Ramsey and Gallai-Ramsey number for wheels*

Yaping Mao ${ }^{\dagger \ddagger}$ Zhao Wang,
Colton Magnant $\xlongequal{\ddagger} \ddagger$ Ingo Schiermeyer!

Abstract

Given a graph G and a positive integer k, define the Gallai-Ramsey number to be the minimum number of vertices n such that any k-edge coloring of K_{n} contains either a rainbow (all different colored) triangle or a monochromatic copy of G. Much like graph Ramsey numbers, Gallai-Ramsey numbers have gained a reputation as being very difficult to compute in general. As yet, still only precious few sharp results are known. In this paper, we obtain bounds on the Gallai-Ramsey number for wheels and the exact value for the wheel on 5 vertices.

1 Introduction

In this work, we consider only edge-colorings of graphs. A coloring of a graph is called rainbow if no two edges have the same color.

Colorings of complete graphs that contain no rainbow triangle have interesting and somewhat surprising structure. In 1967, Gallai [5] first examined this structure under the guise of transitive orientations of graphs. His seminal result in the area was reproven in [6] in the terminology of graphs and

[^0]can also be traced to [1]. For the following statement, a trivial partition is a partition into only one part.

Theorem 1 ([1, 5, 6]). In any coloring of a complete graph containing no rainbow triangle, there exists a nontrivial partition of the vertices (that is, with at least two parts) such that there are at most two colors on the edges between the parts and only one color on the edges between each pair of parts.

We refer to a colored complete graph with no rainbow triangle as a Gallai-coloring and the partition provided by Theorem 1 as a Gallai-partition. The induced subgraph of a Gallai colored complete graph constructed by selecting a single vertex from each part of a Gallai partition is called the reduced graph of that partition. By Theorem 1, the reduced graph is a 2-colored complete graph.

Given two graphs G and H, let $R(G, H)$ denote the 2-color Ramsey number for finding a monochromatic G or H, that is, the minimum number of vertices n needed so that every red-blue coloring of K_{n} contains either a red copy of G or a blue copy of H. Similarly let $R_{k}(H)$ denote the k-color Ramsey number for finding a monochromatic copy of H (in any color), that is the minimum number of vertices n needed so that every k-coloring of K_{n} contains a monochromatic copy of H. Although the reduced graph of a Gallai partition uses only two colors, the original Gallai-colored complete graph could certainly use more colors. With this in mind, we consider the following generalization of the Ramsey numbers. Given two graphs G and H, the general k-colored Gallai-Ramsey number $g r_{k}(G: H)$ is defined to be the minimum integer m such that every k-coloring of the complete graph on m vertices contains either a rainbow copy of G or a monochromatic copy of H. With the additional restriction of forbidding the rainbow copy of G, it is clear that $g r_{k}(G: H) \leq R_{k}(H)$ for any graph G.

Recently, there has been a flurry of activity in the area with an influx of new results and approaches. In particular, the following results were recently obtained for fans.

Theorem 2 (9).

$$
g r_{k}\left(K_{3} ; F_{2}\right)= \begin{cases}9, & \text { if } k=2 \\ \frac{83}{2} \cdot 5^{\frac{k-4}{2}}+\frac{1}{2}, & \text { if } k \text { is even, } k \geq 4 \\ 4 \cdot 5^{\frac{k-1}{2}}+1, & \text { if } k \text { is odd }\end{cases}
$$

Theorem 3 ([9). For $k \geq 2$,

$$
\begin{cases}4 n \cdot 5^{\frac{k-2}{2}}+1 \leq g r_{k}\left(K_{3} ; F_{n}\right) \leq 10 n \cdot 5^{\frac{k-2}{2}}-\frac{5}{2} n+1, & \text { if } k \text { is even } \\ 2 n \cdot 5^{\frac{k-1}{2}}+1 \leq g r_{k}\left(K_{3} ; F_{n}\right) \leq \frac{9}{2} n \cdot 5^{\frac{k-1}{2}}-\frac{5}{2} n+1, & \text { if } k \text { is odd. }\end{cases}
$$

Odd cycles were also recently settled completely.
Theorem 4 ([12). For integers $\ell \geq 3$ and $k \geq 1$, we have

$$
g r_{k}\left(K_{3}: C_{2 \ell+1}\right)=\ell \cdot 2^{k}+1 .
$$

In this work, we consider the Gallai-Ramsey numbers for finding either a rainbow triangle or monochromatic wheel. Let W_{n} be a wheel of order n, that is, $W_{n}=K_{1} \vee C_{n-1}$ where C_{n-1} is the cycle on $n-1$ vertices.

Theorem 5. 10]

$$
\begin{aligned}
& \text { (1) } R\left(W_{5}, W_{5}\right)=15 ; \\
& \text { (2) } R\left(W_{6}, W_{6}\right)=17 \text {. }
\end{aligned}
$$

As far as we are aware, for $n \geq 7$, the classical diagonal Ramsey number for the wheel is yet unknown. We give upper and lower bounds for classical Ramsey number of the general wheel W_{n} in Section 2,

Theorem 6. For $k \geq 1$ and $n \geq 7$,

$$
\begin{cases}3 n-3 \leq R\left(W_{n}, W_{n}\right) \leq 8 n-10, & \text { if } n \text { is even; } \\ 2 n-2 \leq R\left(W_{n}, W_{n}\right) \leq 6 n-8 & \text { if } n \text { is odd } .\end{cases}
$$

In Section 3, we obtain the exact value of the Gallai Ramsey number for W_{5}.

Theorem 7. For $k \geq 1$,

$$
g r_{k}\left(K_{3}: W_{5}\right)= \begin{cases}5 & \text { if } k=1 \\ 14 \cdot 5^{\frac{k-2}{2}}+1 & \text { if } k \text { is even } \\ 28 \cdot 5^{\frac{k-3}{2}}+1 & \text { if } k \geq 3 \text { is odd. }\end{cases}
$$

Finally in Section 4, we provide general upper and lower bounds on the Gallai-Ramsey numbers for all wheels.

We refer the interested reader to [10] for a dynamic survey of small Ramsey numbers and [4] for a dynamic survey of rainbow generalizations of Ramsey theory, including topics like Gallai-Ramsey numbers.

2 Bounds on the Ramsey numbers

First some additional definitions. A cycle C_{k} of length k is also called a k-cycle. A path of a graph G is a Hamiltonian path if it contains all the vertices of G. A graph G is said to be pancyclic if it has k-cycles for every k between 3 and n. A vertex of a graph G is r-pancyclic if it is contained in a k-cycle for every k between r and n, and G is vertex r-pancyclic if every vertex is r-pancyclic.

Hendry [7] derived the following result.
Lemma 1 ([7]). Let G be a graph of order $n \geq 3$ with $\delta(G) \geq(n+1) / 2$. Then G is vertex pancyclic.

Lemma 2 ([3, 8, [1]). For $k \geq 1$,
$R\left(C_{m}, C_{n}\right)= \begin{cases}2 n-1, & \text { if } 3 \leq m \leq n, m \text { odd, } \\ & (m, n) \neq(3,3) ; \\ n-1+m / 2, & \text { if } 4 \leq m \leq n, m \text { and } n \text { even }, \\ & (m, n) \neq(3,3) ; \\ \max \{n-1+m / 2,2 m-1\}, & \text { if } 4 \leq m \leq n, \\ & m \text { even and } n \text { odd } .\end{cases}$
By the above results, we derive the upper and lower bounds for the Ramsey number of general wheels.

Lemma 3. For $k \geq 1$ and $t \geq 3$,

$$
6 t+4 \leq R\left(W_{2 t+2}, W_{2 t+2}\right) \leq 16 t+6,
$$

and

$$
4 t+1 \leq R\left(W_{2 t+1}, W_{2 t+1}\right) \leq 12 t-2 .
$$

Proof. First the even case. For the lower bound, let G be a 2-edge colored graph obtained from three blue copies of $K_{2 t+1}$ by adding all red edges in between them. Clearly, there is neither a red copy of $W_{2 t+2}$ nor a blue copy of $W_{2 t+2}$ in G. Since $|G|=6 t+3$, this means that $R\left(W_{2 t+2}, W_{2 t+2}\right) \geq 6 t+4$.

Let G be a 2 -edge colored copy of $K_{16 t+6}$ with colors red and blue. For each $v \in V(G)$, let A_{v} and B_{v} be the set of vertices incident to v be red and blue edges, respectively. Then for every vertex $v \in V(G)$ such that $\left|A_{v}\right| \geq 8 t+3$ or $\left|B_{v}\right| \geq 8 t+3$. Without loss of generality, we suppose $\left|A_{v}\right| \geq 8 t+3$. For each vertex $u \in A_{v}$, let D_{u} be the set of vertices in A_{v}
with blue edges to u. If there is a vertex $u \in A_{v}$ with $\left|D_{u}\right| \geq 4 t+1$, then since $R\left(C_{2 t+1}, C_{2 t+1}\right)=4 t+1$ (by Lemma (2), there exists either a red cycle $C_{2 t+1}$ or a blue cycle $C_{2 t+1}$ within D_{u}. If it is a red cycle $C_{2 t+1}$, then the subgraph induced by $V\left(C_{2 t+1}\right) \cup\{v\}$ is a red copy of $W_{2 t+2}$. If it is a blue cycle $C_{2 t+1}$, then the subgraph induced by $V\left(C_{2 t+1}\right) \cup\{u\}$ is a blue copy of $W_{2 t+2}$. Thus, we may assume that for any $u \in A_{v},\left|D_{u}\right| \leq 4 t$. Then the number of incident red edges to u in A_{v} is at least $\left|A_{v}\right|-4 t-1 \geq \frac{\left|A_{v}\right|+1}{2}$. From Lemma 1, there is red cycle $C_{2 t+1}$ in A_{v}. This cycle together with v is a red copy of $W_{2 t+2}$. Thus, we have $R\left(W_{2 t+2}, W_{2 t+2}\right) \leq 16 t+6$.

Now the odd case. Let G be a 2 -edge colored graph obtained from two blue copies of $K_{2 t}$ by adding all red edges in between them. Clearly, there is neither a red copy of $W_{2 t+1}$ nor a blue copy of $W_{2 t+1}$ in G. Since $|G|=2(2 t)=4 t$, we have $R\left(W_{2 t+2}, W_{2 t+2}\right) \geq 4 t+1$.

Much like the proof of the even case, let G be a 2-edge colored copy of $K_{16 t+6}$ with colors red and blue. For each $v \in V(G)$, let A_{v} and B_{v} be the set of vertices incident to v be red and blue edges, respectively. Then for every vertex $v \in V(G)$ such that $\left|A_{v}\right| \geq 6 t-1$ or $\left|B_{v}\right| \geq 6 t-1$. Without loss of generality, we suppose $\left|A_{v}\right| \geq 6 t-1$. For each vertex $u \in A_{v}$, let D_{u} be the set of vertices in A_{v} with blue edges to u. If there is a vertex $u \in A_{v}$ with $\left|D_{u}\right| \geq 3 t-1$, then since $R\left(C_{2 t}, C_{2 t}\right)=3 t-1$ (by Lemma 2), there exists either a red cycle $C_{2 t}$ or a blue cycle $C_{2 t}$ within D_{u}. If it is a red cycle $C_{2 t}$, then the subgraph induced by $V\left(C_{2 t}\right) \cup\{v\}$ is a red copy of $W_{2 t+1}$. If it is a blue cycle $C_{2 t}$, then the subgraph induced by $V\left(C_{2 t}\right) \cup\{u\}$ is a blue copy of $W_{2 t+1}$. Thus, we may assume that for any $u \in A_{v},\left|D_{u}\right| \leq 3 t-2$. Then the number of incident red edges to u in A_{v} is at least $\left|A_{v}\right|-3 t-3 \geq \frac{\left|A_{v}\right|+1}{2}$. From Lemma 1, there is red cycle $C_{2 t}$ in A_{v}. This cycle together with v is a red copy of $W_{2 t+1}$. Thus, we have $R\left(W_{2 t+1}, W_{2 t+1}\right) \leq 12 t-2$.

3 The Gallai-Ramsey number for W_{5}

In this section, we give the results for the Gallai Ramsey number of W_{5} and general wheel W_{n} for $n \geq 6$.

We first give the lower bound on the Gallai-Ramsey number for W_{5}.
Lemma 4. For $k \geq 2$,

$$
g r_{k}\left(K_{3}: W_{5}\right) \geq \begin{cases}14 \cdot 5^{(k-2) / 2}+1 & \text { if } k \text { is even } \\ 28 \cdot 5^{(k-3) / 2}+1 & \text { if } k \text { is odd }\end{cases}
$$

Proof. We prove this result by inductively constructing a coloring of K_{n} where

$$
n= \begin{cases}14 \cdot 5^{(k-2) / 2} & \text { if } k \text { is even } \\ 28 \cdot 5^{(k-3) / 2} & \text { if } k \text { is odd }\end{cases}
$$

which contains no rainbow triangle and no monochromatic copy of W_{5}. For the base of this induction, let G_{2} be a 2-colored complete graph on $R\left(W_{5}, W_{5}\right)-1=14$ vertices containing no monochromatic copy of W_{5}. Suppose this coloring uses colors 1 and 2.

Suppose we have constructed a coloring of $G_{2 i}$ where i is a positive integer and $2 i<k$, using the $2 i$ colors in the set [$2 i$] and having order $n_{2 i}=14 \cdot 5^{i-1}$ such that $G_{2 i}$ contains no rainbow triangle and no monochromatic copy of W_{5}.

If $k=2 i+1$, we construct $G_{2 i+1}$ by making two copies of $G_{2 i}$ and inserting all edges between the copies in color k. Then G_{k} certainly contains no rainbow triangle, no monochromatic copy of W_{5}, and has order $n=$ $2 \cdot 14 \cdot 5^{(k-3) / 2}=28 \cdot 5^{(k-3) / 2}$.

Otherwise suppose $k \geq 2 i+2$. We construct $G_{2 i+2}$ by making five copies of $G_{2 i}$ and inserting edges of colors $2 i+1$ and $2 i+2$ between the copies to form a blow-up of the unique 2-colored K_{5} which contains no monochromatic triangle. This coloring clearly contains no rainbow triangle and, since there is no monochromatic triangle in either of the two new colors, there can be no monochromatic copy of W_{5}, completing the construction.

We are now in a position to prove Theorem [7 that is, for $k \geq 1$,

$$
g r_{k}\left(K_{3}: W_{5}\right)= \begin{cases}5 & \text { if } k=1 \\ 14 \cdot 5^{\frac{k-2}{2}}+1 & \text { if } k \text { is even } \\ 28 \cdot 5^{\frac{k-3}{2}}+1 & \text { if } k \geq 3 \text { is odd }\end{cases}
$$

Proof. The lower bound follows from Lemma 4 Call a color wasted if it induces only a matching and useful if there are adjacent edges in the color. Note that in a colored complete graph, in order to avoid a rainbow triangle, all wasted colors must together induce a matching. Let G be a k-coloring of a complete graph in which there are only k^{\prime} colors which induce a subgraph containing adjacent edges. If $k^{\prime}=0$, then every color is wasted and so every set of three vertices induces a rainbow triangle, clearly a contradiction. For
$k^{\prime} \geq 1$, let n be the order of G where

$$
n=n_{k^{\prime}}= \begin{cases}5 & \text { if } k^{\prime}=1 \\ 14 \cdot 5^{\frac{k^{\prime}-2}{2}}+1 & \text { if } k^{\prime} \text { is even } \\ 28 \cdot 5^{\frac{k^{\prime}-3}{2}}+1 & \text { if } k^{\prime} \geq 3 \text { is odd }\end{cases}
$$

We now prove the upper bound by induction on k^{\prime} since $k \leq k^{\prime}$. If $k^{\prime}=1$, then G is a coloring of K_{5} in which each color is wasted except one, say color 1. This means that the subgraph induced by color 1 is a K_{5} minus a matching, which is a copy of W_{5}, a contradiction.

Next suppose $k^{\prime}=2$, so $n=15$. If G uses exactly 2 colors, then it follows from the fact that $R\left(W_{5}, W_{5}\right)=15$ that there is a monochromatic copy of W_{5} in G, a contradiction. Suppose, therefore, that G uses at least 3 colors. Let red and blue be two useful colors. Since all wasted colors induce a single matching, we may assume all wasted edges are green and let $u v$ be a green edge. To avoid a rainbow triangle, every vertex in G other than u and v have a single color (red or blue) to both u and v. This being the case with all green edges, there is a Gallai partition of G with all parts of order at most 2 consisting of the green edges. Let A be the set of parts with red edges to $\{u, v\}$, and B be the set of parts with blue edges to $\{u, v\}$. In order to avoid a red copy of W_{5}, there is no vertex in A with two incident red edges within A. This means that the red edges within A form a matching, along with any green edges. If $|A| \geq 5$, then since A contains all blue edges except for possibly a matching of red or green edges, there is a blue copy of W_{5} within A. Thus, we may assume $|A| \leq 4$ and similarly $|B| \leq 4$. Hence $|G|=|A|+|B|+2 \leq 10<15$, a contradiction.

Suppose $k^{\prime} \geq 3$. Inductively we suppose the statement is true for all $k^{\prime}<k$ and consider $k^{\prime} \doteq k$.

By Theorem [1, there exists a partition of $V(G)$ into parts such that between each pair of parts there is exactly one color and between the parts in general, there are at most two colors (say color c_{1} and c_{2}). Consider such a G partition with the smallest number of parts, say t_{1}. Since $R\left(W_{5}, W_{5}\right)=15$, it follows that $t_{1} \leq 14$. Let $H_{1}^{1}, H_{2}^{1}, \cdots, H_{t_{1}}^{1}$ be parts of the G-partition.

Suppose $2 \leq t_{1} \leq 3$. By the minimality of t_{1}, we may assume $t_{1}=2$. If $\left|H_{1}^{1}\right|=1$, then $\left|H_{2}^{1}\right| \geq 14$ since $n \geq 15$. Without loss of generality, suppose that all edges between H_{1}^{1} and H_{2}^{1} are color c_{1}. If there is no edge with color c_{1} in H_{2}^{1}, then

$$
|G|=\left|H_{1}^{1}\right|+\left|H_{2}^{1}\right| \leq 1+\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]<n,
$$

a contradiction.

We now suppose there are some edges with color c_{1} in H_{2}^{1}. Because there is no rainbow triangle or monochromatic copy of W_{5} in H_{2}^{1}, by Theorem $\mathbb{1}$, there exists a partition of $V\left(H_{2}^{1}\right)$ into parts such that between each pair of parts there is exactly one color and between the parts in general, there are at most two colors. Consider such a H_{2}^{1}-partition with the smallest number of parts, say t_{2}, clearly, $2 \leq t_{2} \leq 14$. Let $H_{1}^{2}, H_{2}^{2}, \cdots, H_{t_{2}}^{2}$ be parts of the H_{2}^{1}-partition.

Suppose $2 \leq t_{2} \leq 3$. By the minimality of t_{2}, we may assume $t_{2}=2$. If $H_{1}^{2}=1$, then $\left|H_{2}^{2}\right| \geq 13$. We suppose that all edges between H_{1}^{2} and H_{2}^{2} are color c_{1}. To avoid a W_{5} with color c_{1}, there is no P_{3} with color c_{1} within H_{2}^{2}, and hence the subgraph induced by color c_{1} is a matching of H_{2}^{2}. Then $\left|H_{2}^{2}\right| \leq g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1$, and so

$$
|G|=\left|H_{1}^{2}\right|+\left|H_{2}^{2}\right| \leq 2+\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]<n,
$$

a contradiction. We now suppose that all edges between H_{1}^{2} and H_{2}^{2} are not color c_{1}, say c_{2}.

Continue this above process. Then there exists a sequence of vertices $v_{1}, v_{2}, \cdots, v_{s}$ in G such that

- $H_{1}^{1}=\left\{v_{1}\right\}, H_{1}^{2}=\left\{v_{2}\right\}, \cdots, H_{1}^{s}=\left\{v_{s}\right\} ;$
- Let $H_{1}^{i}, H_{2}^{i}, \cdots, H_{t_{i}}^{i}$ be parts of the H_{2}^{i-1}-partition for each $i(1 \leq i \leq$ $s)$;
- $t_{1}=t_{2}=\cdots=t_{s}=2 ;$
- The edges from $H_{1}^{i}=\left\{v_{i}\right\}$ to H_{2}^{i} are colored by c_{i} for each i with $1 \leq i \leq s$.

Claim 1. $2 \leq s \leq 3 k^{\prime}$.
Proof. Assume, to the contrary, that $s \geq 3 k^{\prime}+1$. Then there exist 4 vertices of $v_{1}, v_{2}, \ldots, v_{s}$, say $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}, v_{i_{4}}\left(i_{1} \leq i_{2} \leq i_{3} \leq i_{4}\right)$, such that the edges from $v_{i_{p}}$ to $v_{i_{q}}(1 \leq p \neq q \leq 4)$ receives color $c_{i_{1}}$, the edges from each $v_{i_{p}}(1 \leq p \leq 4)$ to H_{2}^{s} receives color $c_{i_{1}}$. It is clear that there is a W_{5} with color $c_{i_{1}}$, a contradiction.

Furthermore, we have the following claim by Claim 1 .
Claim 2. $2 \leq s \leq k^{\prime}$.

Proof. Assume, to the contrary, that $s \geq k^{\prime}+1$. Then there exist at least 2 vertices of $v_{1}, v_{2}, \ldots, v_{s}$, say $v_{i_{1}}, v_{i_{2}}$, such that the edges from $v_{i_{1}}$ to $v_{i_{2}}$ receives color $c_{i_{1}}$, the edges from each $v_{i_{1}}$ to H_{2}^{s} receives color $c_{i_{1}}$, and the edges from each $v_{i_{2}}$ to H_{2}^{s} receives color $c_{i_{1}}$. Then H_{2}^{s} contains at least a matching with color $c_{i_{1}}$, and hence $\left|H_{2}^{s}\right| \leq g r_{k^{\prime}-1}\left(K_{3} ; W_{5}\right)-1$. From Claim [1, we have
$|G|=(s-1)+\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right] \leq\left(3 k^{\prime}-1\right)+\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]<n$,
a contradiction.
If $H_{1}^{s}=1$, then $\left|H_{2}^{s}\right| \geq 15-s$. We suppose that all edges between H_{1}^{s} and H_{2}^{s} are color $c_{j}(1 \leq j \leq s-1)$. To avoid a W_{5} with color c_{j}, there is no P_{3} with color c_{j} within H_{2}^{s}, and hence the subgraph induced by color c_{j} is a matching of H_{2}^{s}. Then $\left|H_{2}^{s}\right| \leq g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1$, and so

$$
|G|=(s-1)+\left|H_{1}^{s}\right|+\left|H_{2}^{s}\right| \leq s+\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]<n,
$$

a contradiction. We now suppose that all edges between H_{1}^{s} and H_{2}^{s} are not color $c_{j}(1 \leq j \leq s-1)$, say c_{s}.

Note that $H_{2}^{s}=G-\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$. Then, by Theorem (1) we see that H_{2}^{s} can be partitioned into $I_{1}, I_{2}, \cdots, I_{q}$ and $2 \leq q \leq 14$. If $2 \leq q \leq 3$, then by the minimality of q, we may assume $q=2$. From the above argument, we suppose $\left|I_{i}\right| \geq 2, i=1,2$. If the edges from I_{1} to I_{2} are color c_{i} where $1 \leq i \leq s$, then there is a monochromatic W_{5}, a contradiction. Suppose that the edges from I_{1} to I_{2} are color c^{\prime} such that $c^{\prime} \neq c_{i}$ where $1 \leq i \leq s$. For each I_{i} with $i=1,2$, the subgraph induced by the edges in I_{i} with color c^{\prime} is a matching. Then

$$
\begin{aligned}
|G| & =\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}\right|+\left|I_{1}\right|+\left|I_{2}\right| \\
& =\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{1}\right|+\left|I_{2}\right| \\
& \leq 2\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right] \\
& <n,
\end{aligned}
$$

a contradiction.
Suppose $4 \leq q \leq 14$. Let $I_{1}, I_{2}, \cdots, I_{r}$ be the parts such that $\left|I_{i}\right| \geq 2$ for each i with $1 \leq i \leq r$, and $\left|I_{j}\right|=1$ for each j with $r+1 \leq j \leq q$.
Fact 1. $r \leq 5$.
If $r=5$, then $q=5$ and the reduced graph on the parts $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$ must be the unique 2-coloring of K_{5} with no monochromatic triangle, say
with $I_{1} I_{2} I_{3} I_{4} I_{5} I_{1}$ and $I_{1} I_{3} I_{5} I_{2} I_{4} I_{1}$ making two monochromatic cycles in red and blue respectively. Note that red and blue is not same as $c_{i}(1 \leq i \leq s)$. For each $I_{i}(1 \leq i \leq 5)$, the subgraph induced by red or blue edges is a matching. For each $I_{i}(1 \leq i \leq 5),\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{i}\right| \leq g r_{k^{\prime}-2}\left(K_{3}:\right.$ W_{5}) - 1 , and hence

$$
|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}\right|+\sum_{i=1}^{5}\left|I_{i}\right| \leq 5\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n,
$$

a contradiction.
Suppose $r=4$. If $q=4$, then $\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{i}\right| \leq g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$ for each $I_{i}(1 \leq i \leq 4)$, and hence $|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}\right|+\sum_{i=1}^{4}\left|I_{i}\right| \leq$ $4\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n$, a contradiction. If $q=5$, then $\left|I_{5}\right|=1$ and $\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{i}\right| \leq g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$ for each $I_{i}(1 \leq i \leq 4)$, and hence $|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}\right|+1+\sum_{i=1}^{4}\left|I_{i}\right| \leq 1+4\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n$, a contradiction.

Suppose $r=3$. The triangle in the reduced graph cannot be monochromatic so without loss of generality, suppose all edges from I_{1} to $I_{2} \cup I_{3}$ are red, and $I_{2} I_{3}$ is blue. For each $I_{i}(4 \leq i \leq q)$, the edges from I_{1} to I_{i} is blue.

Claim 3. $q \leq 7$.
Proof. Assume, to the contrary, that $q \geq 8$. Then there are at least five isolated vertices outside $I_{1} \cup I_{2} \cup I_{3}$. Then the subgraph induced by the blue edges in $I_{4} \cup I_{5} \cup \ldots \cup I_{q}$ is a matching, and hence $I_{4} \cup I_{5} \cup \ldots \cup I_{q}$ contains a red W_{5}, a contradiction.

From Claim 3, $q \leq 7$. If $5 \leq q \leq 7$, then $|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}\right|+4+$ $\sum_{i=1}^{3}\left|I_{i}\right| \leq 4+3\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n$, a contradiction. If $q=4$, then $|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{1}\right|+1+\left|I_{2}\right|+\left|I_{3}\right| \leq 1+\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]+$ $2\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n$, a contradiction.

Suppose $r=2$. Suppose all edges from I_{1} to I_{2} are red. Let A be the set of parts with red edges to I_{1} and blue edges to I_{2}, and B be the set of parts with blue edges to $I_{1} \cup I_{2}$, and C be the set of parts with blue edges to I_{1} and red edges to I_{2}.

Claim 4. $|A| \leq 2$ and $|C| \leq 2$.
Proof. Assume, to the contrary, that $|A| \geq 3$. Note that all parts in A are small parts and they are isolated vertices, and hence the edges in A are red or blue. Since $|A| \geq 3$, it follows that there is a vertex of red degree 2 or a vertex of blue degree 2, that is, there is a red P_{3} or blue P_{3} in A. If there
is a red P_{3}, then we have a red W_{5} from P_{3} and the edges from A to I_{1}, a contradiction. If there is a blue P_{3}, then we have a blue W_{5} from P_{3} and the edges from A to I_{2}, also a contradiction.

From Claim 4, we have $|A| \leq 2$ and $|C| \leq 2$. To avoid a red W_{5}, there is at most a red matching in I_{1} or I_{2}, and hence $\left|I_{1}\right| \leq g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1$. Since $|C| \leq 2$, it follows that C contains at most one red edge, and hence $C \cup I_{1}$ contains at most a red matching. Clearly, $\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup C \cup I_{1}\right| \leq$ $g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1$.

Suppose $|A \cup B| \leq 2$. Note that there is at most a red matching in I_{2}. If $A \cup B$ contains at most a red matching, then $A \cup B \cup T_{2}$ contains at most a red matching since the edges from $A \cup B$ to I_{2} are all blue. If $A \cup B$ contains a vertex of red degree 2 , then the we change all red edges to green (a color different to $c_{1}, c_{2}, \ldots, c_{s}$ and red and blue) and $A \cup B \cup I_{2}$ contains at most a red matching, and hence

$$
|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup C \cup H_{1}\right|+\left|A \cup B \cup I_{2}\right| \leq 2\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]
$$

a contradiction. If $|A \cup B| \geq 5$, then $A \cup B$ contains a red W_{5}, a contradiction. If $|A \cup B|=3,4$, then $\left|I_{2}\right| \leq g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$ and hence

$$
\begin{aligned}
|G| & =\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup C \cup I_{1}\right|+\left|A \cup B \cup I_{2}\right| \\
& \leq\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]+4+\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right] \\
& <n
\end{aligned}
$$

a contradiction.
Suppose $r=1$. Let A be the set of parts with red edges to I_{1}, and B be the set of parts with blue edges to I_{1}.

Claim 5. $|A| \leq 4$ and $|B| \leq 4$.
Proof. Assume, to the contrary, that $|A| \geq 5$. Note that all parts in A are small parts and they are isolated vertices, and hence the edges in A are red or blue. If there is a red P_{3} in A, then there is a red W_{5} by this P_{3} and edges from P_{3} to I_{1}, a contradiction. So A contains at most a red matching and hence there is a blue W_{5} in A, a contradiction.

From Claim 5, we have $|A| \leq 4$ and $|B| \leq 4$. Since $q \geq 4$, it follows that $|A| \geq 2$ or $|B| \geq 2$. If $|A| \geq 2$ and $|B| \geq 2$, then $\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{1}\right| \leq$ $g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$, and hence

$$
|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{1}\right|+|A \cup B| \leq 8+\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n
$$

a contradiction. We assume $|A| \geq 2$ and $|B|=1$. Then $\mid\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup$ $I_{1} \mid \leq g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1$, and hence
$|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\} \cup I_{1}\right|+|A|+|B| \leq\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]+4+1<n$,
a contradiction.
Suppose $r=0$. If $k^{\prime} \geq 3$, then $q \leq 14$. Then $|G|=\left|\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}\right|+q \leq$ $s+q<n$, a contradiction.

Suppose that $v_{1}, v_{2}, \ldots, v_{s}$ does not exist. We assume that $t_{1}=2,\left|H_{1}^{1}\right| \geq$ 2 and $\left|H_{2}^{1}\right| \geq 2$. Then $\left|H_{i}^{1}\right| \leq g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1$ for $i=1,2$, and hence

$$
|G|=\left|H_{1}^{1}\right|+\left|H_{2}^{1}\right| \leq 2\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]<n,
$$

a contradiction.
Suppose $4 \leq t_{1} \leq 14$. Note that $H_{1}^{1}, H_{2}^{1}, \cdots, H_{r}^{1}$ be the parts such that $\left|H_{i}^{1}\right| \geq 2$ for each $i(1 \leq i \leq r)$, and $\left|H_{j}^{1}\right|=1$ for each $j\left(r+1 \leq j \leq t_{1}\right)$.

Fact 2. $r \leq 5$.
If $r=5$, then $t_{1}=5$ and the reduced graph on the parts $H_{1}^{1}, H_{2}^{1}, H_{3}^{1}, H_{4}^{1}, H_{5}^{1}$ must be the unique 2-coloring of K_{5} with no monochromatic triangle, say with $H_{1}^{1} H_{2}^{1} H_{3}^{1} H_{4}^{1} H_{5}^{1} H_{1}^{1}$ and $H_{1}^{1} H_{3}^{1} H_{5}^{1} H_{2}^{1} H_{4}^{1} H_{1}^{1}$ making two monochromatic cycles in red and blue respectively. For each $H_{i}^{1}(1 \leq i \leq 5),\left|H_{i}^{1}\right| \leq$ $g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$, and hence $|G|=\sum_{i=1}^{5}\left|H_{i}^{1}\right| \leq 5\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<$ n, a contradiction.

Suppose $r=4$. If $t_{1}=4$, then $\left|H_{i}^{1}\right| \leq g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$ for each $H_{i}^{1}(1 \leq i \leq 4)$, and hence $|G|=\sum_{i=1}^{4}\left|H_{i}^{1}\right| \leq 4\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n$, a contradiction. If $t_{1}=5$, then $\left|H_{5}^{1}\right|=1$ and $\left|H_{i}^{1}\right| \leq g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$ for each $H_{i}^{1}(1 \leq i \leq 4)$, and hence $|G|=1+\sum_{i=1}^{4}\left|H_{i}^{1}\right| \leq 1+4\left[g r_{k^{\prime}-2}\left(K_{3}\right.\right.$: $\left.\left.W_{5}\right)-1\right]<n$, a contradiction.

Suppose $r=3$. The triangle in the reduced graph cannot be monochromatic so without loss of generality, suppose all edges from H_{1}^{1} to $H_{2}^{1} \cup H_{3}^{1}$ are red, and $H_{2}^{1} H_{3}^{1}$ is blue. For each $H_{i}^{1}(4 \leq i \leq q)$, the edges from H_{1}^{1} to H_{i}^{1} is blue.

Claim 6. $t_{1} \leq 7$.
Proof. Assume, to the contrary, that $t_{1} \geq 8$. Then there are at least five isolated vertices outside $H_{1}^{1} \cup H_{2}^{1} \cup H_{3}^{1}$. Then the subgraph induced by the blue edges in $H_{4}^{1} \cup H_{5}^{1} \cup \ldots \cup H_{t_{1}}^{1}$ is a matching, and hence $H_{4} \cup H_{5}^{1} \cup \ldots \cup H_{t_{1}}^{1}$ contains a red W_{5}, a contradiction.

From Claim 6, $t_{1} \leq 7$. Then $|G|=4+\sum_{i=1}^{3}\left|H_{i}^{1}\right| \leq 4+3\left[g r_{k^{\prime}-2}\left(K_{3}:\right.\right.$ $\left.\left.W_{5}\right)-1\right]<n$, a contradiction.

Suppose $r=2$. Suppose all edges from H_{1}^{1} to H_{2}^{1} are red. Let A be the set of parts with red edges to H_{1}^{1} and blue edges to H_{2}^{1}, and B be the set of parts with blue edges to $H_{1}^{1} \cup H_{2}^{1}$, and C be the set of parts with blue edges to H_{1}^{1} and red edges to H_{2}^{1}.

Fact 3. $|A| \leq 2$ and $|C| \leq 2$.
Clearly, $\left|C \cup H_{1}^{1}\right| \leq g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1$. If $|A \cup B| \leq 2$, then

$$
|G|=\left|C \cup H_{1}^{1}\right|+\left|A \cup B \cup H_{2}^{1}\right| \leq 2\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right],
$$

a contradiction. If $|A \cup B| \geq 5$, then $A \cup B$ contains a red W_{5}, a contradiction. If $|A \cup B|=3,4$, then $\left|H_{2}^{1}\right| \leq g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$ and hence

$$
\begin{aligned}
|G| & =\left|C \cup H_{1}\right|+\left|A \cup B \cup H_{2}^{1}\right| \\
& \leq\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]+4+\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right] \\
& <n,
\end{aligned}
$$

a contradiction.
Suppose $r=1$. Let A be the set of parts with red edges to H_{1}^{1}, and B be the set of parts with blue edges to H_{1}^{1}. Then $|A| \leq 4$ and $|B| \leq 4$. Then $|A| \geq 2$ or $|B| \geq 2$. If $|A| \geq 2$ and $|B| \geq 2$, then $\left|H_{1}^{1}\right| \leq g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1$, and hence

$$
|G|=\left|H_{1}^{1}\right|+|A \cup B| \leq 8+\left[g r_{k^{\prime}-2}\left(K_{3}: W_{5}\right)-1\right]<n,
$$

a contradiction. We assume $|A| \geq 2$ and $|B|=1$. Then $\left|H_{1}^{1}\right| \leq g r_{k^{\prime}-1}\left(K_{3}\right.$: W_{5}) -1 , and hence

$$
|G|=\left|H_{1}^{1}\right|+|A|+|B| \leq\left[g r_{k^{\prime}-1}\left(K_{3}: W_{5}\right)-1\right]+4+1<n,
$$

a contradiction.
Suppose $r=0$. If $k^{\prime} \geq 3$, then $t_{1} \leq 14$. Then $|G|=t_{1}<n$, a contradiction.

4 Bounds on the Gallai-Ramsey number For general n

For the lower bound, we have the following easy result. We state this result without proof since it follows from the same argument as the proof of Lemma 4 , in which the value of $R\left(W_{5}, W_{5}\right)$ is replaced by the lower bounds on $R\left(W_{n}, W_{n}\right)$ from Lemma 3

Theorem 8. For $k \geq 2$ and $n \geq 6$, we have

$$
g r_{k}\left(K_{3}: W_{n}\right) \geq \begin{cases}(3 n-4) 5^{\frac{k-2}{2}}+1 & \text { if } n \text { is even and } k \text { is even; } \\ (6 n-8) 5^{\frac{k-3}{2}}+1 & \text { if } n \text { is even and } k \text { is odd; } \\ (2 n-3) 5^{\frac{k-2}{2}}+1 & \text { if } n \text { is odd and } k \text { is even; } \\ (4 n-6) 5^{\frac{k-3}{2}}+1 & \text { if } n \text { is odd and } k \text { is odd. }\end{cases}
$$

We also obtain a general upper bound.
Theorem 9. For $k \geq 3$ and $n \geq 6$, we have

$$
g r_{k}\left(K_{3}: W_{n}\right) \leq(n-4)^{2} \cdot 30^{k}+k(n-1) .
$$

Given nonnegative integers k, n, r, s, t with $k \geq 1, n \geq 6$ and $r+s+t=k$, define the number

$$
g r_{k}\left(K_{3}: r W_{n}, s C_{n-1}, t P_{n-2}\right)
$$

to be the minimum integer N such that every k-coloring of K_{N} contains one of: a rainbow triangle, a monochromatic copy of W_{n} in one of the first r colors, a monochromatic copy of C_{n-1} in one of the next s colors, or a monochromatic copy of P_{n-2} in one of the remaining t colors. In order to prove Theorem 9, we prove the following bound.

Theorem 10. Given nonnegative integers k, n, r, s, t with $k \geq 1, n \geq 6$ and $r+s+t=k$, we have

$$
g r_{k}\left(K_{3}: r W_{n}, s C_{n-1}, t P_{n-2}\right) \leq(n-4)^{2} \cdot 30^{r} \cdot 10^{s} \cdot 2^{t}+k(n-1) .
$$

Proof. Let G be a k-coloring of a complete graph of order

$$
N=N(n, r, s, t)=(n-4)^{2} \cdot 30^{r} \cdot 10^{s} \cdot 2^{t}+k(n+1)
$$

and suppose that G contains no rainbow triangle, no monochromatic copy of W_{n} in one of the first r colors, no monochromatic copy of C_{n-1} in one of the remaining $k-r$ colors.

For a colored complete graph G^{\prime}, let $T_{G^{\prime}}$ be a maximal set of vertices in G^{\prime} each of which has all one color on its edges to $G^{\prime} \backslash T_{G^{\prime}}$ and let $T_{G^{\prime}}^{i} \subseteq T_{G^{\prime}}$ be the subset of vertices with all edges of color i to $G^{\prime} \backslash T_{G^{\prime}}$ with the additional restriction that $\left|T_{G^{\prime}}^{i}\right| \leq n+1$ for all i. This set of vertices will be called the garbage set and vertices will be added to the garbage set only in the process of looking for a monochromatic cycle. In order to avoid creating a monochromatic copy of C_{n-1} in G^{\prime}, if there is a set $T_{G^{\prime}}^{i}$ with $\left|T_{G^{\prime}}^{i}\right| \geq \frac{n^{\prime}}{2}$,
then there are no edges of color i within $G^{\prime} \backslash T_{G^{\prime}}$ and furthermore, if $n-1$ is even, there is already a monochromatic copy of C_{n-1} in color i in G^{\prime}. Since the garbage set always contains at most $n+1$ vertices corresponding to each color, there will never be more than $k(n+1)$ vertices in the garbage set, hence the last term in the definition of N above.

Consider a Gallai partition of G with the smallest number of parts q and suppose red is one of the colors that appears on edges in between the parts and blue is the other (if there is a second color). Let $H_{1}, H_{2}, \ldots, H_{q}$ be the parts of this partition in decreasing order by their number of vertices. Note that $q \leq R\left(W_{n}, W_{n}\right)-1$. The proof is broken into two main cases based on the parity of n.

Case 1. n is odd.
Call a part H_{i} of the Gallai partition "large" if it has order at least $\frac{n-1}{2}$. We consider subcases based on the desired red and blue structures.

Subcase 1.1. Both red and blue appear in the first r colors.
In this case, we are looking for a red or blue copy of W_{n} in G.
First suppose $q \leq 3$ so by the minimality of q, we have $q=2$. Then only red appears in this partition on all edges between H_{1} and H_{2}. Then each part H_{i} contains no red copy of C_{n-1} so

$$
|G| \leq 2[N(n, r-1, s+1, t)-1]<N(n, r, s, t),
$$

a contradiction.
Next suppose $q \geq 4$ so by the minimality of q, every part has edges to other parts of the partition in both red and blue. There are at most 5 large parts of the partition since there can be no monochromatic triangle in the reduced graph among these large parts. In fact, if there are 5 such parts, then $q=5$ since any 6 parts containing 5 large parts would contain a monochromatic triangle using at least two large parts, yielding a monochromatic copy of W_{n}. Thus, there are either at most 5 parts total or at most 4 large parts. Since $q \leq R\left(W_{n}, W_{n}\right)$, we get

$$
\begin{aligned}
|G| & =\sum_{i=1}^{q}\left|H_{i}\right| \\
& \leq \max \left\{\begin{array}{l}
5[N(n, r-2, s+2, t)-1] \\
4[N(n, r-2, s+2, t)-1]+\left[R\left(W_{n}, W_{n}\right)-5\right] \frac{n-2}{2} \\
\end{array}<N(n, r, s, t),\right.
\end{aligned}
$$

for a contradiction.

Subcase 1.2. Both red and blue appear in the latter $s+t=k-r$ colors.
In this case, we are looking for a red or blue copy of the even cycle C_{n-1} or path P_{n-2} in G. Since a monochromatic copy of C_{n-1} contains a monochromatic copy of P_{n-2}, it suffices to find only a monochromatic copy of C_{n-1}.

First suppose $q \leq 3$ so by the minimality of q, we have $q=2$. Then only red appears in this partition on all edges between H_{1} and H_{2}. If $\left|H_{2}\right|<\frac{n-1}{2}$, then H_{2} can be added to the garbage set T_{G}, contradicting the maximality of T_{G}. If $\left|H_{2}\right| \geq \frac{n-1}{2}$, then there is a red copy of C_{n-1} on the edges between H_{1} and H_{2}, for a contradiction.

Next suppose $q \geq 4$ and by minimality of q, every part has edges to other parts of the partition in both red and blue. There is at most one large part of the partition to avoid creating a monochromatic copy of C_{n-1}. If $\left|H_{1}\right| \geq \frac{n-1}{2}$, then there are at most $\frac{n-3}{2}$ vertices in $G \backslash H_{1}$ with red (or similarly blue) edges to H_{1} for a total of at most $n-3$ vertices in $G \backslash H_{1}$. All of these vertices can be added to T_{G}, contradicting the maximality of T_{G}. This means that all parts must have order at most $\frac{n-3}{2}$. With at most $R\left(C_{n-1}, C_{n-1}\right)=n-2+\frac{n-1}{2}$ parts, this means that

$$
|G| \leq \frac{n-3}{2}\left[n-2+\frac{n-1}{2}\right],
$$

a contradiction.
Subcase 1.3. One of red or blue (say red) appears in the first r colors while the other appears among the latter $s+t=k-r$ colors.

In this case, we are looking for a red copy of W_{n} or a blue copy of C_{n-1} or P_{n-2} in G. Since a blue copy of C_{n-1} contains a blue copy of P_{n-2}, it suffices to find only a blue copy of C_{n-1}.

First suppose $q \leq 3$ so by the minimality of q, we have $q=2$. Then only one color appears on edges between the two parts H_{1} and H_{2} and we may apply one of the previous two subcases.

Next suppose $q \geq 4$ and by minimality of q, every part has edges to other parts of the partition in both red and blue. There are at most 2 large parts of the partition since there can be no red triangle in the reduced graph among the large parts and no blue edge in the reduced graph among the large parts.

If $\left|H_{1}\right| \geq \frac{n-1}{2}$, then there are at most $\frac{n-3}{2}$ vertices with blue edges to H_{1}, call that set B and the set of vertices remaining in $G \backslash\left(H_{1} \cup B\right)$ is called
A. Then H_{1} and A each contain no red copy of C_{n-1} so

$$
|G| \leq \frac{n-3}{2}+2[N(n, r-1, s+1, t)-1]<N(n, r, s, t)
$$

a contradiction.
Case 2. n is even.
In this case, we call a part H_{i} of the Gallai partition "large" if it has order at least $\frac{n-2}{2}$.
Subcase 2.1. Both red and blue appear in the first r colors.
This subcase follows exactly the same argument as Subcase 1.1.
Subcase 2.2. Both red and blue appear in the middle s colors.
In order to avoid a red or blue copy of C_{n-1}, we must have $q \leq[2(n-$ 1) -1$]-1=2 n-6$.

If $q \leq 3$, then by minimality of q, we may assume $q=2$, say with red edges appearing in between the two parts. Then if either part is large, it contains no red copy of P_{n-2}, so we have

$$
\begin{aligned}
|G| & =\left|H_{1}\right|+\left|H_{2}\right| \\
& \leq 2[N(n, r, s-1, t+1)-1] \\
& <N(n, r, s, t),
\end{aligned}
$$

a contradiction.
Thus, suppose $q \geq 4$ and by minimality of q, each part has edges to other parts in both red and blue. Since a monochromatic triangle in the reduced graph restricted to large parts would contain a monochromatic copy of C_{n-1}, there can be at most 5 large parts. Each of these large parts contains no red or blue path P_{n-2} so we have

$$
\begin{aligned}
|G| & =\sum_{i=1}^{q}\left|H_{i}\right| \\
& \leq 5[N(n, r, s-1, t+1)-1]+[(2 n-6)-5]\left[\frac{n-4}{2}\right] \\
& <N(n, r, s, t),
\end{aligned}
$$

a contradiction.
Subcase 2.3. Both red and blue appear in the last t colors.

This subcase follows exactly the same argument as Subcase 1.2 .
Note that for the remaining subcases, we may assume $q \geq 4$ since otherwise the proof reduces to one of the first three subcases. By minimality of q, each part has edges to some other parts in red and some others in blue.

Subcase 2.4. Red appears in the first r colors and blue appears in the next s colors.

In this case, we have $4 \leq q \leq R\left(W_{n}, C_{n-1}\right)-1 \leq 3 n-2$ (see [2] for example). In order to avoid a red copy of W_{n} or a blue copy of C_{n-1}, there can be at most $R\left(K_{4}, K_{3}\right)-1=8$ large parts. Each of these large parts contains no red copy of C_{n-1} and no blue copy of P_{n-2}. This means that

$$
\begin{aligned}
|G| & =\sum_{i=1}^{q}\left|H_{i}\right| \\
& \leq 8[N(n, r-1, s, t+1)-1]+[(3 n-2)-8]\left[\frac{n-4}{2}\right] \\
& <N(n, r, s, t),
\end{aligned}
$$

a contradiction.
Subcase 2.5. Red appears in the first r colors and blue appears in the last t colors.

In this case, we have $4 \leq q \leq R\left(W_{n}, P_{n-2}\right)-1 \leq 3 n-2$ (using the same results as cited above loosely). In order to avoid a red copy of W_{n} or a blue copy of P_{n-2}, there can be at most 3 large parts and in between these large parts must only be red edges. Each of these large parts contains no red copy of C_{n-1} and no blue copy of P_{n-2}. This means that

$$
\begin{aligned}
|G| & =\sum_{i=1}^{q}\left|H_{i}\right| \\
& \leq 3[N(n, r-1, s+1, t)-1]+[(3 n-2)-3]\left[\frac{n-4}{2}\right] \\
& <N(n, r, s, t),
\end{aligned}
$$

a contradiction.
Subcase 2.6. Red appears in the middle s colors and blue appears in the last t colors.

In this case, we have $4 \leq q \leq R\left(C_{n-1}, P_{n-2}\right)-1 \leq \frac{3(n-2)}{2}-1$. In order to avoid a red copy of C_{n-1} or a blue copy of P_{n-2}, there can be at most 2 large parts and in between these large parts must only be red edges. Each of these large parts contains no red or blue copy of P_{n-2}. This means that

$$
\begin{aligned}
|G| & =\sum_{i=1}^{q}\left|H_{i}\right| \\
& \leq 2[N(n, r-1, s+1, t)-1]+\left[\frac{3(n-2)}{2}-1-2\right]\left[\frac{n-4}{2}\right] \\
& <N(n, r, s, t)
\end{aligned}
$$

a contradiction.

References

[1] K. Cameron and J. Edmonds. Lambda composition. J. Graph Theory, 26(1):9-16, 1997.
[2] Y. Chen, T. C. E. Cheng, Z. Miao, and C. T. Ng. The Ramsey numbers for cycles versus wheels of odd order. Appl. Math. Lett., 22(12):18751876, 2009.
[3] R. J. Faudree and R. H. Schelp. All Ramsey numbers for cycles in graphs. Discrete Math., 8:313-329, 1974.
[4] S. Fujita, C. Magnant, and K. Ozeki. Rainbow generalizations of Ramsey theory - a dynamic survey. Theo. Appl. Graphs, 0(1), 2014.
[5] T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar, 18:25-66, 1967.
[6] A. Gyárfás and G. Simonyi. Edge colorings of complete graphs without tricolored triangles. J. Graph Theory, 46(3):211-216, 2004.
[7] G. R. T. Hendry. Extending cycles in graphs. Discrete Math., 85(1):5972, 1990.
[8] G. Károlyi and V. Rosta. Generalized and geometric Ramsey numbers for cycles. Theoret. Comput. Sci., 263(1-2):87-98, 2001. Combinatorics and computer science (Palaiseau, 1997).
[9] Y. Mao, Z. Wang, C. Magnant, and I. Schiermeyer. Gallai-Ramsey numbers for fans. Submitted.
[10] S. P. Radziszowski. Small Ramsey numbers. Electron. J. Combin., 1:Dynamic Survey 1, 30 pp. (electronic), 1994.
[11] V. Rosta. On a Ramsey-type problem of J. A. Bondy and P. Erdős. I, II. J. Combinatorial Theory Ser. B, 15:94-104; ibid. 15 (1973), 105-120, 1973.
[12] Z. Wang, Y. Mao, C. Magnant, I. Schiermeyer, and J. Zou. GallaiRamsey numbers of odd cycles. Submitted.

[^0]: *Supported by the National Science Foundation of China (Nos. 11601254, 11551001, 11161037, and 11461054) and the Science Found of Qinghai Province (Nos. 2016-ZJ-948Q, and 2014-ZJ-907).
 ${ }^{\dagger}$ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China. maoyaping@ymail.com
 ${ }^{\ddagger}$ Academy of Plateau Science and Sustainability, Xining, Qinghai 810008, China
 ${ }^{\S}$ College of Science, China Jiliang University, Hangzhou 310018, China. wangzhao@mail.bnu.edu.cn
 ${ }^{\top}$ Department of Mathematics, Clayton State University, Morrow, GA, 30260, USA. dr.colton.magnant@gmail.com
 ${ }^{\|}$Technische Universität Bergakademie Freiberg, Institut für Diskrete Mathematik und Algebra, 09596 Freiberg, Germany. Ingo.Schiermeyer@tu-freiberg.de

