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Abstract

Gyárfás, Sárközy and Szemerédi proved that the 2-color Ramsey number R(Ck
n, C

k
n)

of a k-uniform loose cycle Ck
n is asymptotically 1

2
(2k− 1)n, generating the same result

for k = 3 due to Haxell et al. Concerning their results, it is conjectured that for every
n ≥ m ≥ 3 and k ≥ 3,

R(Ck
n, C

k
m) = (k − 1)n+ ⌊

m− 1

2
⌋.

In 2014, the case k = 3 is proved by the authors. Recently, the authors showed that
this conjecture is true for n = m ≥ 2 and k ≥ 8. Their method can be used for case
n = m ≥ 2 and k = 7, but more details are required. The only open cases for the
above conjecture when n = m are k = 4, 5, 6. Here we investigate to the case k = 4
and we show that the conjecture holds for k = 4 when n > m or n = m is odd. When
n = m is even, we show that R(C4

n, C
4
n) is between two values with difference one.

Keywords: Ramsey number, Uniform hypergraph, Loose path, Loose cycle.
AMS subject classification: 05C65, 05C55, 05D10.

1 Introduction

For given k-uniform hypergraphs G and H, the Ramsey number R(G,H) is the smallest
positive integer N such that in every red-blue coloring of the edges of the complete k-
uniform hypergraph Kk

N , there is a red copy of G or a blue copy of H. A k-uniform loose

cycle Ck
n (shortly, a cycle of length n) is a hypergraph with vertex set {v1, v2, . . . , vn(k−1)}

and with the set of n edges ei = {v(i−1)(k−1)+1, v(i−1)(k−1)+2, . . . , v(i−1)(k−1)+k}, 1 ≤ i ≤ n,

where we use mod n(k − 1) arithmetic. Similarly, a k-uniform loose path Pk
n (shortly, a

path of length n) is a hypergraph with vertex set {v1, v2, . . . , vn(k−1)+1} and with the set
of n edges ei = {v(i−1)(k−1)+1, v(i−1)(k−1)+2, . . . , v(i−1)(k−1)+k}, 1 ≤ i ≤ n. For an edge
ei = {v(i−1)(k−1)+1, v(i−1)(k−1)+2, . . . , vi(k−1)+1} of a given loose path (also a given loose
cycle) K, the first vertex (v(i−1)(k−1)+1) and the last vertex (vi(k−1)+1) are denoted by
fK,ei and lK,ei , respectively. In this paper, we consider the problem of finding the 2-color
Ramsey number of 4-uniform loose paths and cycles.

1This research is partially carried out in the IPM-Isfahan Branch and in part supported

by a grant from IPM (No. 92050217).
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The investigation of the Ramsey numbers of hypergraph loose cycles was initiated by
Haxell et al. in [3]. They proved that R(C3

n, C
3
n) is asymptotically 5

2n. This result was
extended by Gyárfás, Sárközy and Szemerédi [1] to k-uniform loose cycles. More precisely,
they proved that for all η > 0 there exists n0 = n0(η) such that for every n > n0, every
2-coloring of Kk

N with N = (1 + η)12 (2k − 1)n contains a monochromatic copy of Ck
n.

In [2], Gyárfás and Raeisi determined the value of the Ramsey number of a k-uniform
loose triangle and quadrangle. Recently, we proved the following general result on the
Ramsey numbers of loose paths and loose cycles in 3-uniform hypergraphs.

Theorem 1.1. [4] For every n ≥ m ≥ 3,

R(P3
n,P

3
m) = R(P3

n, C
3
m) = R(C3

n, C
3
m) + 1 = 2n+

⌊m+ 1

2

⌋

.

In [5], we presented another proof of Theorem 1.1 and posed the following conjecture.

Conjecture 1. Let k ≥ 3 be an integer number. For every n ≥ m ≥ 3,

R(Pk
n,P

k
m) = R(Pk

n, C
k
m) = R(Ck

n, C
k
m) + 1 = (k − 1)n + ⌊

m+ 1

2
⌋.

Also, the following theorem is obtained on the Ramsey number of loose paths and cycles
in k-uniform hypergraphs [5].

Theorem 1.2. [5] Let n ≥ m ≥ 2 be given integers and R(Ck
n, C

k
m) = (k − 1)n + ⌊m−1

2 ⌋.
Then R(Pk

n , C
k
m) = (k − 1)n + ⌊m+1

2 ⌋ and R(Pk
n,P

k
m−1) = (k − 1)n + ⌊m2 ⌋. Moreover, for

n = m we have R(Pk
n ,P

k
m) = (k − 1)n + ⌊m+1

2 ⌋.

Using Theorem 1.2, one can easily see that Conjecture 1 is equivalent to the following.

Conjecture 2. Let k ≥ 3 be an integer number. For every n ≥ m ≥ 3,

R(Ck
n, C

k
m) = (k − 1)n+ ⌊

m− 1

2
⌋.

Recently, it is shown that Conjecture 2 holds for n = m and k ≥ 8 (see [6]). As
we mentioned in [6], our methods can be used to prove Conjecture 2 for n = m and
k ≥ 7. Therefore, based on Theorem 1.1, the cases k = 4, 5, 6 are the only open cases
for Conjecture 2 when n = m (the problem of determines the diagonal Ramsey number
of loose cycles). In this paper, we investigate Conjecture 2 for k = 4. More precisely,
we extend the method that used in [5] and we show that Conjecture 2 holds for k = 4
where n > m or n = m is odd. When n = m is even we show that R(C4

n, C
4
m) either is the

value that is claimed in Conjecture 2 or is equal to this value minus one. Consequently,
using Theorem 1.2, we obtained the values of some Ramsey numbers involving paths.
Throughout the paper, by Lemma 1 of [2], it suffices to prove only the upper bound for
the claimed Ramsey numbers. Throughout the paper, for a 2-edge colored hypergraph
H we denote by Hred and Hblue the induced hypergraphs on red edges and blue edges,
respectively. Also we denote by |H| and ‖H‖ the number of vertices and edges of H,
respectively.
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2 Preliminaries

In this section, we prove some lemmas that will be needed in our main results. Also, we
recall some results from [2] and [5].

Theorem 2.1. [2] For every k ≥ 3,

(a) R(Pk
3 ,P

k
3 ) = R(Ck

3 ,P
k
3 ) = R(Ck

3 , C
k
3 ) + 1 = 3k − 1,

(b) R(Pk
4 ,P

k
4 ) = R(Ck

4 ,P
k
4 ) = R(Ck

4 , C
k
4 ) + 1 = 4k − 2.

Theorem 2.2. [5] Let n, k ≥ 3 be integer numbers. Then

R(Ck
3 , C

k
n) = (k − 1)n + 1.

In order to state our main results we need some definitions. Let H be a 2-edge colored
complete 4-uniform hypergraph, P be a loose path in H and W be a set of vertices with
W ∩ V (P) = ∅. By a ̟S-configuration, we mean a copy of P4

2 with edges

{x, a1, a2, a3}, {a3, a4, a5, y},

so that {x, y} ⊆ W and S = {aj : 1 ≤ j ≤ 5} ⊆ (ei−1 \ {fP,ei−1
}) ∪ ei ∪ ei+1 is a set

of unordered vertices of 3 consecutive edges of P with |S ∩ (ei−1 \ {fP,ei−1
})| ≤ 1. The

vertices x and y are called the end vertices of this configuration. A ̟S-configuration,
S ⊆ (ei−1 \ {fP,ei−1

}) ∪ ei ∪ ei+1, is good if at least one of the vertices of ei+1 \ ei is not in
S. We say that a monochromatic path P = e1e2 . . . en is maximal with respect to (w.r.t.
for short) W ⊆ V (H) \ V (P) if there is no W ′ ⊆ W so that for some 1 ≤ r ≤ n and
1 ≤ i ≤ n− r + 1,

P ′ = e1e2 . . . ei−1e
′
ie

′
i+1 . . . e

′
i+rei+r . . . en,

is a monochromatic path with n+ 1 edges and the following properties:

(i) V (P ′) = V (P) ∪W ′,

(ii) if i = 1, then fP ′,e′
i
= fP,ei ,

(iii) if i+ r − 1 = n, then lP ′,e′
i+r

= lP,en .

Clearly, if P is maximal w.r.t. W , then it is maximal w.r.t. every W ′ ⊆ W and also every
loose path P ′ which is a sub-hypergraph of P is again maximal w.r.t. W .
We use these definitions to deduce the following essential lemma.

Lemma 2.3. Assume that H = K4
n is 2-edge colored red and blue. Let P ⊆ Hred be a

maximal path w.r.t. W, where W ⊆ V (H) \V (P) and |W | ≥ 4. For every two consecutive

edges e1 and e2 of P there is a good ̟S-configuration, say C = fg, in Hblue with end

vertices x ∈ f and y ∈ g in W and S ⊆ e1 ∪ e2. Moreover, there are two subsets W1 ⊆ W
and W2 ⊆ W with |W1| ≥ |W | − 2 and |W2| ≥ |W | − 3 so that for every distinct vertices

x′ ∈ W1 and y′ ∈ W2, the path C ′ =
(

(f \ {x}) ∪ {x′}
)(

(g \ {y}) ∪ {y′}
)

is also a good

̟S-configuration in Hblue with end vertices x′ and y′ in W.
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Proof. Let
e1 = {v1, v2, v3, v4}, e2 = {v4, v5, v6, v7}.

Among different choices of 3 distinct vertices of W, choose a 3-tuple X = (x1, x2, x3) so
that EX has the minimum number of blue edges, where EX = {f1, f2, f3} and

f1 = {v1, x1, v2, v5},

f2 = {v2, x2, v3, v6},

f3 = {v3, x3, v4, v7}.

Note that for 1 ≤ i ≤ 3, we have |fi ∩ (e2 \ {fP,e2})| = 1. Since P is a maximal path
w.r.t. W, there is 1 ≤ j ≤ 3 so that the edge fj is blue. Otherwise, replacing e1e2
by f1f2f3 in P yields a red path P ′ with n + 1 edges; this is a contradiction. Let
W1 = (W \ {x1, x2, x3})∪ {xj}. For each vertex x ∈ W1 the edge fx = (fj \ {xj})∪ {x} is
blue. Otherwise, the number of blue edges in EY is less than this number for EX , where
Y is obtained from X by replacing xj to x. This is a contradiction.

Now we choose h1, h2, h3 as follows. If j = 1, then set

h1 = {v1, v6, v3}, h2 = {v3, v2, v4}, h3 = {v4, v5, v7}.

If j = 2, then set

h1 = {v1, v2, v5}, h2 = {v5, v6, v4}, h3 = {v4, v3, v7}.

If j = 3, then set

h1 = {v1, v3, v5}, h2 = {v5, v4, v2}, h3 = {v2, v6, v7}.

Note that in each the above cases, for 1 ≤ i ≤ 3, we have |hi ∩ (fj \ {xj})| = 1 and
|hi∩ (e2 \(fj ∪{v4}))| ≤ 1. Let Y = (y1, y2, y3) be a 3-tuple of distinct vertices of W \{xj}
with minimum number of blue edges in FY , where FY = {g1, g2, g3} and gi = hi ∪ {yi}.
Again since P is maximal w.r.t. W , for some 1 ≤ ℓ ≤ 3 the edge gℓ is blue and also, for
each vertex ya ∈ W2 = (W \ {xj , y1, y2, y3}) ∪ {yℓ} the edge ga = (gℓ \ {yℓ}) ∪ {ya} is
blue. Therefore, for every x′ ∈ W1 and y′ ∈ W2, we have C = fg which is our desired
configuration, where f = (fj \{xj})∪{x′} and g = (gℓ \{yℓ})∪{y′}. Since |W1| = |W |−2,
each vertex of W, with the exception of at most 2, can be considered as an end vertex of
C. Note that this configuration contains at most two vertices of e2 \ e1.

By an argument similar to the proof of Lemma 2.3, we have the following general
result.

Lemma 2.4. Assume that H = K4
n, is 2-edge colored red and blue. Let P ⊆ Hred be a

maximal path w.r.t. W, where W ⊆ V (H) \ V (P) and |W | ≥ 4. Let A1 = {fP,e1} = {v1}
and Ai = V (ei−1) \ {fP,ei−1

} for i > 1. Then for every two consecutive edges ei and ei+1

of P and for each u ∈ Ai there is a good ̟S-configuration, say C = fg, in Hblue with end

vertices x ∈ f and y ∈ g in W and

S ⊆
(

(ei \ {fP,ei}) ∪ {u}
)

∪
(

ei+1 \ {v}
)

,
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for some v ∈ Ai+2. Moreover, there are two subsets W1 ⊆ W and W2 ⊆ W with |W1| ≥
|W | − 2 and |W2| ≥ |W | − 3 so that for every distinct vertices x′ ∈ W1 and y′ ∈ W2, the

path C ′ =
(

(f \ {x}) ∪ {x′}
)(

(g \ {y}) ∪ {y′}
)

is also a good ̟S-configuration in Hblue

with end vertices x′ and y′ in W.

The following result is an immediate corollary of Lemma 2.4.

Corollary 2.5. Let H = K4
l be two edge colored red and blue. Also let P = e1e2 . . . en,

n ≥ 2, be a maximal red path w.r.t. W, where W ⊆ V (H) \ V (P) and |W | ≥ 4. Then for

some r ≥ 0 and W ′ ⊆ W there are two disjoint blue paths Q and Q′, with ‖Q‖ ≥ 2 and

‖Q ∪Q′‖ = n− r =







2(|W ′| − 2) if ‖Q′‖ 6= 0,

2(|W ′| − 1) if ‖Q′‖ = 0,

between W ′ and P = e1e2 . . . en−r so that e ∩W ′ is actually the end vertex of e for each

edge e ∈ Q ∪Q′ and at least one of the vertices of en−r \ en−r−1 is not in V (Q) ∪ V (Q′).
Moreover, if ‖Q′‖ = 0 then either x = |W \ W ′| ∈ {1, 2} or x ≥ 3 and 0 ≤ r ≤ 1.
Otherwise, either x = |W \W ′| = 0 or x ≥ 1 and 0 ≤ r ≤ 1.

Proof. Let P = e1e2 . . . en be a maximal red path w.r.t. W, W ⊆ V (H) \ V (P), and

ei = {v(i−1)(k−1)+1, v(i−1)(k−1)+2, . . . , vi(k−1)+1}, i = 1, 2, . . . , n,

are the edges of P.

Step 1: Set P1 = P, W1 = W and P1 = P ′
1 = e1e2. Since P is maximal w.r.t. W1,

using Lemma 2.3 there is a good ̟S-configuration, say Q1 = f1g1, in Hblue with end
vertices x ∈ f1 and y ∈ g1 in W1 so that S ⊆ P ′

1 and Q1 does not contain a vertex of
e2 \e1, say u1. Set X1 = |W \V (Q1)|, P2 = P1 \P1 = e3e4 . . . en and W2 = W. If |W2| = 4
or ‖P2‖ ≤ 1, then Q = Q1 is a blue path between W ′ = W1 ∩ V (Q1) and P = P1 with
desired properties. Otherwise, go to Step 2.

Step 2: Clearly |W2| ≥ 5 and ‖P2‖ ≥ 2. Set P2 = e3e4 and P ′
2 =

(

(e3 \{fP,e3})∪{u1}
)

e4.

Since P is maximal w.r.t. W2, using Lemma 2.4 there is a good ̟S-configuration, say
Q2 = f2g2, in Hblue with end vertices x ∈ f2 and y ∈ g2 in W2 such that S ⊆ P ′

2 and Q2

does not contain a vertex of e4\e3, say u2. By Lemma 2.4, there are two subsets W21 ⊆ W2

and W22 ⊆ W2 with |W21| ≥ |W2| − 2 and |W22| ≥ |W2| − 3 so that for every distinct

vertices x′ ∈ W21 and y′ ∈ W22, the path Q′
2 =

(

(f2 \ {x}) ∪ {x′}
)(

(g2 \ {y}) ∪ {y′}
)

is

also a good ̟S-configuration in Hblue with end vertices x′ and y′ in W2. Therefore, we
may assume that

⋃2
i=1Qi is either a blue path or the union of two disjoint blue paths. Set

X2 = |W \
⋃2

i=1 V (Qi)| and P3 = P2 \ P2 = e5e6 . . . en. If
⋃2

i=1Qi is a blue path Q with
end vertices x2 and y2, then set

W3 =
(

W2 \ V (Q)
)

∪ {x2, y2}.
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In this case, clearly |W3| = |W2| − 1. Otherwise,
⋃2

i=1Qi is the union of two disjoint blue
paths Q and Q′ with end vertices x2, y2 and x′2, y

′
2 in W2, respectively. In this case, set

W3 =
(

W2 \ V (Q ∪Q′)
)

∪ {x2, y2, x
′
2, y

′
2}.

Clearly |W3| = |W2|. If |W3| ≤ 4 or ‖P3‖ ≤ 1, then
⋃2

i=1Qi = Q and ∅ or Q and Q′ (in
the case

⋃2
i=1 Qi = Q∪Q′) are the paths between W ′ = W ∩

⋃2
i=1 V (Qi) and P = P1∪P2

with desired properties. Otherwise, go to Step 3.

Step ℓ (ℓ > 2): Clearly |Wℓ| ≥ 5 and ‖Pℓ‖ ≥ 2. Set

Pℓ = e2ℓ−1e2ℓ,

P ′
ℓ =

(

(e2ℓ−1 \ {fP,e2ℓ−1
}) ∪ {uℓ−1}

)

e2ℓ.

Since P is maximal w.r.t. Wℓ, using Lemma 2.4 there is a good ̟S-configuration, say
Qℓ = fℓgℓ, in Hblue with end vertices x ∈ fℓ and y ∈ gℓ in Wℓ such that Qℓ does not
contain a vertex of e2ℓ \e2ℓ−1, say uℓ. By Lemma 2.4, there are two subsets Wℓ1 ⊆ Wℓ and
Wℓ2 ⊆ Wℓ with |Wℓ1| ≥ |Wℓ| − 2 and |Wℓ2| ≥ |Wℓ| − 3 so that for every distinct vertices

x′ ∈ Wℓ1 and y′ ∈ Wℓ2, the path Q′
ℓ =

(

(fℓ \ {x})∪{x′}
)(

(gℓ \ {y})∪{y′}
)

is also a good

̟S-configuration in Hblue with end vertices x′ and y′ in Wℓ. Therefore, we may assume
that either

⋃ℓ
i=1 Qi is a blue path Q with end vertices in Wℓ or we have two disjoint blue

paths Q and Q′ with end vertices in Wℓ so that Q ∪Q′ =
⋃ℓ

i=1Qi.

Set Xℓ = |W \
⋃ℓ

i=1 V (Qi)| and Pℓ+1 = Pℓ \ Pℓ = e2ℓ+1e2ℓ+2 . . . en. If
⋃ℓ

i=1 Qi is a blue
path Q with end vertices xℓ and yℓ, then set

Wℓ+1 =
(

Wℓ \ V (Q)
)

∪ {xℓ, yℓ}.

Note that in this case, |Wℓ| − 2 ≤ |Wℓ+1| ≤ |Wℓ| − 1. Otherwise,
⋃ℓ

i=1Qi is the union of
two disjoint blue paths Q and Q′ with end vertices xℓ, yℓ and x′ℓ, y

′
ℓ, respectively. In this

case, set

Wℓ+1 =
(

Wℓ \ V (Q ∪Q′)
)

∪ {xℓ, yℓ, x
′
ℓ, y

′
ℓ}.

Clearly, |Wℓ| − 1 ≤ |Wℓ+1| ≤ |Wℓ|.
If |Wℓ+1| ≤ 4 or ‖Pℓ+1‖ ≤ 1, then

⋃ℓ
i=1Qi = Q and ∅ or Q and Q′ (in the case

⋃ℓ
i=1 Qi = Q ∪ Q′) are the paths with the desired properties. Otherwise, go to Step

ℓ+ 1.

Let t ≥ 2 be the minimum integer for which we have either |Wt| ≤ 4 or ‖Pt‖ ≤ 1. Set
x = Xt−1 and r = ‖Pt‖ = n − 2(t − 1). So

⋃t−1
i=1 Qi is either a blue path Q or the union

two disjoint blue paths Q and Q′ between P = e1e2 . . . en−r and W ′ = W ∩ (
⋃t−1

i=1 V (Qi))
with the desired properties. If

⋃t−1
i=1 Qi is a blue path Q, then either x ∈ {1, 2} or x ≥ 3

and 0 ≤ r ≤ 1. Otherwise,
⋃t−1

i=1 Qi is the union of two disjoint blue paths Q and Q′ and
we have either x = 0 or x ≥ 1 and 0 ≤ r ≤ 1.
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3 Ramsey number of 4-uniform loose cycles

In this section we investigate Conjecture 2 for k = 4. Indeed, we determine the exact
value of R(C4

n, C
4
m), where n > m ≥ 3 and n = m is odd. When n = m is even, we show

that R(C4
n, C

4
n) is between two values with difference one. For this purpose we need the

following essential lemma.

Lemma 3.1. Let n ≥ m ≥ 3, (n,m) 6= (3, 3), (4, 3), (4, 4) and

t =







⌊m−1
2 ⌋ if n > m ,

⌊m2 ⌋ otherwise.

Assume that H = K4
3n+t is 2-edge colored red and blue and there is no copy of C4

n in Hred.

If C = C4
n−1 ⊆ Hred, then C4

m ⊆ Hblue.

Proof. Let C = e1e2 . . . en−1 be a copy of C4
n−1 in Hred with edges

ej = {v3j−2, v3j−1, v3j , v3j+1} (mod 3(n − 1)), 1 ≤ j ≤ n− 1,

and W = V (H) \ V (C). So we have |W | = t+ 3. Consider the following cases:

Case 1. For some edge ei = {v3i−2, v3i−1, v3i, v3i+1}, 1 ≤ i ≤ n− 1, there is a vertex z ∈
W such that at least one of the edges e = {v3i−1, v3i, v3i+1, z} or e′ = {v3i−2, v3i−1, v3i, z}
is red.

We can clearly assume that the edge e = {v3i−1, v3i, v3i+1, z} is red. Set

P = ei+1ei+2 . . . en−1e1e2 . . . ei−2ei−1

and W0 = W \ {z} (If the edge {v3i−2, v3i−1, v3i, z} is red, consider the path

P = ei−1ei−2 . . . e2e1en−1 . . . ei+2ei+1

and do the following process to get a blue copy of C4
m).

First let m ≤ 4. Since n ≥ 5, we have t = ⌊m−1
2 ⌋ = 1 and hence |W0| = 3.

Let W0 = {u1, u2, u3}. We show that Hblue contains C4
m for each m ∈ {3, 4}. Set

f1 = {u1, v3i−3, v3i−1, u2}, f2 = {u2, v3i−4, v3i, u3} and f3 = {u3, z, v3i−2, u1}. Since there
is no red copy of C4

n, the edges f1, f2 and f3 are blue. If not, let the edge fj, 1 ≤ j ≤ 3,
is red. Then fjeei+1 . . . en−1e1 . . . ei−1 is a red copy of C4

n, a contradiction. So f1f2f3 is
a blue copy of C4

3 . Also, since there is no red copy of C4
n, the path P ′ = ei−3ei−2 (we use

mod (n − 1) arithmetic) is maximal w.r.t. W = W0 ∪ {z}. Using Lemma 2.4, there is
a good ̟S-configuration, say C = fg, in Hblue with end vertices x ∈ f and y ∈ g in W
and S ⊆ ei−3ei−2. Note that, by Lemma 2.4, there are two subsets W1 and W2 of W with
|W1| ≥ 2 and |W2| ≥ 1 so that for every distinct vertices x′ ∈ W1 and y′ ∈ W2, the path

C ′ =
(

(f \ {x}) ∪ {x′}
)(

(g \ {y}) ∪ {y′}
)

is also a good ̟S-configuration in Hblue with

end vertices x′ and y′ in W. Clearly, at least one of the vertices of W0, say u1, is an end

7



vertex of C. Let u ∈ W0 \ V (C). Set g1 = {u2, u3, z, v3i−2} and g2 = {u, v3i−3, v3i−1, u1}.
Since the edge e is red, the edges g1 and g2 are blue (otherwise, we can find a red copy of
C4
n) and Cg1g2 is a blue copy of C4

4 .

Now let m ≥ 5. Clearly |W0| = t + 2 ≥ 4. Since there is no red copy of C4
n, P is a

maximal path w.r.t. W0. Applying Corollary 2.5, there are two disjoint blue paths Q and
Q′ between P , the path obtained from P by deleting the last r edges for some r ≥ 0, and
W ′ ⊆ W0 with the mentioned properties. Consider the paths Q and Q′ with ‖Q‖ ≥ ‖Q′‖
so that ℓ′ = ‖Q ∪ Q′‖ is maximum. Among these paths choose Q and Q′, where ‖Q‖ is
maximum. Since ‖P‖ = n− 2, by Corollary 2.5, we have r = n− 2− ℓ′.

Subcase 1. ‖Q′‖ 6= 0.
Set T = W0 \W

′. Let x, y and x′, y′ be the end vertices of Q and Q′ in W ′, respectively.
Using Corollary 2.5, we have one of the following cases:

I. |T | ≥ 2.
It is easy to see that ℓ′ ≤ 2t − 4 and so r ≥ 2. Hence this case does not occur by
Corollary 2.5.

II. |T | = 1.
Let T = {u}. One can easily check that ℓ′ = 2t − 2. If n > m, then r ≥ 2, a
contradiction to Corollary 2.5. Therefore, we may assume that n = m. If n is even,
then ℓ′ = n− 2. Remove the last two edges of Q∪Q′ to get two disjoint blue paths
Q and Q′ so that ‖Q ∪ Q′‖ = n − 4 and (Q ∪ Q′) ∩ ((ei−2 \ {fP,ei−2

}) ∪ ei−1) = ∅
(note that by the proof of Corollary 2.5, this is possible). By Corollary 2.5, there is
a vertex w ∈ ei−3 \ ei−4 so that w /∈ V (Q ∪ Q′). We can without loss of generality
assume that Q = Q. First let ‖Q′‖ > 0 and x′, y′′ with y′′ 6= y′ be end vertices of Q′

in W ′. Set

f1 = {y′′, v3i−3, v3i−1, u}, f2 = {u, z, v3i−2, y
′}, f3 = {y′, v3i, v3i−4, x}.

Since the edge e is red, then the edges fi, 1 ≤ i ≤ 3, are blue (otherwise we
can find a red copy of C4

n, a contradiction to our assumption). If the edge f =
{y,w, v3i−7, x

′} is blue, then QfQ′f1f2f3 is a copy of C4
m in Hblue. Otherwise, the

edge g = {y, v3i−6, v3i−5, y
′′} is blue (if not, fgei−1 . . . en−1e1 . . . ei−3 is a red copy of

C4
n, a contradiction). Also, since there is no red copy of C4

n, the edges

g1 = {x′, v3i−3, v3i−1, u}, g2 = {u, z, v3i−2, y
′}, g3 = {y′, v3i, v3i−4, x},

are blue. Clearly QgQ′g1g2g3 is a blue copy of C4
m. Now, we may assume that

‖Q′‖ = 0. In this case, set f ′ = {y,w, v3i−7, x
′}. If the edge f ′ is blue, then Qf ′g1g2g3

is a blue copy of C4
m. Otherwise, the edge g′ = {y, v3i−6, v3i−5, y

′} is blue (if not,
f ′g′ei−1 . . . en−1e1 . . . ei−3 makes a red C4

n). Similarly, since there is no red copy of
C4
n and the edge e is red,

Qg′{y′, v3i−3, v3i−1, u}{u, z, v3i−2, x
′}{x′, v3i, v3i−4, x},

8



is a blue copy of C4
m.

Therefore, we may assume that n is odd. Clearly, ℓ′ = n− 3 and r ≥ 1. Again, since
there is no red copy of C4

n, the edges

h1 = {y, v3i−4, v3i−1, x
′}, h2 = {y′, v3i−2, z, u}, h3 = {u, v3i, v3i−3, x},

are blue and Qh1Q
′h2h3, makes a copy of C4

m in Hblue.

III. |T | = 0.
Clearly we have ℓ′ = 2t. First let m be odd. Therefore, we have ℓ′ = m − 1.
Remove the last two edges of Q∪Q′ to get two disjoint blue paths Q and Q′ so that
‖Q ∪Q′‖ = m− 3 and (Q∪Q′) ∩ ((ei−2 \ {fP,ei−2

}) ∪ ei−1) = ∅ (this is possible, by
the proof of Corollary 2.5). We can without loss of generality assume that Q = Q.
First let ‖Q′‖ > 0 and x′, y′′ with y′′ 6= y′ be end vertices of Q′ in W ′. Since the edge
e is red and there is no red copy of C4

n, the edges

f1 = {y, v3i−3, v3i−1, x
′}, f2 = {y′′, v3i−4, v3i, y

′}, f3 = {y′, z, v3i−2, x},

are blue and so Qf1Q′f2f3 is a blue copy of C4
m. Now let ‖Q′‖ = 0. Again, since

there is no red copy of C4
n, the edge g1 = {x′, v3i−4, v3i, y

′} is blue and Qf1g1f3, is a
blue copy of C4

m.

Now let m be even. If n > m, then ℓ′ = m− 2 and r ≥ 1. Clearly,

Q{y, v3i−3, v3i−1, x
′}Q′{y′, v3i, v3i−4, x},

is a blue copy of C4
m. Therefore, we may assume that n = m. Thereby ℓ′ = m.

Remove the last two edges of Q ∪ Q′ to get two disjoint blue paths Q and Q′ so
that ‖Q ∪ Q′‖ = m − 2 and (Q ∪ Q′) ∩ ((ei−2 \ {fP,ei−2

}) ∪ ei−1) = ∅. We can
without loss of generality assume that Q = Q. First let ‖Q′‖ > 0 and x′, y′′ with
y′′ 6= y′ be end vertices of Q′ in W ′. Since there is no red copy of C4

n, the edges
h1 = {y, v3i−3, v3i−1, x

′} and h2 = {y′′, v3i, v3i−4, x} are blue and Qh1Q′h2 forms a
blue copy of C4

m. If ‖Q′‖ = 0, then Qh1{x
′, v3i, v3i−4, x} is a blue copy of C4

m.

Subcase 2. ‖Q′‖ = 0.
Let x and y be the end vertices of Q in W ′ and T = W0 \ W ′. Using Corollary 2.5 we
have the following:

I. |T | ≥ 3.
In this case, clearly ℓ′ ≤ 2(t− 2) and so r ≥ 2. This is a contradiction to Corollary
2.5.

II. |T | = 2.
Let T = {u1, u2}. So we have ℓ′ = 2t − 2. First let m be odd. Hence, ℓ′ = m − 3
and r ≥ 1. Since there is no red copy of C4

n and the edge e is red, the edges

f1 = {y, v3i−4, v3i−1, u1}, f2 = {u1, v3i−3, v3i, u2}, f3 = {u2, z, v3i−2, x},
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are blue. If not, suppose that the edge fj, 1 ≤ j ≤ 3, is red. So fjeei+1ei+2 . . .
en−1e1 . . . ei−1 is a red copy of C4

n, a contradiction. Thereby, Qf1f2f3 makes a blue
copy of C4

m.

Now let m be even. If n > m, then ℓ′ = m − 4 and r ≥ 3. Using Corollary 2.5,
there is a vertex w ∈ ei−4 \ ei−5 so that w /∈ V (Q). Since P is maximal w.r.t. W =
{x, y, u1, u2, z}, using Lemma 2.4, there is a good ̟S-configuration, say C1 = fg, in
Hblue with end vertices x′ ∈ f and y′ ∈ g in W and

S ⊆
(

(ei−3 \ fP,ei−3
) ∪ {w}

)

∪ ei−2.

Moreover, by Lemma 2.4, there are two subsets W1 and W2 of W with |W1| ≥ 3
and |W2| ≥ 2 so that for every distinct vertices x′ ∈ W1 and y′ ∈ W2, the path

C ′
1 =

(

(f \ {x′}) ∪ {x′}
)(

(g \ {y′}) ∪ {y′}
)

is also a good ̟S-configuration in Hblue

with end vertices x′ and y′ in W. Since |W1| ≥ 3 and ℓ′ is maximum, we may assume
that y and z or x and z are end vertices of C1 in W . By symmetry suppose that y
and z are end vertices of C1 in W. Since there is no red copy of C4

n and the edge e
is red, then

QC1{z, v3i−2, u1, u2}{u2, v3i−1, v3i−3, x},

is a blue copy of C4
m. Now, we may assume that n = m. Clearly ℓ′ = m − 2. By

Corollary 2.5, there is a vertex w′ ∈ ei−1 \ei−2 so that w′ /∈ V (Q). Again, since there
is no copy of C4

n in Hred, so

Q{y, u1, v3i−1, w
′}{w′, v3i, u2, x},

is a blue copy of C4
m.

III. |T | = 1.
Clearly ℓ′ = 2t. Let T = {u1}. First let m be odd. Therefore, ℓ′ = m − 1. By
Corollary 2.5 there is a vertex w ∈ ei−1 \ ei−2 so that w /∈ V (Q). Clearly the edge
g = {y,w, z, x} is blue (otherwise geei+1 . . . en−1e1 . . . ei−1 makes a red copy of C4

n).
Thereby Qg is a blue C4

m. Now, suppose that m is even. If n > m, then ℓ′ = m− 2
and r ≥ 1. Since the edge e is red and there is no red copy of C4

n,

Q{y, v3i−2, z, u1}{u1, v3i−1, v3i−3, x},

is a copy of C4
m in Hblue. If n = m, then ℓ′ = m. In this case, remove the last

two edges of Q to get two disjoint blue paths Q and Q′ so that ‖Q ∪ Q′‖ = m − 2
and (Q ∪ Q′) ∩ ((ei−2 \ {fP,ei−2

}) ∪ ei−1) = ∅. By symmetry we may assume that
‖Q‖ ≥ ‖Q′‖. First suppose that ‖Q′‖ = 0. Then we may suppose that x, y′ with
y′ 6= y be end vertices of Q in W ′. Since there is no red copy of C4

n and the edge
e is red, the edges h1 = {y′, v3i−3, v3i−1, y} and h2 = {y, v3i, v3i−4, x} are blue and
Qh1h2 forms a blue copy of C4

m. So we may assume that ‖Q′‖ > 0. Let x′, y′ and
x′′, y′′ be end vertices of Q and Q′ in W ′, respectively. One can easily check that

Q{y′, v3i−3, v3i−1, x
′′}Q′{y′′, v3i, v3i−4, x

′},

is a blue copy of C4
m.
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IV. |T | = 0.
Clearly, we have ℓ′ = 2t+2. First let m be odd. Therefore, ℓ′ = m+1. Remove the
last two edges of Q to get two disjoint blue paths Q and Q′ so that ‖Q∪Q′‖ = m−1
and (Q∪Q′)∩((ei−2\{fP,ei−2

})∪ei−1) = ∅. By symmetry we may assume that ‖Q‖ ≥
‖Q′‖. If ‖Q′‖ = 0, then we may suppose that x, y′ with y′ 6= y be end vertices of Q in
W ′. Clearly the edge g = {y′, v3i−2, z, x} is blue (otherwise geei+1 . . . en−1e1 . . . ei−1

makes a red copy of C4
n). Thereby Qg is a blue C4

m. If ‖Q′‖ > 0, then remove the
last two edges of Q∪Q′. By an argument similar to the case ‖Q′‖ 6= 0 and |T | = 0,
we can find a blue copy of C4

m. When m is even, by removing the last two edges of
Q, one of the before cases holds. So we omit the proof here.

Case 2. For every edge ei = {v3i−2, v3i−1, v3i, v3i+1}, 1 ≤ i ≤ n − 1, and every vertex
z ∈ W , the edges {v3i−1, v3i, v3i+1, z} and {v3i−2, v3i−1, v3i, z} are blue.

Let W = {x1, x2, . . . , xt, u1, u2, u3}. We have two following subcases:

Subcase 1. For some edge ej = {v3j−2, v3j−1, v3j , v3j+1}, 1 ≤ j ≤ n− 1, there are vertices
u and v in W so that at least one of the edges {v3j−2, v3j−1, u, v} or {v3j , v3j+1, u, v} is
blue.
We can without loss of generality assume that the edge {v3j−2, v3j−1, u, v} is blue (if the
edge {v3j , v3j+1, u, v} is blue, the proof is similar). By symmetry we may assume that
ej = e1 and {u, v} = {u1, u2}. Set

e′0 = (e1 \ {v3, v4}) ∪ {u1, u2},

e′1 = (e1 \ {v1}) ∪ {x1}

For 2 ≤ i ≤ m− 2 set

e′i =











(ei \ {lC,ei}) ∪ {x i+1

2

} if i is odd,

(ei \ {fC,ei}) ∪ {x i

2

} if i is even.

Also, let

e′m−1 =











(em−1 \ {lC,em−1
}) ∪ {u1} if m is even,

(en−1 \ {fC,en−1
}) ∪ {xm−1

2

} if m is odd.

Thereby, e′0e
′
1 . . . e

′
m−1 forms a blue copy of C4

m.

Subcase 2. For every edge ej = {v3j−2, v3j−1, v3j , v3j+1}, 1 ≤ j ≤ n− 1, and every vertices
u, v in W , the edges {v3j−2, v3j−1, u, v} and {v3j , v3j+1, u, v} are red.
One can easily check that

{v1, v2, u1, u2}{u2, u3, v3, v4}e2 . . . en−1,

is a red copy of C4
n. This contradiction completes the proof.
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The following results are the main results of this section.

Theorem 3.2. For every n ≥ m+ 1 ≥ 4,

R(C4
n, C

4
m) = 3n +

⌊m− 1

2

⌋

.

Proof. We give a proof by induction on m+ n. By Theorems 2.1 and 2.2 we may assume
that n ≥ 5. Suppose to the contrary that H = K4

3n+⌊m−1

2
⌋
is 2-edge colored red and blue

with no red copy of C4
n and no blue copy of C4

m. Consider the following cases:

Case 1. n = m+ 1.

By induction hypothesis,

R(C4
n−1, C

4
n−2) = 3(n− 1) +

⌊n− 3

2

⌋

< 3n +
⌊n− 2

2

⌋

.

If there is a copy of C4
n−1 in Hred, then using Lemma 3.1 we have a blue copy of C4

n−1.
So we may assume that there is no red copy of C4

n−1. Therefore, there is a copy of C4
n−2

in Hblue. Since there is no blue copy of C4
n−1, applying Lemma 3.1, we have a red copy of

C4
n−1. This is a contradiction to our assumption.

Case 2. n > m+ 1.

By the induction hypothesis

R(C4
n−1, C

4
m) = 3(n − 1) +

⌊m− 1

2

⌋

< 3n+
⌊m− 1

2

⌋

.

Since there is no blue copy of C4
m, we have a copy of C4

n−1 in Hred. Using Lemma 3.1, we
have a blue copy of C4

m. This contradiction completes the proof.

Theorem 3.3. For every n ≥ 4,

R(C4
n, C

4
n) ≤ 3n +

⌊n

2

⌋

.

Proof. We give a proof by induction on n. Applying Theorem 2.1 the statement is true
for n = 4. Suppose that, on the contrary, the edges of H = K3

3n+⌊n

2
⌋ can be colored red

and blue with no red copy of C4
n and no blue copy of C4

n. By the induction assumption,

R(C4
n−1, C

4
n−1) ≤ 3(n− 1) +

⌊n− 1

2

⌋

< 3n +
⌊n

2

⌋

.

By symmetry we may assume that there is a red copy of C4
n−1. Using Lemma 3.1 we have

a copy of C4
n in Hblue. This is a contradiction.

Using Lemma 1 of [2] and Theorem 3.3 we conclude the following corollary.

Corollary 3.4. Let n ≥ 4. If n is odd, then R(C4
n, C

4
n) = 3n+

⌊

n−1
2

⌋

. Otherwise,

3n+
⌊n− 1

2

⌋

≤ R(C4
n, C

4
n) ≤ 3n+

⌊n− 1

2

⌋

+ 1.
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Clearly using the above results on the Ramsey number of loose cycles and Theorem
1.2, we obtain the following results.

Theorem 3.5. If n ≥ m+ 1 ≥ 4 or n = m is odd, then

R(P4
n, C

4
m) = 3n +

⌊m+ 1

2

⌋

.

Theorem 3.6. Let n ≥ m ≥ 3. If n ≥ m+ 2 ≥ 5 or n is odd, then

R(P4
n,P

4
m) = 3n+

⌊m+ 1

2

⌋

.
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