v_{3i-2}, x\},$$

are blue. If not, suppose that the edge f_j , $1 \leq j \leq 3$, is red. So $f_j e e_{i+1} e_{i+2} \dots e_{n-1} e_1 \dots e_{i-1}$ is a red copy of \mathcal{C}_n^4 , a contradiction. Thereby, $\mathcal{Q} f_1 f_2 f_3$ makes a blue copy of \mathcal{C}_m^4 .

Now let m be even. If n > m, then $\ell' = m - 4$ and $r \ge 3$. Using Corollary 2.5, there is a vertex $w \in e_{i-4} \setminus e_{i-5}$ so that $w \notin V(\mathcal{Q})$. Since \mathcal{P} is maximal w.r.t. $\overline{W} = \{x, y, u_1, u_2, z\}$, using Lemma 2.4, there is a good ϖ_S -configuration, say $C_1 = fg$, in $\mathcal{H}_{\text{blue}}$ with end vertices $x' \in f$ and $y' \in g$ in \overline{W} and

$$S \subseteq \left((e_{i-3} \setminus f_{\mathcal{P}, e_{i-3}}) \cup \{w\} \right) \cup e_{i-2}.$$

Moreover, by Lemma 2.4, there are two subsets W_1 and W_2 of \overline{W} with $|W_1| \geq 3$ and $|W_2| \geq 2$ so that for every distinct vertices $\overline{x'} \in W_1$ and $\overline{y'} \in W_2$, the path $C'_1 = \left((f \setminus \{x'\}) \cup \{\overline{x'}\} \right) \left((g \setminus \{y'\}) \cup \{\overline{y'}\} \right)$ is also a good ϖ_S -configuration in $\mathcal{H}_{\text{blue}}$ with end vertices $\overline{x'}$ and $\overline{y'}$ in \overline{W} . Since $|W_1| \geq 3$ and ℓ' is maximum, we may assume that y and z or x and z are end vertices of C_1 in \overline{W} . By symmetry suppose that y and z are end vertices of C_1 in \overline{W} . Since there is no red copy of \mathcal{C}_n^4 and the edge e is red, then

$$QC_1\{z, v_{3i-2}, u_1, u_2\}\{u_2, v_{3i-1}, v_{3i-3}, x\},\$$

is a blue copy of \mathcal{C}_m^4 . Now, we may assume that n=m. Clearly $\ell'=m-2$. By Corollary 2.5, there is a vertex $w' \in e_{i-1} \setminus e_{i-2}$ so that $w' \notin V(\mathcal{Q})$. Again, since there is no copy of \mathcal{C}_n^4 in \mathcal{H}_{red} , so

$$Q\{y, u_1, v_{3i-1}, w'\}\{w', v_{3i}, u_2, x\},\$$

is a blue copy of \mathcal{C}_m^4 .

III. |T| = 1.

Clearly $\ell' = 2t$. Let $T = \{u_1\}$. First let m be odd. Therefore, $\ell' = m - 1$. By Corollary 2.5 there is a vertex $w \in e_{i-1} \setminus e_{i-2}$ so that $w \notin V(\mathcal{Q})$. Clearly the edge $g = \{y, w, z, x\}$ is blue (otherwise $gee_{i+1} \dots e_{n-1}e_1 \dots e_{i-1}$ makes a red copy of \mathcal{C}_n^4). Thereby $\mathcal{Q}g$ is a blue \mathcal{C}_m^4 . Now, suppose that m is even. If n > m, then $\ell' = m - 2$ and $r \geq 1$. Since the edge e is red and there is no red copy of \mathcal{C}_n^4 ,

$$Q\{y, v_{3i-2}, z, u_1\}\{u_1, v_{3i-1}, v_{3i-3}, x\},\$$

is a copy of C_m^4 in $\mathcal{H}_{\text{blue}}$. If n=m, then $\ell'=m$. In this case, remove the last two edges of \mathcal{Q} to get two disjoint blue paths $\overline{\mathcal{Q}}$ and $\overline{\mathcal{Q}'}$ so that $\|\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'}\| = m-2$ and $(\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'}) \cap ((e_{i-2} \setminus \{f_{\mathcal{P},e_{i-2}}\}) \cup e_{i-1}) = \emptyset$. By symmetry we may assume that $\|\overline{\mathcal{Q}}\| \geq \|\overline{\mathcal{Q}'}\|$. First suppose that $\|\overline{\mathcal{Q}'}\| = 0$. Then we may suppose that x, y' with $y' \neq y$ be end vertices of $\overline{\mathcal{Q}}$ in W'. Since there is no red copy of C_n^4 and the edge e is red, the edges $h_1 = \{y', v_{3i-3}, v_{3i-1}, y\}$ and $h_2 = \{y, v_{3i}, v_{3i-4}, x\}$ are blue and $\overline{\mathcal{Q}}h_1h_2$ forms a blue copy of C_m^4 . So we may assume that $\|\overline{\mathcal{Q}'}\| > 0$. Let x', y' and x'', y'' be end vertices of $\overline{\mathcal{Q}}$ and $\overline{\mathcal{Q}'}$ in W', respectively. One can easily check that

$$\overline{Q}\{y', v_{3i-3}, v_{3i-1}, x''\}\overline{Q'}\{y'', v_{3i}, v_{3i-4}, x'\},$$

is a blue copy of \mathcal{C}_m^4 .

IV. |T| = 0.

Clearly, we have $\ell' = 2t + 2$. First let m be odd. Therefore, $\ell' = m + 1$. Remove the last two edges of \mathcal{Q} to get two disjoint blue paths $\overline{\mathcal{Q}}$ and $\overline{\mathcal{Q}'}$ so that $\|\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'}\| = m - 1$ and $(\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'}) \cap ((e_{i-2} \setminus \{f_{\mathcal{P}, e_{i-2}}\}) \cup e_{i-1}) = \emptyset$. By symmetry we may assume that $\|\overline{\mathcal{Q}}\| \ge \|\overline{\mathcal{Q}'}\|$. If $\|\overline{\mathcal{Q}'}\| = 0$, then we may suppose that x, y' with $y' \neq y$ be end vertices of $\overline{\mathcal{Q}}$ in W'. Clearly the edge $g = \{y', v_{3i-2}, z, x\}$ is blue (otherwise $gee_{i+1} \dots e_{n-1}e_1 \dots e_{i-1}$ makes a red copy of \mathcal{C}_n^4). Thereby $\overline{\mathcal{Q}}g$ is a blue \mathcal{C}_m^4 . If $\|\overline{\mathcal{Q}'}\| > 0$, then remove the last two edges of $\overline{\mathcal{Q}} \cup \overline{\mathcal{Q}'}$. By an argument similar to the case $\|\mathcal{Q}'\| \neq 0$ and |T| = 0, we can find a blue copy of \mathcal{C}_m^4 . When m is even, by removing the last two edges of \mathcal{Q} , one of the before cases holds. So we omit the proof here.

Case 2. For every edge $e_i = \{v_{3i-2}, v_{3i-1}, v_{3i}, v_{3i+1}\}, 1 \le i \le n-1$, and every vertex $z \in W$, the edges $\{v_{3i-1}, v_{3i}, v_{3i+1}, z\}$ and $\{v_{3i-2}, v_{3i-1}, v_{3i}, z\}$ are blue.

Let $W = \{x_1, x_2, \dots, x_t, u_1, u_2, u_3\}$. We have two following subcases:

Subcase 1. For some edge $e_j = \{v_{3j-2}, v_{3j-1}, v_{3j}, v_{3j+1}\}, 1 \leq j \leq n-1$, there are vertices u and v in W so that at least one of the edges $\{v_{3j-2}, v_{3j-1}, u, v\}$ or $\{v_{3j}, v_{3j+1}, u, v\}$ is blue.

We can without loss of generality assume that the edge $\{v_{3j-2}, v_{3j-1}, u, v\}$ is blue (if the edge $\{v_{3j}, v_{3j+1}, u, v\}$ is blue, the proof is similar). By symmetry we may assume that $e_j = e_1$ and $\{u, v\} = \{u_1, u_2\}$. Set

$$e'_0 = (e_1 \setminus \{v_3, v_4\}) \cup \{u_1, u_2\},$$

 $e'_1 = (e_1 \setminus \{v_1\}) \cup \{x_1\}$

For $2 \le i \le m-2$ set

$$e'_i = \begin{cases} (e_i \setminus \{l_{\mathcal{C}, e_i}\}) \cup \{x_{\frac{i+1}{2}}\} & \text{if } i \text{ is odd,} \\ \\ (e_i \setminus \{f_{\mathcal{C}, e_i}\}) \cup \{x_{\frac{i}{2}}\} & \text{if } i \text{ is even.} \end{cases}$$

Also, let

$$e'_{m-1} = \begin{cases} (e_{m-1} \setminus \{l_{\mathcal{C}, e_{m-1}}\}) \cup \{u_1\} & \text{if } m \text{ is even,} \\ (e_{m-1} \setminus \{f_{\mathcal{C}, e_{m-1}}\}) \cup \{x_{\frac{m-1}{2}}\} & \text{if } m \text{ is odd.} \end{cases}$$

Thereby, $e_0'e_1'\ldots e_{m-1}'$ forms a blue copy of \mathcal{C}_m^4 .

Subcase 2. For every edge $e_j = \{v_{3j-2}, v_{3j-1}, v_{3j}, v_{3j+1}\}, 1 \leq j \leq n-1$, and every vertices u, v in W, the edges $\{v_{3j-2}, v_{3j-1}, u, v\}$ and $\{v_{3j}, v_{3j+1}, u, v\}$ are red. One can easily check that

$$\{v_1, v_2, u_1, u_2\}\{u_2, u_3, v_3, v_4\}e_2 \dots e_{n-1},$$

is a red copy of \mathcal{C}_n^4 . This contradiction completes the proof.

The following results are the main results of this section.

Theorem 3.2. For every $n \ge m + 1 \ge 4$,

$$R(\mathcal{C}_n^4, \mathcal{C}_m^4) = 3n + \left| \frac{m-1}{2} \right|.$$

Proof. We give a proof by induction on m+n. By Theorems 2.1 and 2.2 we may assume that $n \geq 5$. Suppose to the contrary that $\mathcal{H} = \mathcal{K}_{3n+\lfloor \frac{m-1}{2} \rfloor}^4$ is 2-edge colored red and blue with no red copy of \mathcal{C}_n^4 and no blue copy of \mathcal{C}_m^4 . Consider the following cases:

Case 1. n = m + 1.

By induction hypothesis,

$$R(\mathcal{C}_{n-1}^4, \mathcal{C}_{n-2}^4) = 3(n-1) + \left| \frac{n-3}{2} \right| < 3n + \left| \frac{n-2}{2} \right|.$$

If there is a copy of C_{n-1}^4 in \mathcal{H}_{red} , then using Lemma 3.1 we have a blue copy of C_{n-1}^4 . So we may assume that there is no red copy of C_{n-1}^4 . Therefore, there is a copy of C_{n-2}^4 in \mathcal{H}_{blue} . Since there is no blue copy of C_{n-1}^4 , applying Lemma 3.1, we have a red copy of C_{n-1}^4 . This is a contradiction to our assumption.

Case 2. n > m + 1.

By the induction hypothesis

$$R(\mathcal{C}_{n-1}^4, \mathcal{C}_m^4) = 3(n-1) + \left\lfloor \frac{m-1}{2} \right\rfloor < 3n + \left\lfloor \frac{m-1}{2} \right\rfloor.$$

Since there is no blue copy of C_m^4 , we have a copy of C_{n-1}^4 in \mathcal{H}_{red} . Using Lemma 3.1, we have a blue copy of C_m^4 . This contradiction completes the proof.

Theorem 3.3. For every $n \geq 4$,

$$R(\mathcal{C}_n^4, \mathcal{C}_n^4) \le 3n + \left\lfloor \frac{n}{2} \right\rfloor.$$

Proof. We give a proof by induction on n. Applying Theorem 2.1 the statement is true for n=4. Suppose that, on the contrary, the edges of $\mathcal{H}=\mathcal{K}_{3n+\lfloor\frac{n}{2}\rfloor}^3$ can be colored red and blue with no red copy of \mathcal{C}_n^4 and no blue copy of \mathcal{C}_n^4 . By the induction assumption,

$$R(\mathcal{C}_{n-1}^4, \mathcal{C}_{n-1}^4) \le 3(n-1) + \left\lfloor \frac{n-1}{2} \right\rfloor < 3n + \left\lfloor \frac{n}{2} \right\rfloor.$$

By symmetry we may assume that there is a red copy of \mathcal{C}_{n-1}^4 . Using Lemma 3.1 we have a copy of \mathcal{C}_n^4 in $\mathcal{H}_{\text{blue}}$. This is a contradiction.

Using Lemma 1 of [2] and Theorem 3.3 we conclude the following corollary.

Corollary 3.4. Let $n \ge 4$. If n is odd, then $R(\mathcal{C}_n^4, \mathcal{C}_n^4) = 3n + \left\lfloor \frac{n-1}{2} \right\rfloor$. Otherwise,

$$3n + \left\lfloor \frac{n-1}{2} \right\rfloor \le R(\mathcal{C}_n^4, \mathcal{C}_n^4) \le 3n + \left\lfloor \frac{n-1}{2} \right\rfloor + 1.$$

Clearly using the above results on the Ramsey number of loose cycles and Theorem 1.2, we obtain the following results.

Theorem 3.5. If $n \ge m+1 \ge 4$ or n=m is odd, then

$$R(\mathcal{P}_n^4, \mathcal{C}_m^4) = 3n + \left\lfloor \frac{m+1}{2} \right\rfloor.$$

Theorem 3.6. Let $n \ge m \ge 3$. If $n \ge m + 2 \ge 5$ or n is odd, then

$$R(\mathcal{P}_n^4, \mathcal{P}_m^4) = 3n + \left\lfloor \frac{m+1}{2} \right\rfloor.$$

References

- [1] A. Gyárfás, G. Sárközy, E. Szemerédi, The Ramsey number of diamond-matchings and loose cycles in hypergraphs, *Electron. J. Combin.* **15** (2008), no. 1, #R126.
- [2] A. Gyárfás, G. Raeisi, The Ramsey number of loose triangles and quadrangles in hypergraphs, *Electron. J. Combin.* **19** (2012), no. 2, #R30.
- [3] P. Haxell, T. Luczak, Y. Peng, V. Rödl, A. Ruciński, M. Simonovits, J. Skokan, The Ramsey number for hypergraph cycles I, J. Combin. Theory, Ser. A, 113 (2006), 67–83.
- [4] G.R. Omidi, M. Shahsiah, Ramsey numbers of 3-uniform loose paths and loose cycles, J. Combin. Theory, Ser. A, 121 (2014), 64–73.
- [5] G.R. Omidi, M. Shahsiah, Ramsey numbers of loose cycles in uniform hypergraphs, Submitted.
- [6] G.R. Omidi, M. Shahsiah, Diagonal Ramsey numbers of loose cycles in uniform hypergraphs, Submitted.