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Abstract

Gyérfas, Sarkozy and Szemerédi proved that the 2-color Ramsey number R(C*, CF)
of a k-uniform loose cycle C¥ is asymptotically %(2k — 1)n, generating the same result
for k£ = 3 due to Haxell et al. Concerning their results, it is conjectured that for every
n>m>3and k > 3,

R(CE,C) = (k= D+ [T,

In 2014, the case k = 3 is proved by the authors. Recently, the authors showed that
this conjecture is true for n = m > 2 and k£ > 8. Their method can be used for case
n=m > 2 and k = 7, but more details are required. The only open cases for the
above conjecture when n = m are k = 4,5,6. Here we investigate to the case k = 4
and we show that the conjecture holds for k = 4 when n > m or n = m is odd. When
n =m is even, we show that R(C2,C2) is between two values with difference one.
Keywords: Ramsey number, Uniform hypergraph, Loose path, Loose cycle.

AMS subject classification: 05C65, 05C55, 05D10.

1 Introduction

For given k-uniform hypergraphs G and H, the Ramsey number R(G,H) is the smallest
positive integer N such that in every red-blue coloring of the edges of the complete k-
uniform hypergraph IC’]“V, there is a red copy of G or a blue copy of H. A k-uniform loose
cycle CF (shortly, a cycle of length n) is a hypergraph with vertex set {vy,va, ... s Un(k—1) }
and with the set of n edges ¢; = {V(i—1)(k—1)41, Vi—1)(k=1)42> - - - » Vi—1)(h—1)+k }> L <1 < m,
where we use mod n(k — 1) arithmetic. Similarly, a k-uniform loose path P (shortly, a
path of length n) is a hypergraph with vertex set {vy, v, ... 7vn(k—1)+1} and with the set
of n edges €; = {V(i—1)(k—1)+1, V(i—1)(k=1)42> - - - » V(i—1)(k—1)+k > 1 < 7 < n. For an edge
e = {v(i—l)(k—l)-i-hU(i—l)(k—1)+27 e ,fui(k_l)“} of a given loose path (also a given loose
cycle) K, the first vertex (v(;—1)(x—1)+1) and the last vertex (v;y—1)4+1) are denoted by
fx,e; and lxc ¢, respectively. In this paper, we consider the problem of finding the 2-color
Ramsey number of 4-uniform loose paths and cycles.

!This research is partially carried out in the IPM-Isfahan Branch and in part supported
by a grant from IPM (No. 92050217).
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The investigation of the Ramsey numbers of hypergraph loose cycles was initiated by
Haxell et al. in [3]. They proved that R(C3,C3) is asymptotically gn This result was
extended by Gyérfas, Sarkozy and Szemerédi [I] to k-uniform loose cycles. More precisely,
they proved that for all n > 0 there exists ng = ng(n) such that for every n > ng, every
2-coloring of KX, with N = (1 + )% (2k — 1)n contains a monochromatic copy of C.

In [2], Gyérfas and Raeisi determined the value of the Ramsey number of a k-uniform
loose triangle and quadrangle. Recently, we proved the following general result on the
Ramsey numbers of loose paths and loose cycles in 3-uniform hypergraphs.

Theorem 1.1. Eﬂ For everyn > m > 3,

2

In [5], we presented another proof of Theorem [Tl and posed the following conjecture.

Conjecture 1. Let k > 3 be an integer number. For every n > m > 3,

R(PE,P) = R(P,Ch) = R(CE.Ch) +1= (k— )+ | ")

Also, the following theorem is obtained on the Ramsey number of loose paths and cycles
in k-uniform hypergraphs [5].

Theorem 1.2. [5] Let n > m > 2 be given integers and R(CF,CE) = (k — 1)n + |21 ].
Then R(P,CE) = (k— 1)n+ || and R(PY, Pk _,) = (k— 1)n+ [Z]. Moreover, for
n =m we have R(P%,P¥) = (k— 1)n + |21 ].

Using Theorem [[.2] one can easily see that Conjecture [l is equivalent to the following.

Conjecture 2. Let k > 3 be an integer number. For every n > m > 3,

R(CK,CE) = (k— 1)n + LmT_lj.

n»~m

Recently, it is shown that Conjecture [ holds for n = m and k > 8 (see [6]). As
we mentioned in [6], our methods can be used to prove Conjecture 2 for n = m and
k > 7. Therefore, based on Theorem [[.1], the cases k = 4,5,6 are the only open cases
for Conjecture 2l when n = m (the problem of determines the diagonal Ramsey number
of loose cycles). In this paper, we investigate Conjecture 2 for £ = 4. More precisely,
we extend the method that used in [5] and we show that Conjecture [2] holds for £ = 4
where n > m or n = m is odd. When n = m is even we show that R(C:,C1) either is the
value that is claimed in Conjecture [2] or is equal to this value minus one. Consequently,
using Theorem [[.2] we obtained the values of some Ramsey numbers involving paths.
Throughout the paper, by Lemma 1 of [2], it suffices to prove only the upper bound for
the claimed Ramsey numbers. Throughout the paper, for a 2-edge colored hypergraph
‘H we denote by Hyeq and Hpue the induced hypergraphs on red edges and blue edges,
respectively. Also we denote by |H| and ||H|| the number of vertices and edges of H,
respectively.



2 Preliminaries

In this section, we prove some lemmas that will be needed in our main results. Also, we
recall some results from [2] and [5].

Theorem 2.1. [2] For every k > 3,

(a) R(PY,PY)=R(CE,PY) = R(CE,CE)+1=3k -1,
(b)  R(PE,PF) = R(Ck, PF) = R(CE,CF) +1 =4k — 2.
Theorem 2.2. [5] Let n,k > 3 be integer numbers. Then

R(CE.CEY = (kK —1)n 4 1.

In order to state our main results we need some definitions. Let H be a 2-edge colored
complete 4-uniform hypergraph, P be a loose path in ‘H and W be a set of vertices with
W NV(P) = 0. By a wg-configuration, we mean a copy of Ps with edges

{IIT, ai, az, 613}, {03, Gy, a5, y}7

so that {z,y} C Wand S = {a; : 1 < j <5} C (ej=1 \ {fre,_,}) Uei Ueiqy is a set
of unordered vertices of 3 consecutive edges of P with [S N (e;—1 \ {fpe, . })| < 1. The
vertices x and y are called the end vertices of this configuration. A wg-configuration,
S C(ei—1 \ {fre; 1 })UeiUeitt, is good if at least one of the vertices of e;41 \ €; is not in
S. We say that a monochromatic path P = ejey...e, is mazimal with respect to (w.r.t.
for short) W C V(H) \ V(P) if there is no W/ C W so that for some 1 < r < n and
1<:<n—r+1,

/ !/ /
P =e1e2...€,1€;€ 1 . €, Citr...Cn,

is a monochromatic path with n + 1 edges and the following properties:
(i) V(P') =V(P)uW’,
(i) if ¢ =1, then fprer = fress

(iii) if i +r — 1 = n, then lprer, =1pen-

Clearly, if P is maximal w.r.t. W, then it is maximal w.r.t. every W’ C W and also every
loose path P’ which is a sub-hypergraph of P is again maximal w.r.t. W.
We use these definitions to deduce the following essential lemma.

Lemma 2.3. Assume that H = K2 is 2-edge colored red and blue. Let P C Hieq be a
mazimal path w.r.t. W, where W C V(H)\ V(P) and |W| > 4. For every two consecutive
edges e1 and ey of P there is a good wg-configuration, say C' = fg, in Hpne with end
vertices x € f andy € g in W and S C eq U ey. Moreover, there are two subsets W1 C W
and Wy C W with |Wh| > |W| — 2 and |Wy| > |W| — 3 so that for every distinct vertices
¥ € Wy and y' € Wa, the path C' = ((f \ {z}) U {x’}) ((g \{y}) U {y’}) is also a good

wg-configuration in Hye with end vertices @’ and y' in W.



Proof. Let
e1 = {v1,v2,v3,v4}, €2 = {4, v5,v6,v7}.

Among different choices of 3 distinct vertices of W, choose a 3-tuple X = (z1,z2,z3) so
that Ex has the minimum number of blue edges, where Ex = {f1, f2, f3} and

fl — {Ul,flfl,UQ,'U5},

f2 — {U27 xr2,U3, ’Uﬁ}y

f3 = {vs, x3,v4, 07}
Note that for 1 < i < 3, we have |f; N (e2 \ {fp,e,})| = 1. Since P is a maximal path
w.r.t. W, there is 1 < j < 3 so that the edge f; is blue. Otherwise, replacing ejes
by fifofs in P yields a red path P’ with n + 1 edges; this is a contradiction. Let
Wi = (W\ {z1,x2,23}) U{z;}. For each vertex x € W; the edge f, = (f; \ {z;}) U{z} is
blue. Otherwise, the number of blue edges in Fy is less than this number for Fx, where
Y is obtained from X by replacing x; to x. This is a contradiction.

Now we choose hy, hs, hs as follows. If j = 1, then set

hy = {v1,v6,v3}, ha = {vs3,v2,va}, h3 = {va, vs5,v7}.

If j = 2, then set

hy = {v1,v2,vs5}, ha = {vs,v6,va}, h3 = {va,v3,v7}.

If j = 3, then set

hi = {vi,v3,vs5}, ha = {vs,v4,v2}, hg = {2, v6, v7}.

Note that in each the above cases, for 1 < i < 3, we have |h; N (f; \ {z;})| = 1 and
|hiN(e2\ (fjU{va}))| < 1. Let Y = (y1,¥2,y3) be a 3-tuple of distinct vertices of W\ {z;}
with minimum number of blue edges in Fy, where Fy = {¢1,92,93} and g; = h; U {y;}.
Again since P is maximal w.r.t. W, for some 1 < ¢ < 3 the edge ¢, is blue and also, for
each vertex y, € Wo = (W \ {zj,y1,y2,y3}) U {y¢} the edge g, = (90 \ {ve}) U {ya} is
blue. Therefore, for every 2’ € Wy and 3y’ € W5, we have C' = fg which is our desired
configuration, where f = (f;\{z;})U{2’} and g = (g¢\ {ve}) U{¥'}. Since |W;| = |W| -2,
each vertex of W, with the exception of at most 2, can be considered as an end vertex of
C. Note that this configuration contains at most two vertices of es \ e;. O

By an argument similar to the proof of Lemma B3] we have the following general
result.

Lemma 2.4. Assume that H = ICfL, is 2-edge colored red and blue. Let P C Hyeq be a
mazimal path w.r.t. W, where W C V(H)\ V(P) and |W| > 4. Let Ay = {fpe, } = {vi}
and A; = V(ei—1) \{fpe, .} for i > 1. Then for every two consecutive edges e; and e;y;
of P and for each u € A; there is a good wg-configuration, say C = fg, in Hpe with end

vertices x € f and y € g in W and

S ((e\ Upeh) Ufud) U (e \ {0}),



for some v € A;1o. Moreover, there are two subsets W1 C W and Wy C W with |W;| >
|[W| =2 and |Wa| > |W| =3 so that for every distinct vertices ' € Wy and y' € Wa, the

path C" = ((f \ {z}) U {x’}) ((g \ {y}) U {y’}) is also a good wwg-configuration in Hylye
with end vertices ' and y' in W.

The following result is an immediate corollary of Lemma 241

Corollary 2.5. Let H = IC;1 be two edge colored red and blue. Also let P = ejes... ey,
n > 2, be a mazimal red path w.r.t. W, where W C V(H)\ V(P) and |W| > 4. Then for
some r >0 and W' C W there are two disjoint blue paths Q and Q', with || Q|| > 2 and

(W' =2) af Q] #0,
QU =n—r=
W'l =1) if | =0,

between W' and P = eiey...en_p so that eN W' is actually the end vertex of e for each
edge e € QU Q' and at least one of the vertices of en—p \ €n—r—1 s not in V(Q) UV (Q').
Moreover, if ||Q'|| = 0 then either x = |[W \ W'| € {1,2} orx > 3 and 0 < r < 1.
Otherwise, either x = |W\W'| =0o0rxz>1and 0 <r <1.

Proof. Let P = ejes...e, be a maximal red path w.r.t. W, W C V(H) \ V(P), and

€i = {V(i—1) (k=1)+1> V(im1) (k—1)425 - - - » Vi(k—1)+1 }» t=12,...,n,

are the edges of P.

Step 1: Set P, = P, Wi = W and P; = P| = ejep. Since P is maximal w.r.t. Wy,
using Lemma there is a good wg-configuration, say Qi = f191, in Hpe with end
vertices © € f; and y € g1 in Wy so that S C P and Q; does not contain a vertex of
ez \e1, say uy. Set X1 = [W\V(Q1)|, P =P1\P1=-eszeq...e, and Wy = W. If [W,| = 4
or |Pa]| <1, then @ = Q; is a blue path between W’ = Wy NV (Q1) and P = P; with
desired properties. Otherwise, go to Step 2.

Step 2: Clearly [Wa| > 5 and ||Ps|| > 2. Set Py = ezeq and Py = ((eg\{fpeg})u{ul}) e4.
Since P is maximal w.r.t. Ws, using Lemma [2.4] there is a good wg-configuration, say
Qs = faga, in Hplue with end vertices z € fy and y € go in Wa such that S C P} and Qo
does not contain a vertex of ey \ e3, say us. By Lemma[24] there are two subsets Wa; C Wo
and Wy C Wy with [Way| > [Wa| — 2 and |Was| > |Wa| — 3 so that for every distinct
vertices ' € Wa; and y' € Why, the path Q) = <(f2 \ {z}) U {x’}) <(gg \ {y}H U {y’}) is
also a good wg-configuration in Hyj,e with end vertices 2’ and ¢’ in Ws. Therefore, we
may assume that U?:l Q; is either a blue path or the union of two disjoint blue paths. Set
Xy =W\ U?Zl V(Q;)| and P3 = Py \ Py = es¢5.. .. e,. If U?Zl Q, is a blue path Q with
end vertices x9 and y9, then set

W3 = (W2 \ V(Q)) U{z2,92}-



In this case, clearly |Ws3| = [Wy| — 1. Otherwise, [J7_; Q; is the union of two disjoint blue
paths Q and Q' with end vertices x9, yo and 24, v}, in Wh, respectively. In this case, set

W3 == (W2 \ V(Q U Q/)) U {$27y27$/27yé}‘

Clearly |Ws| = |Wa|. If [W3] < 4 or ||Ps] < 1, then |7, Q; = Q and 0 or Q and Q' (in
the case | J7_, Q; = QU Q') are the paths between W' = W N7, V(Q;) and P = P, UP,
with desired properties. Otherwise, go to Step 3.

Step ¢ (£>2): Clearly [Wy| 2 5 and [[Pe]| = 2. Set
fﬁ = €2¢—1€2¢,
Py = ((625—1 \ {fP.esy_, }) U {W—l}) eor.

Since P is maximal w.r.t. Wy, using Lemma [2.4] there is a good wg-configuration, say
Qv = frgs, in Hypue with end vertices = € fy and y € gy in Wy such that Q, does not
contain a vertex of egp \ €91, say uy. By Lemma 2.4 there are two subsets Wy; C Wy and
Wyo C Wy with |[Wyy| > |[Wy| — 2 and [Wys| > |Wy| — 3 so that for every distinct vertices
z' € Wy and y' € Wya, the path Q) = ((fg \{z})u {x’}) ((gg \{y}Hu {y’}) is also a good
wg-configuration in Hy,e with end vertices 2’ and v/ in W,. Therefore, we may assume
that either Ule Q; is a blue path Q with end vertices in W, or we have two disjoint blue
paths Q and Q' with end vertices in W so that QU Q' = Ule Q;.

Set Xy = |\ Ule V(Q;)| and Ppy1 = Py \ Py = eavq1€2042 - - €n. If Ule Q; is a blue
path O with end vertices xy and ¥y, then set

Wi = (Wz \ V(Q)) U{@e, ye}-

Note that in this case, |Wy| — 2 < [Wyyq| < |Wy| — 1. Otherwise, Ule Q; is the union of
two disjoint blue paths Q and Q' with end vertices 4, y, and x, y, respectively. In this
case, set

Wg+1 = (WZ \ V(Q U Ql)> U {x€7y€7$27y2}‘

Clearly, [W,| — 1 < [Weya| < [Wyl.

If [Wesq| < 4 or ||Pesa|l < 1, then Ule Q; = Qand 0 or Q and @ (in the case
Ule Q;, = QU Q) are the paths with the desired properties. Otherwise, go to Step
{4+ 1.

Let t > 2 be the minimum integer for which we have either |[W;| < 4 or ||Py]| < 1. Set
=X, 1 and r = ||P|| = n — 2(t — 1). So |J'Z] Q; is either a blue path Q or the union
two disjoint blue paths Q@ and Q' between P = ejeq ... e, and W’ =W N (ULZ] V(D))
with the desired properties. If UZ;% Q; is a blue path Q, then either x € {1,2} or x > 3
and 0 < r < 1. Otherwise, Uf;} Q; is the union of two disjoint blue paths Q and Q' and
we have either t = 0orz>1and 0 <r <1.

O



3 Ramsey number of 4-uniform loose cycles

In this section we investigate Conjecture ] for k¥ = 4. Indeed, we determine the exact
value of R(C2,Cs), where n > m > 3 and n = m is odd. When n = m is even, we show
that R(Cz,C1) is between two values with difference one. For this purpose we need the

following essential lemma.
Lemma 3.1. Let n > m >3, (n,m) # (3,3),(4,3), (4,4) and

|22 i n>m,
t =
%] otherwise.

Assume that H = IC§n+t is 2-edge colored red and blue and there is no copy of C+ in Hyed-
Ifc = Ci_l C Hrod; then Cfn - Hbluo-

Proof. Let C = ejey...e,_1 be a copy of C2 | in Hyeq with edges
ej = {v3j—2,v3j-1,v35,v3j41}  (mod 3(n —1)), 1<j<n-1,
and W =V (H)\ V(C). So we have |W| =t + 3. Consider the following cases:

Case 1. For some edge e; = {v3;_2,v3i-1, 03,3141}, 1 <i <mn—1, there is a vertex z €
W such that at least one of the edges e = {v3;_1,v3;, 3141, 2} or € = {v3;_2,v3i_1,v3;, 2}
is red.

We can clearly assume that the edge e = {v3;_1,v3;, 3141, 2} is red. Set
P =ce€jr1€i42...6n_1€1€2...€;_2€;_1

and Wy = W\ {2z} (If the edge {vs;_2,v3i—1, 34, 2} is red, consider the path
P=e€i_1€i_9...€2€1€n_1...€;12€i11

and do the following process to get a blue copy of C2).

First let m < 4. Since n > 5, we have t = |Z71| = 1 and hence |[W,| = 3.
Let Wy = {u1,us,uz}. We show that Hpjue contains Ci for each m € {3,4}. Set
J1 = {u1,v3i-3,v3i-1,u2}, fo = {uz,vsi_4,v3;,u3} and f3 = {us, z,v3i_2,u1}. Since there
is no red copy of C2, the edges fi, fo and f3 are blue. If not, let the edge fi, 1 <7 <3,
is red. Then fjee;y1...e,—1€1...€;—1 is a red copy of C} a contradiction. So fifafs is
a blue copy of C§‘. Also, since there is no red copy of C2, the path P’ = e;_3e;_» (we use
mod (n — 1) arithmetic) is maximal w.r.t. W = Wy U {z}. Using Lemma [2.4] there is
a good wg-configuration, say C' = fg, in Hpue with end vertices x € f and y € g in W
and S C e;_3e;_s. Note that, by Lemma [2.4] there are two subsets W7 and W5 of W with
|[W1| > 2 and |[W3| > 1 so that for every distinct vertices 2/ € Wy and y' € Wa, the path

C' = <(f \{z})U {a:’}) ((g \{y}H U {y’}) is also a good wg-configuration in Hyp,e with

end vertices ' and 3/ in W. Clearly, at least one of the vertices of Wy, say u1, is an end



vertex of C. Let u € Wy \ V(C). Set g1 = {uga,us, z,v3,—2} and go = {u,vs;i_3,v3;—1,u1}.
Since the edge e is red, the edges ¢g; and gy are blue (otherwise, we can find a red copy of
C}) and Cg1go is a blue copy of ij.

Now let m > 5. Clearly |Wy| = t +2 > 4. Since there is no red copy of C2, P is a
maximal path w.r.t. Wy. Applying Corollary 2.5 there are two disjoint blue paths Q and
Q' between P, the path obtained from P by deleting the last r edges for some r > 0, and
W' C Wy with the mentioned properties. Consider the paths Q and Q' with || Q]| > ||Q/||
so that ¢/ = ||Q U Q|| is maximum. Among these paths choose Q and Q', where ||Q|| is
maximum. Since ||P|| =n — 2, by Corollary [Z5] we have r =n —2 — /.

Subcase 1. ||Q'|| # 0.
Set T'= Wy \ W'. Let 2,y and 2/, y" be the end vertices of Q and Q' in W', respectively.
Using Corollary 2.5 we have one of the following cases:

L |T|>2.
It is easy to see that ¢ < 2t — 4 and so r > 2. Hence this case does not occur by
Corollary

L. |T] = 1.

Let T = {u}. One can easily check that ¢/ = 2t — 2. If n > m, then r > 2, a
contradiction to Corollary Therefore, we may assume that n = m. If n is even,
then ¢/ = n — 2. Remove the last two edges of QU Q' to get two disjoint blue paths
Q and Q so that [QU Q|| =n—4and (QU Q) N ((ei—2 \ {fP.e, ,})Uei—1) =0
(note that by the proof of Corollary 2.5 this is possible). By Corollary 2.5 there is
a vertex w € e;_3 \ e;_4 so that w ¢ V(Q U Q’). We can without loss of generality
assume that Q = Q. First let ||Q’| > 0 and 2/, y" with y” # 3/’ be end vertices of Q’
in W', Set

f1={y" vsi—g,vsi—1,u}, fa = {u, z,v3i-2,Y'}, f3 = {y, v3i, v3i—a, T}

Since the edge e is red, then the edges f;, 1 < i < 3, are blue (otherwise we
can find a red copy of Ci, a contradiction to our assumption). If the edge f =
{y,w,v3i_7,2'} is blue, then Qf Q' f1f2f3 is a copy of C} in Hpjue. Otherwise, the
edge g = {y, v3i—¢,v3i—5,y" } is blue (if not, fge;—1...e,_1€1...¢€;_3 is a red copy of
C} a contradiction). Also, since there is no red copy of Cz, the edges

g1 = {2’ v3i—3,v3i-1,u}, 92 = {u, z,v3i-2,y'}, g3 = {V/, v3s, V314, 2},

are blue. Clearly QgQ'g192g3 is a blue copy of Ci. Now, we may assume that
| Q|| = 0. In this case, set f = {y,w,v3;_7,2'}. If the edge f’is blue, then Qf’g19293
is a blue copy of C1. Otherwise, the edge ¢’ = {y,vsi_¢,v3i_5,%'} is blue (if not,
f'gdei_1...en_1€1...¢;_3 makes a red C%). Similarly, since there is no red copy of
C} and the edge e is red,

Qg’{y’, V3i—3, U3i—1, U}{U, Z,V3i—2, x’}{x’, U3, U3i—4, x},



is a blue copy of Cp,.

Therefore, we may assume that n is odd. Clearly, ¢/ =n —3 and r > 1. Again, since
there is no red copy of C2, the edges

hi = {y,vsi—a,v3i—1,2"}, ha = {y/, v3i_2, 2z, u}, hg = {u, v3;, v3,_3, x},

are blue and Qhy Q' hahs, makes a copy of Ci in Hpjue.

III. |T| = 0.
Clearly we have ¢/ = 2t. First let m be odd. Therefore, we have ¢ = m — 1.
Remove the last two edges of QU Q' to get two disjoint blue paths Q and Q' so that
[QUQ|| =m—3and (QUQ) N ((ei—a \ {fp.e;_,}) Uei—1) =0 (this is possible, by
the proof of Corollary 2.5). We can without loss of generality assume that Q = Q.
First let |Q'|| > 0 and 2’,y"” with y” # 3/’ be end vertices of Q' in W'. Since the edge
e is red and there is no red copy of C2, the edges

fir=Ay,vsi—3,v3i-1, 2"}, fo = {y", v3ica,v3i, ¥}, f3 = {Y', 2, v3i—2, 2},

are blue and so Qf1Q fof3 is a blue copy of Ch. Now let Q|| = 0. Again, since
there is no red copy of C#, the edge g1 = {2/, v3;_4,v3;,y'} is blue and Qf1 g1 f3, is a
blue copy of C1,.

Now let m be even. If n > m, then ¢ = m — 2 and r > 1. Clearly,

Q{y, v3i—3,v3i—1, 7'} Q' {Y, v3;, V35—, x},

is a blue copy of CX. Therefore, we may assume that n = m. Thereby ¢ = m.
Remove the last two edges of QU @' to get two disjoint blue paths Q and Q' so
that |[QU Q|| = m —2 and (QU Q') N ((eim2 \ {fPei }) Ueim1) = 0. We can
without loss of generality assume that Q@ = Q. First let ||Q'|| > 0 and 2/,y” with
y" # 4 be end vertices of Q' in W’. Since there is no red copy of C:, the edges
hi = {y,v3;_3,v3i_1,2'} and hy = {9, v3i,v3;_4,2} are blue and Qh;Q'hy forms a
blue copy of Ci. If |Q|| = 0, then Qhi{z’, v3;,v3i_4, 2} is a blue copy of Cp,.

Subcase 2. ||Q'|| = 0.
Let z and y be the end vertices of Q in W’ and T = Wy \ W’. Using Corollary we
have the following:

L |T| > 3.
In this case, clearly ¢ < 2(t — 2) and so r > 2. This is a contradiction to Corollary

II. |T|=2.
Let T = {u1,u2}. So we have ¢/ = 2t — 2. First let m be odd. Hence, ¢/ = m — 3
and 7 > 1. Since there is no red copy of C# and the edge e is red, the edges

J1= Ay, v3i—a, v3i—1,u1}, fo = {u1,v3i—3,v3;,u2}, f3 = {u2, 2,v3i_2, 2},



III.

are blue. If not, suppose that the edge f;, 1 < j < 3, is red. So fjeeiyri€iya. ..
en_1€1...¢;_1 is a red copy of Ci, a contradiction. Thereby, Qf f2f3 makes a blue
copy of C.

Now let m be even. If n > m, then £/ = m — 4 and r > 3. Using Corollary 2.5,
there is a vertex w € e;_4 \ e;_5 so that w ¢ V(Q). Since P is maximal w.r.t. W =
{z,y,u1,us, 2}, using Lemma 2] there is a good wg-configuration, say C1 = fg, in
Hplue With end vertices 2’ € f and 3 € g in W and

S C <(€z‘—3 \ fPeis) U {w}) Uei—o.

Moreover, by Lemma 4] there are two subsets W; and Wa of W with |[W3| > 3
and |Ws| > 2 so that for every distinct vertices 2/ € Wp and y' € Wy, the path

C| = <(f \{z'}) U {?}) <(g \{y'Hu {?}) is also a good wg-configuration in Hpjye
with end vertices 2’ and y’ in W. Since |[W;| > 3 and ¢ is maximum, we may assume
that y and z or z and z are end vertices of C7 in W. By symmetry suppose that y

and z are end vertices of C; in W. Since there is no red copy of C} and the edge e
is red, then

QC {2z, v3i—2,u1, ug H{ug, v3i—1, v3i—3, x},

is a blue copy of Cr. Now, we may assume that n = m. Clearly ¢/ = m — 2. By
Corollary 2] there is a vertex w’ € e;_1 \ €;_2 so that w’ ¢ V(Q). Again, since there
is no copy of Cfl in Hyed, SO

Q{y, ur, vzi—1,w Hw', vz, ug, o},
is a blue copy of Cp,.

|T| = 1.

Clearly ¢/ = 2t. Let T = {u1}. First let m be odd. Therefore, ' = m — 1. By
Corollary there is a vertex w € e;_1 \ €;—2 so that w ¢ V(Q). Clearly the edge
g = {y,w,z,z} is blue (otherwise gee;y1...e, 161 ...¢;_1 makes a red copy of C3).
Thereby Qg is a blue C2. Now, suppose that m is even. If n > m, then ¢/ = m — 2
and 7 > 1. Since the edge e is red and there is no red copy of Cz,

Q{y, v3i—2, z,us H{uy, v3i—1,v3i-3, z},

is a copy of Ci in Hpwe. If n = m, then £/ = m. In this case, remove the last
two edges of Q to get two disjoint blue paths Q and Q' so that |[QU Q|| = m — 2
and (QU Q') N ((ei—2 \ {fp.e; »}) Uei—1) = 0. By symmetry we may assume that
Q| > ||Q||. First suppose that |Q’|| = 0. Then we may suppose that x,3’ with
y' # y be end vertices of Q in W’. Since there is no red copy of Ci and the edge
e is red, the edges hy = {y/,v3i_3,v3;-1,y} and hy = {y,vs;,v3;_4,x} are blue and
Ohyhy forms a blue copy of CX. So we may assume that ||Q'|| > 0. Let 2/,3 and
2", y" be end vertices of Q and Q' in W', respectively. One can easily check that

@{yl7 V3i—3, U3i—1, x”}@{y”, V34, U3i—4, 33/}7

is a blue copy of C .
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IV. |T|=0.

Clearly, we have ¢/ = 2t + 2. First let m be odd. Therefore, #/ = m + 1. Remove the
last two edges of Q to get two disjoint blue paths @ and Q' so that [[QU Q|| = m —1
and (QUQ)N((ei—2\{fp.e; » })Uei—1) = (). By symmetry we may assume that ||Q| >
|Q/||. If ||Q'|| = 0, then we may suppose that x, %’ with 3 # y be end vertices of Q in
W'. Clearly the edge g = {y/,v3i—2, 2,2} is blue (otherwise gee; i1 ...e,_1€61...€i_1
makes a red copy of C}). Thereby Qg is a blue C}. If ||Q/|| > 0, then remove the
last two edges of QU Q'. By an argument similar to the case ||Q’|| # 0 and |T| = 0,
we can find a blue copy of C2. When m is even, by removing the last two edges of
Q, one of the before cases holds. So we omit the proof here.

Case 2. For every edge ¢; = {v3j_2,03—1,V3i,U3i+1}, 1 < i <n —1, and every vertex
z € W, the edges {vs;_1,v3i, V3i+1, 2} and {vs;—2,v3,-1,v3;, 2} are blue.

Let W = {x1,29,...,x,u1,u2,us}. We have two following subcases:

Subcase 1. For some edge e; = {v3j_2,v3j—1,v35,v3j+1}, 1 <j < n—1, there are vertices
uw and v in W so that at least one of the edges {v3;j_2,v3;—1,u,v} or {vsj, vsjq1,u,v} is
blue.

We can without loss of generality assume that the edge {vsj_2,v3;_1,u,v} is blue (if the
edge {vsj,v3j41,u,v} is blue, the proof is similar). By symmetry we may assume that
e; = e1 and {u,v} = {ug,uz}. Set

ep = (e1 \ {3, va}) U {u1,uz},
¢y = (e \ {v1}) U{z1}
For 2 <i<m — 2 set
(ei\{le,e;}) U{zaa} if i is odd,

/
ei =
(ei\ {fce:}) U {x%} if 7 is even.
Also, let
(em—1 \{lc,e, . }) U{u1} if m is even,
/
T e

(en1\{feen s }) U{zma} if mis odd.

Thereby, ey} ...el, , forms a blue copy of Ci,.

Subcase 2. For every edge e; = {vs3j_2,v3j—1,035,V3j41}, 1 <j < n—1, and every vertices
u,v in W, the edges {vs;j_2,v3j-1,u,v} and {v3;,v3j41,u,v} are red.
One can easily check that

{Ula U2, U1, u2}{u27 ug, U3, 7)4}62 - €p—1,

is a red copy of C}. This contradiction completes the proof.
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The following results are the main results of this section.

Theorem 3.2. For everyn >m+ 1> 4,

R(CY,C4) = 3n + [mT_lj

n»~m

Proof. We give a proof by induction on m + n. By Theorems 2.1] and we may assume
that n > 5. Suppose to the contrary that H = Ianﬂ m-1) is 2-edge colored red and blue
2

with no red copy of C2 and no blue copy of C2. Consider the following cases:

Case 1. n=m+ 1.
By induction hypothesis,

n—3

n—2J.

R(CL_,,C ) =3(n—1)+ [ J <3n+ [

If there is a copy of C} | in Hyeq, then using Lemma Bl we have a blue copy of C2 .
So we may assume that there is no red copy of C1_,. Therefore, there is a copy of Ci_,
in Hyplue- Since there is no blue copy of C}_;, applying Lemma Bl we have a red copy of
Cl_,. This is a contradiction to our assumption.

Case 2. n>m + 1.

By the induction hypothesis

-1 -1
R(CL_,,Chy=3(n—1)+ V”TJ <3n+ LmTJ
Since there is no blue copy of Ci,, we have a copy of Ci_| in Hyeq. Using Lemma 311 we
have a blue copy of C#. This contradiction completes the proof. O

Theorem 3.3. For every n > 4,

R(CL,CY) <3n + gJ
Proof. We give a proof by induction on n. Applying Theorem 2] the statement is true

for n = 4. Suppose that, on the contrary, the edges of H = ngn + ) can be colored red
2

and blue with no red copy of C} and no blue copy of C+. By the induction assumption,

R(C_,,C* ) <3(n—1)+ [” o 1J <3n+ LgJ

By symmetry we may assume that there is a red copy of C} ;. Using Lemma [ we have
a copy of C4 in Hyple. This is a contradiction. O

Using Lemma 1 of [2] and Theorem we conclude the following corollary.

Corollary 3.4. Let n > 4. If n is odd, then R(C: C%) =3n + L"T_IJ Otherwise,

3n + VLT_lJ < R(C},CY) < 3n+ VT_lJ Y
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Clearly using the above results on the Ramsey number of loose cycles and Theorem
[[2] we obtain the following results.

Theorem 3.5. If n>m+1>4 orn=m is odd, then

R(PY,CLY = 3n + LmTHJ

Theorem 3.6. Letn>m > 3. I[fn>m+2>5 orn is odd, then

R(PLPL) = 3n + LmTHJ
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