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Fractional cocoloring of graphs∗

John Gimbel, André Kündgen, Michael Molloy

Abstract: The cochromatic number Z(G) of a graphG is the fewest number of colors needed

to color the vertices of G so that each color class is a clique or an independent set. In a

fractional cocoloring of G a non-negative weight is assigned to each clique and independent

set so that for each vertex v, the sum of the weights of all cliques and independent sets

containing v is at least one. The smallest total weight of such a fractional cocoloring of G

is the fractional cochromatic number Zf (G).

In this paper we prove results for the fractional cochromatic number Zf (G) that parallel

results for Z(G) and the well studied fractional chromatic number χf (G). For example

Zf (G) = χf (G) when G is triangle-free, except when the only nontrivial component of G is

a star. More generally, if G contains no k-clique, then Zf(G) ≤ χf(G) ≤ Zf(G) + R(k, k).

Moreover, every graph G with χf (G) = m contains a subgraph H with Zf (H) ≥ (1
4
−

o(1)) m
log

2
m
. We also prove that the maximum value of Zf (G) over all graphs G of order n is

Θ(n/ logn), and the maximum over all graphs embedded on an orientable surface of genus

g is Θ(
√
g/ log g). Keywords: Fractional coloring, cocoloring

1 Introduction

The fractional chromatic number χf (G) of a graph G is a natural relaxation of the chromatic number

χ(G) with the advantage that χf (G) is a lower bound for χ(G) that can be investigated by linear pro-

gramming methods. The book of Scheinerman and Ullman [27] gives a good introduction to fractional

coloring and other fractional generalizations in graph theory. In this paper we initiate the study of the

fractional generalization Zf (G) of the cochromatic number Z(G) of a graph G.

The cochromatic number Z(G) of a graph G is the minimum number of independent sets and cliques

needed to cover the vertices of G. This parameter was introduced in 1977 by Lesniak and Straight [22]

as a way of generalizing split graphs. Since then, many interesting papers have investigated cocoloring

problems [1, 2, 4, 5, 6, 7, 9, 10, 11, 14, 19, 20, 25, 28, 29]. Let Gc denote the complement of a graph

G. Clearly, Z(Gc) = Z(G) and Z(G) ≤ min{χ(G), χ(Gc)}. It follows that for large complete graphs, Z

and χ are very far apart. The next two results show that for certain families of graphs, they are equal.

The first was originally presented in Lesniak and Straight [22].

Theorem 1. If G is a triangle-free graph and G 6= K2, then Z(G) = χ(G).

Let kG denote the union of k disjoint copies of a graph G and ω(G) denote the maximum size of a

clique in G. A second remark of relevance was shown in [11].

Theorem 2. If k ≥ ω(G) then Z(kG) = χ(kG) = χ(G).

∗Gimbel and Kündgen were supported by the ERC Advanced Grant GRACOL, project no. 320812.
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Theorem 2 shows that for families of graphs that are closed under disjoint union (such as planar

graphs, graphs of bounded maximum degree, d-degenerate graphs, graphs of restricted girth, or any

other family of graphs with a forbidden connected subgraph characterization) the maximum value of

Z achieved on the family is the same as that for χ. For example 4K4 shows that the maximum value

Z(G) can achieve for planar graphs is 4.

The proofs of Theorems 1 and 2 are similar to each other and not difficult if we consider cocolorings

of minimum order which use the fewest number of cliques in the cover. In the next section we will show

that the fractional extensions of these two results hold with a few exceptions.

Erdős, Gimbel and Straight [11] showed that χ(G) ≤ Z(G) + 4ω(G)+1. In the last section we prove

an extension of this to fractional cocoloring.

2 Fractional coloring and fractional cocoloring

A fractional coloring of a graph G is an assignment of nonnegative real numbers to each independent

set in G so that for any fixed vertex v, the assignments on all independent sets containing v sum to

at least one. Similarly, a fractional cocoloring of G is an assignment of nonnegative real numbers to

each clique and independent set in G so that for any fixed vertex v, the assignments on all cliques and

independent sets containing v sum to at least one. The weight of a fractional coloring (or cocoloring)

is the total sum of all the assigned numbers. The fractional cochromatic number Zf (G) (respectively

fractional chromatic number χf (G)) of a graph G, is the minimum such sum taken over all fractional

cocolorings (respectively fractional colorings).

The Strong Duality Principle originated by von Neuman and first published with a rigorous proof

by Gale, Kuhn and Tucker [13], gives alternative ways to conceptualize both fractional colorings and

fractional cocolorings. A labeling is an assignment of nonnegative numbers to each vertex. A color

labeling is an assignment where the labels on each independent set sum to at most one. A cocolor

labeling is an assignment where the sum across each clique and independent set is at most one. Given

g : V (G) → [0,∞) let us say the weight of g, denoted by w(g), is the sum
∑

v∈V (G) g(v). It is easy

to see that for any cocolor labeling g of a graph G, w(g) ≤ Zf (G). In fact, by the Strong Duality

Principle, the fractional cochromatic number of G equals the maximum weight of a cocolor labeling of

G (just like the fractional chromatic number of G equals the maximum weight of a color labeling of G).

This connection makes it easy to verify Zf (G) for specific graphs G.

Example 1. If G = K1,t with t ≥ 1, then Zf (G) = 2 − 1
t . The lower bound follows from the cocolor

labeling in which the center of the star receives 1− 1
t and each leaf 1

t . The upper bound follows from a

cover where each edge receives weight 1
t , and the set of all leaves weight 1− 1

t .

If G = K1,t ∪ Kc
s , the t-star along with s isolated vertices, where s, t ≥ 1, then Zf (G) = 2 − 1

t+1 .

The lower bound follows from the cocolor labeling in which the center receives 1− 1
t+1 and each leaf as

well as one other vertex 1
t+1 . The upper bound follows from a cover where each edge receives weight

1
t+1 , and the two maximal independent sets receive weights 1− 1

t+1 and 1
t+1 .

General results for the fractional chromatic number whose proof is based on duality carry over

similarly. For example if α(G) denotes the size of a maximum independent set in a graph G on n

vertices, then it is easy to see that χf (G) ≥ n/α(G). Moreover, equality holds if G is vertex transitive

(see page 42 in [27].) Correspondingly, we obtain
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Proposition 1. If G is a graph on n vertices with k = max{α(G), ω(G)}, then Zf (G) ≥ n/k. Equality

holds, for example, when G is vertex-transitive.

Proof. The inequality follows from the cocolor labeling in which every vertex has weight 1/k. Now

suppose that G is vertex-transitive, and suppose that k = α(G). Thus every vertex lies in the same

number of independent sets of size k; let ℓ denote this number. Equality is obtained by assigning a

weight of 1/ℓ to every independent set of size k. The case k = ω(G) follows from a nearly identical

argument, or by applying the previous case to the complement of G.

Strong duality also yields a fractional counterpart to Theorem 2.

Theorem 3. Suppose k is at least the clique number of G. Then Zf (kG) = χf (kG) = χf (G).

Proof. The second equality is trivial. Furthermore, Zf (kG) ≤ χf (kG). So let f : V (kG) → [0,∞) be

a color label with weight χf (kG). We create a new labeling f ′ of kG as follows: For each vertex v in

kG, let f ′(v) be the average of the label f on all copies of v in kG. We note that summing f ′ across all

copies of v yields the same value as summing f across all copies of v. Thus w(f ′) = w(f) = χf (G).

We claim that f ′ is a color labeling. For suppose there exists an independent set of vertices with the

property that summing f ′ across them yields a value greater than one. Then in some copy of G there

must be a collection, say S, of independent vertices where f ′, summed over S, is greater than 1/k. Let

S′ be S together with all copies of vertices from S in other copies of G. Note, S′ is an independent set

in kG, but when we sum f ′ across S′ we get a number larger than one. But summing f over S′ we get

the same sum. This contradiction implies that f ′ is a color labeling of kG.

Next, we claim that f ′ is in fact a cocolor labeling of kG. For suppose there is some clique in kG

where f ′ sums across the clique to a value larger than one. Then some vertex in the clique must have

a label greater than 1/k. Taking all copies of this vertex produces an independent set, say J , with the

property that summing f ′ across J yields a value larger than one, a contradiction.

Thus, f ′ is a cocolor labeling of kG with w(f ′) = χf (kG), so that Zf (kG) ≥ χf (kG).

Grötschel, Lovász and Schrijver [16] observed that for each fixed rational number r > 2 determining

whether a graph G has χf (G) ≤ r is NP-complete (see also [27], Theorem 3.9.2.) As the transformation

from the n-vertex graph G to nG can be done in polynomial time Theorem 3 implies the following.

Corollary 1. For each fixed rational number r > 2, the problem of deciding if a graph G has Zf (G) ≤ r

is NP-complete.

Example 1 shows that Theorem 1 can’t be immediately extended to fractional cocolorings, since for

a bipartite graph G we must have χf (G) = χ(G) = 2, as long as it has edges. As our next result shows,

in extending Theorem 1, these are our only troublesome cases.

Theorem 4. If G is a triangle-free graph not found in Example 1, then χf (G) = Zf (G).

Proof. Let G be a triangle-free graph and consider a fractional cocoloring of minimum size, such that

the total weight on K2’s is minimal. If we can show that the weight on each K2 must be zero, then it

follows that χf (G) = Zf (G).

Claim 1. There are no disjoint edges of positive weight.
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Suppose ab and cd are disjoint edges with w(ab) = α, w(cd) = β, where α ≥ β > 0. If there is an

edge from {a, b} to {c, d}, then we may assume that this edge is ad. Since G is triangle-free it follows

that we can always assume that {a, c} and {b, d} are independent sets. Reducing the weight of ab and

cd by β and adding β to the weight of these independent sets we get a cocoloring that contradicts

minimality.

Claim 2. Every edge of positive weight intersects every independent set of positive weight.

Suppose I is an independent set of weight α > 0 that is disjoint from the edge ab of weight β > 0.

Since G is triangle-free we can partition I into two sets A,B such that A′ = A∪ {a} and B′ = B ∪ {b}
are independent sets. Reducing the weights of I and ab by the smaller of α, β and increasing the weight

of both A′, B′ by the same amount, we again get a cocoloring that contradicts minimality.

Claim 3. An edge of positive weight is not incident with edges at both of its endpoints.

Suppose w(ab) > 0 and we have edges ac and bd. Since G is triangle-free we have c 6= d and so

by Claim 1 these edges cannot both have positive weight, so say w(ac) = 0. Now observe that there

can be no edge incident with c that has positive weight, since otherwise either we get a triangle, or

a contradiction to Claim 1. Furthermore observe that by Claim 2 every independent set of positive

weight containing c must intersect ab, and thus contain b. Since the independent sets containing c have

total weight at least 1, the same can be said for b. Thus we can move all the positive weight from ab

to the independent set {a}, contradicting minimality.

Claim 4. If two edges are incident then they have the same weight.

Suppose to the contrary that vu, vw are incident edges with weights α, β, resp. where α > β (and

possibly β = 0). There is no other edge of positive weight incident with w by Claim 1 (for uv) and the

fact that G is triangle-free. Moreover, every independent set of positive weight that contains w may

not contain v, and thus must contain u by Claim 2. Hence the total weight on the independent sets

containing w (and thus u) must be at least 1− β and we can move a weight of α − β from uv to {v},
contradicting minimality.

So it follows from Claims 1 and 3 that the edges of positive weight form a component K1,t of G and

from Claim 4 that every such edge has the same weight α > 0. Let v be the center of this star K1,t.

It remains to show that there is no edge ab in G−K1,t. If there was such an edge then the vertices

a, b can only be covered by independent sets, and the independent sets containing a must be distinct

from those of b and have total weight at least 1. For each independent set I containing a: (i) consider

the independent set I ′ formed by removing the vertices of K1,t from I and then adding v; and (ii)

move all the weight from I to I ′. (If I = I ′ then this means that the weight remains on I.) For each

independent set S containing b: (i) consider the independent set S′ formed by removing the vertices

of K1,t from S and then adding N(v); and (ii) move all the weight from S to S′. The vertices of K1,t

are now covered by these independent sets, and so we can remove all weight from the edges of K1,t,

thus obtaining a contradiction to minimality. Therefore we know that G = K1,t + (n − t − 1)K1 for

t ≥ 1.

Remark 1. Larsen, Propp and Ullman [21] proved that applying Mycielski’s construction to a graph

with fractional chromatic number c yields a graph with fractional chromatic number c+ 1
c . Fisher [12]

used this to show that there are families of graphs G, such that the denominator of χf (G) grows
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exponentially in |V (G)|, whereas Chvátal, Garey and Johnson [8] had shown that in general the de-

nominator of χf (G) for an n-vertex graph G can be no larger than nn/2. Since C5 is triangle-free and

the Mycielskian of a triangle-free graph is triangle-free, the results of Fisher combine with Theorem 4

to show that the denominator of Zf (G) can also grow exponentially in |V (G)|

Example 2. The Kneser Graph Ka:b has as vertex set all b-element subsets of an a-element set,

where two vertices are adjacent if the sets are disjoint. Lovász [23] showed that χ(Ka:b) = a − 2b + 2.

Furthermore, it is not hard to show that χf (Ka:b) = a/b, using the fact that Kneser graphs are vertex-

transitive (see [27] page 45). Hence, χ(K3k−1:k) = k + 1 and χf (K3k−1:k) = 3 − 1/k. Since K3k−1:k

is triangle-free this yields graphs with fractional chromatic and (by Theorem 4) fractional cochromatic

numbers close to three having arbitrarily large chromatic and (by Theorem 1) cochromatic numbers.

3 Probabilistic results

Let z(n) be the largest cochromatic number among all graphs with n vertices, and let Gn,p denote the

random graph on n labelled vertices with edge probability p. Erdős, Gimbel and Kratsch [10] proved

that for sufficiently large n, n
2 log

2
n < z(n) < (2 + o(1)) n

log
2
n , where the lower bound is given by Gn,1/2.

(They also show that given an infinite family of graphs with cochromatic number z, there is a c > 0 such

that these graphs all have at least cz2 log22(z) edges.) Remark 2 below shows that this result doesn’t

change if we consider fractional cocoloring instead of cocoloring.

Bollobás [3] showed that asymptotically almost surely (a.a.s.) χ(Gn,1/2) ≈ n
2 log

2
n , and Matula [24]

showed that a.a.s. α(Gn,1/2) ≈ 2 log2 n and ω(Gn,1/2) ≈ 2 log2 n. Thus Proposition 1 and Zf (G) ≤ χ(G)

imply the following.

Remark 2. The random graph Gn,1/2 asymptotically almost surely satisfies Zf (Gn,1/2) ≈ n
2 log

2
n .

As noted chromatic and cochromatic number can be very far apart. Considering complete graphs,

the fractional versions can also be far apart. Furthermore, every induced subgraph of a clique has frac-

tional cochromatic number equal to one. Dropping the notion of induced, Theorem 5 below shows that

if a graph has large fractional chromatic number, it has a subgraph with large fractional cochromatic

number.

Alon, Krivelevich and Sudakov [2] settled a problem of Erdös and Gimbel, by proving that every

graph of chromatic number n contains a subgraph with cochromatic number at least Ω(n/ log n). (The

complete graph together with the value of z(n) shows that this is tight, up to the constant factor.) We

will prove a fractional analogue of this result using a very similar proof.

Theorem 5. If G is a graph with χf (G) = m, then G has a subgraph H with Zf (H) ≥ (14 −o(1)) m
log

2
m .

Furthermore, G = Km shows that this is tight up to a constant factor.

Proof. If the fractional cochromatic number of G is greater than 1
2m/ log2m, then we are done (set

H = G). So let Z be a fractional cocoloring of G of total weight at most 1
2m/ log2 m. Let V1 be the set

of vertices v such that Z assigns a total weight of at least 1/2 to the cliques containing v, and let G1

be the subgraph of G induced by V1.

Every clique in G has size at most m, as χf (G) = m. Thus the weights of all the cliques used in

Z sums to at least 1
2 |V1|/m, since each clique contributes to the weight of at most m vertices of V1.
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It follows that 1
2 |V1|/m ≤ Zf (G) ≤ 1

2m/ log2m, and thus |V1| < m2. Doubling the Z-weights on all

the independent sets will yield a fractional coloring that covers all vertices not in V1, so χf (G− V1) ≤
2Zf (G) ≤ m/2 log2 m. Therefore

χf (G1) ≥ χf (G) − χf (G− V1) = m− o(m).

We finish the argument by picking a random subgraph H of G1 (rather than G) where each edge is

chosen with probability 1/2. The exact same argument as in the proof of Lemma 2.2 in [2] now shows

that with probability approaching 1, the vertex-set of every clique or independent set in H induces a

subgraph of G1 that has chromatic number at most 4 log2m in G1. Therefore, any fractional cocoloring

of H can be converted to a fractional coloring of G1, where the total weight is increased at most by a

factor of 4 log2m. So H does not have a fractional cocoloring of total weight less than m−o(m)
4 log

2
m .

4 Fractional cocoloring on surfaces

For a given surface Σ and a graph parameter f , let f(Σ) denote the maximum value f(G) can obtain

for any graph G that is embedded on Σ. Heawood [18] proved that if Sg is an orientable surface with

genus g > 0, then χ(Sg) ≤ 1
2(7 +

√
1 + 48g) = H(g). Ringel and Youngs [26] showed that in fact

equality must hold, by finding embeddings of KH(g) on Sg. This combines with the 4 color theorem to

show that χf (Sg) = χ(Sg) = H(g) for all g ≥ 0.

Straight [28, 29] conjectured, and verified for small genus, that Z(Sg) is the maximum n such that

K1 ∪K2 ∪ · · · ∪Kn can be embedded on Sg. Gimbel [14] disproved this nondeterministically, and with

Thomassen [15] extended this to prove that Z(Sg) = Θ(
√
g

log g ). However, the smallest genus for which

Straight’s conjecture is false is not known. For the fractional cochromatic number we similarly obtain

Corollary 2. Zf (Sg) = Θ(
√
g

log g ).

Proof. Ringel and Youngs [26] proved that G = KH(g) embeds on Sg, and thus χf (G) = Θ(
√
g).

Therefore Theorem 5 implies that G contains a subgraph H with Zf (H) ≥ Ω
( √

g
log g

)

. The upper bound

follows, since Zf (Sg) ≤ Z(Sg) = Θ(
√
g

log g ).

5 Another bound

Erdős, Gimbel and Straight [11] showed that a graph with clique number k − 1 satisfies χ(G) ≤
Z(G) + R(k, k), where R(k, k) denotes the ordinary Ramsey number. In this section we prove an

extension of this to fractional cocoloring.

Theorem 6. For every graph G with k = ω(G) + 1, χf (G) ≤ Zf (G) +R(k, k).

Proof. Let R = R(k, k) and n = |V (G)|. Consider a covering achieving Zf (G) and let Zα be the total

weight on the independent sets in this cover, and Zω the total weight on the cliques. For 1 ≤ i ≤ n we

will let Vi = {v ∈ V (G) : i−1
n < total weight on cliques containing v ≤ i

n}. Thus Zω ≥ ∑n
i=1

i−1
n

|Vi|
k .

We will now remove all the cliques from the cover and for each 1 ≤ i ≤ n replace them with si

independent sets of size k with weight i
n as follows. If |V1| < R(k, k) = R, then we let s1 = 0, but

otherwise (since G has no cliques of size k) we can remove some s1 independent sets of size k from V1

6



until we are left with less than R vertices; we denote this number by R1 = |V1| − s1k < R. Now we

include these R1 vertices from V1 in V2 and remove some s2 independent sets of size k from this new

set, until we obtain R2 = |V2|+R1− s2k < R remaining vertices. We continue in this manner to obtain

si independent sets of size k that cover all but Ri remaining vertices in the set obtained from Vi by

adding all uncovered vertices from V1, . . . , Vi−1, where Ri = |Vi|+ Ri−1 − sik < R (and we let R0 = 0

for convenience).

We now obtain a new cover by giving the si =
1
k (|Vi|+Ri−1−Ri) independent sets of size k a weight

of i/n, and covering the remaining Rn < R vertices with independent sets of size 1. By the definition

of Vi, every v ∈ Vi was covered by cliques of total weight at most i
n and these are now replaced by

independent sets of total weight at least i
n . So we have a fractional coloring, and thus

χf (G) ≤ Zα +Rn +

n
∑

i=1

i

n
· |Vi|+Ri−1 −Ri

k
≤ Zα +Rn + Zω +

n
∑

i=1

|Vi|+Ri−1

nk
− Rn

k

≤ Zf (G) +Rn +
1

k
+

R− 1

k
− Rn

k
≤ Zf (G) +R.

Remark 3. Since 2k/2 ≤ R(k, k) ≤ 4k, this raises the question about the necessary size of the error

term. Building on the idea of Theorem 4 in [11], Erdős and Gimbel [9] show that in fact for every ε > 0

and k sufficiently large there is a graph G with ω(G) < k and χ(G) ≥ Z(G) + (2 − 2ε)k/2. The same

graphs satisfy χf (G) ≥ Zf (G) + (2 − 2ε)k/2 as well: For p = 1
2−ε , it is shown that the random graph

G = Gn,p on n = (2− 2ε)k/2 vertices satisfies χ(G)−Z(G) ≥ |V (G)|/α(G)− χ(Gc) ≥ (2− 2ε)k/2. But

χf (G) − Zf (G) ≥ |V (G)|/α(G) − χ(Gc) is also valid.

6 Open questions

Let Zf (n,m) be the maximum value Zf (G) can take over all graphs G on n vertices and m edges ,and

let Since Zf (G
c) = Zf (G) it follows that Zf (n,m) is symmetric, in that Zf (n,m) = Zf (n,

(n
2

)

−m).

Zf (n,m) achieves a minimum of 1 when m = 0 or
(

n
2

)

, but the situation for the maximum is less

obvious:

Question 1. Given n, for which m is Zf (n,m) = Zf (n)?

Remark 2 seems to suggest that m ≈ 1
2

(

n
2

)

. In this light it makes sense to ask if Zf (n,m) is unimodal

in m:

Question 2. Is it true that if m < 1
2

(n
2

)

, then Zf (n,m) ≤ Zf (n,m+ 1)?

Determining the (fractional) cochromatic number of a graph is NP-hard. In [19] it is shown that

for fixed k the question if a perfect graph G has Z(G) ≤ k can be decided in time O(n log n). Is there a

similar algorithm for fractional cocoloring? For graphs of bounded tree-width it is shown in [5] that the

cochromatic number can be found in polynomial time. Does this also extend to fractional cocoloring?

What can we say about the structure of critically fractionally cochromatic graphs – that is, graphs

with the property that the removal of any vertex necessarily reduces the fractional cochromatic number?

See also [4, 20, 25].
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In Theorem 4 it is shown that χf (G) − Zf (G) ≤ 1 when G is triangle-free. How large can this

difference be when G is K4-free, or more generally Kk-free for some fixed k? As described above (see

Remark 3), the graphs from [9] show that the difference can grow exponentially in k both for the

fractional and integral versions. We don’t know how much bigger it can be for χf (G) − Zf (G) or for

χ(G) − Z(G). Theorem 6 and [11] show that these differences grow at most exponentially in k. More

detailed information could be challenging to obtain.

Given a finite set of graphs F we say that a graph is F-free if it does not have an induced subgraph

isomorphic to a member of F . Gyárfás [17] and Sumner [30] independently conjectured that for any

fixed tree T and any fixed integer k, the family of {T,Kk}-free graphs has bounded chromatic number.

(This is best possible, since Erdös proved that there are graphs G of arbitrarily large girth and large

ratio |V (G)|/α(G).) Seymour and Chudnovsky [7, 6] prove that the Gyárfás-Sumner conjecture is

equivalent to showing that the family of F-free graphs has bounded cochromatic number if and only

if F contains a forest, a complement of a forest, a complete multipartite graph and the complement

of a complete multipartite graph. It would be interesting to study fractional versions of these two

conjectures.
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