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Abstract

In this paper, we give a series of couterexamples to negate a conjecture and

hence answer an open question on the k-power domination of regular graphs (see

[P. Dorbec et al., SIAM J. Discrete Math., 27 (2013), pp. 1559-1574]). Furthermore,

we focus on the study of k-power domination of claw-free graphs. We show that

for l ∈ {2, 3} and k ≥ l, the k-power domination number of a connected claw-free

(k + l + 1)-regular graph on n vertices is at most n
k+l+2 , and this bound is tight.
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1 Introduction

In this paper, we only consider simple graphs. Let G = (V (G), E(G)) (abbreviated

as G = (V,E)) be a graph. The open neighborhood NG(v) of a vertex v consists of

the vertices adjacent to v and its closed neighborhood is NG[v] = NG(v) ∪ {v}. The

open neighborhood of a subset S ⊆ V is the set NG(S) =
⋃

v∈S NG(v) and its closed

neighborhood is NG[S] = NG(S) ∪ S. The degree of a vertex v, denoted dG(v), is the size

of its open neighborhood |NG(v)|. Let v be a vertex of G and F be a subset of V . We

denote NF (v) = NG(v) ∩ F , NF [v] = NG[v] ∩ F and dF (v) = |NG(v) ∩ F |. A graph G is

k-regular if dG(v) = k for every vertex v ∈ V . If the graph G is clear from the context,

we will omit the subscripts G for convenience. The complete bipartite graph with partite

sets of cardinality i and j is denoted by Ki,j. A claw-free graph is a graph that does not

contain a claw, i.e. K1,3, as an induced subgraph. For a set S ⊆ V , we let G[S] denote

the subgraph induced by S. We say a subset S ⊆ V is a packing if the vertices in S are

pairwise at distance at least three apart in G.

Electric power systems must be monitored continually. One way of monitoring these

systems is to place phase measurement units (PMUs) at selected locations. Since the cost

of a PMU is very high, it is desirable to minimize the number of PMUs. The authors

of [3, 18] introduced power domination to model the problem of monitoring electrical

systems. Then, the problem was formulated as a graph theoretical problem by Haynes et

al. in [14]. Some additional propagation in power domination is using the Kirschoff’s laws

in electrical systems. The definition of power domination was simplified to the following

definition independently in [9, 10, 13, 16], which originally asked the systems to monitor

both edges and vertices.

Definition 1.1. (Power Dominating Set). Let G = (V,E) be a graph. A subset S of V

is a power dominating set (abbreviated as PDS) of G if and only if all vertices of V are

observed either by Observation Rule 1 (abbreviated as OR 1) initially or by Observation

Rule 2 (abbreviated as OR 2) recursively.

OR 1. all vertices in NG[S] are observed initially.

OR 2. If an observed vertex v has all neighbors observed except one neighbor u, then

u is observed (by v).

The power domination number γp(G) is the minimum cardinality of a PDS of G. The

power domination problem is known to be NP-complete (see [1, 2, 13, 14]). Linear-time

algorithms for this problem were presented for trees, interval graphs and block graphs (see
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[14, 16, 22]). The Nordhaus-Gaddum problems for power domination were investigated in

[4] and parameterized results were given in [15]. The exact values of the power domination

numbers of some special graphs were studied in [9, 10]. The upper bounds for the power

domination numbers of regular graphs were investigated (see, for example, [19, 21]).

Chang et al. [6] generalized power domination to k-power domination. In here, we

use a definition of monitored set to define k-power dominating set.

Definition 1.2. (Monitored Set). Let G = (V,E) be a graph, let S ⊆ V , and let k ≥ 0

be an integer. We define the sets (P i
G(S))i≥0 of vertices monitored by S at step i by the

following rules:

(1) P 0
G(S) = NG[S];

(2) P i+1
G (S) = ∪{NG[v] : v ∈ P i

G(S) such that |NG[v] \ P
i
G(S)| ≤ k}.

It is clear that P i
G(S) ⊆ P i+1

G (S) ⊆ V for any i. If P i0
G (S) = P i0+1

G (S) for some i0,

then P j
G(S) = P i0

G (S) for every j ≥ i0 and we accordingly define P∞
G (S) = P i0

G (S).

Definition 1.3. (k-Power Dominating Set). Let G = (V,E) be a graph, let S ⊆ V , and

let k ≥ 0 be an integer. If P∞
G (S) = V , then S is called a k-power dominating set of

G, abbreviated k-PDS. The k-power domination number of G, denoted by γp,k(G), is the

minimum cardinality of a k-PDS in G.

The k-power domination problem is known to be NP-complete for chordal graphs and

bipartite graphs [6]. Linear-time algorithms for this problem were presented for trees

[6] and block graphs [20]. The bounds for the k-power domination numbers in regular

graphs were obtained in [6, 7]. The relationship between the k-forcing and the k-power

domination numbers of a graph was given in [12]. The authors of [8] studied the exact

values for the k-power domination numbers in Sierpiński graphs.

If G is a connected (k + 1)-regular graph, then γp,k(G) = 1. Some scholars began to

study the k-power domination number of (k + 2)-regular graphs. Zhao et al. [19] showed

that if G is a 3-regular claw-free graph on n vertices, then γp,1(G) ≤ n
4
. Chang et al.

[6] generalized this result to (k + 2)-regular claw-free graphs. Dorbec et al. [7] removed

the claw-free condition and show that γp,k(G) ≤ n
k+3

if G is a (k + 2)-regular graph on n

vertices. Moreover, they presented the following conjecture and question.

Conjecture 1.4. ([7]) For k ≥ 1 and r ≥ 3, if G 6∼= Kr,r is a connected r-regular graph

of order n, then γp,k(G) ≤ n
r+1

.
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Question 1.5. ([7]) For r ≥ 3, let G 6= Kr,r is a connected r-regular graph of order n.

Determine the smallest positive value, kmin(r), of k such that γp,k(G) ≤ n
r+1

.

The result of Dorbec et al. in [7] implies that Conjecture 1.4 holds for k = 1 and

r = 3 and kmin(r) ≤ r − 2. Recently, Lu et al. [17] showed that Conjecture 1.4 does not

always hold for each even r ≥ 4 and k = 1. In this paper, we show that kmin(r) = r − 2

for r ≥ 3 and negate Conjecture 1.4 for each r ≥ 4 and 1 ≤ k ≤ r − 3. We also show

that there exists a series of claw-free r-regular graphs G of order n such that γp,k(G) > n
r

if k < ⌊ r
2
⌋. But Conjecture 1.4 may hold for claw-free r-regular graphs if k ≥ ⌊ r

2
⌋. The

following theorem is the main result in this paper.

Theorem 1.6. For l ∈ {2, 3} and k ≥ l, if G is a connected claw-free (k + l + 1)-regular

graph of order n, then γp,k(G) ≤ n
k+l+2

and the bound is tight.

2 Counterexamples

Motivated by the concept of a fort proposed in [5], we define the concept of a k-fort,

which is a natural generalization of a fort.

Definition 2.1. (k-fort). For an integer k ≥ 1, a k-fort of a graph G is a nonempty set

F ⊆ V such that each vertex of NG(F )\F is adjacent to at least k + 1 vertices in F .

If F is a k-fort ofG, then |F | ≥ k+1. We immediately obtain the following proposition.

Proposition 2.2. Let G = (V,E) be a graph and F be a k-fort of G. If S is a k-PDS of

G, then S ∩NG[F ] 6= ∅.

Observation 2.3. For each r ≥ 4 and q ≥ 2, there exists a connected r-regular graph

Dr,q 6= Kr,r of order n = 2qr such that γp,r−3(Dr,q) = 2q = n
r
> n

r+1
.

Proof. We define the graph Dr,q as follows: Take q disjoint copies Di
∼= Kr,r −xiyi, where

xi, yi ∈ V (Kr,r) and i ∈ {1, 2, · · · q}. Then add edges yixi+1 for each i ∈ {1, 2, · · · , q},

where xq+1 = x1 (see Figure 1). Suppose that T =
⋃q

i=1{xi, yi} and k = r − 3. It is

clear that T is a k-PDS of Dr,q. Then, we have γp,k(Dr,q) ≤ |T | ≤ 2q. Now, we show

γp,k(Dr,q) ≥ 2q. Let S be a k-PDS of Dr,q. Assume that (Xi, Yi) is the bipartition of Di,

where xi ∈ Xi, yi ∈ Yi and i ∈ {1, 2, · · · , q}. We claim that |S ∩ V (Di)| ≥ 2 for each

i ∈ {1, 2, · · · , q}. Otherwise, without loss of generality, suppose that |S ∩V (D1)| ≤ 1 and

S ∩ Y1 = ∅. Then F = X1\(S ∪ {x1}) is a k-fort and NDr,q
[F ] ∩ S = ∅, contradicting

Proposition 2.2.
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Figure 1. The graph Dr,6

By Observation 2.3, we know that Conjecture 1.4 does not always hold for each r ≥ 4

and 1 ≤ k ≤ r − 3, and hence kmin(r) = r − 2 for r ≥ 3. A natural problem is whether
n
r
is always the upper bound of γp,k(G) in Conjecture 1.4. We will discuss this problem

using the relation between k-power domination and total domination in regular graphs.

A set S of vertices in a graph G is called a total domination set (abbreviated as TDS)

of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a

TDS of G is the total domination number of G, denoted by γt(G). Now we present the

following observation.

Observation 2.4. For each k ≥ 1 and r ≥ 1, if G is a connected r-regular graph of

order n, then there exists a connected r′-regular graph G′ of order n′ = (k+2)n such that

r′ = (k + 2)r and γp,k(G
′) = γt(G).

Proof. Let V (G) = {v1, v2, · · · , vn}. Let G′ be the graph constructed from G as follows.

Take n disjoint independent sets Vi = {v1i , v
2
i , · · · , v

k+2
i } corresponding to vi, where i ∈

{1, 2, · · · , n}. For each edge vivj ∈ E(G), add the edges vsi v
q
j for each s, q ∈ {1, 2, · · · , k+

2} (see Figure 2).

Let S = {vi1 , vi2, · · · , vih} be a TDS of G with h = γt(G). It is easy to check that

{v1i1 , v
1
i2, · · · , v

1
ih
} is a k-PDS of G′. Hence, γp,k(G

′) ≤ γt(G). On the other hand, let

S ′ be a k-PDS of G′ with |S ′| = γp,k(G
′). We can change some vertices of S ′ such

that |S ′ ∩ Vi| ≤ 1 for each i ∈ {1, 2, · · · , n}. Otherwise, without loss of generality,

assume that |S ′ ∩ V1| ≥ 2. If there exists j ∈ {2, 3, · · · , n} such that S ′ ∩ Vj 6= ∅ and
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Vj ⊆ NG(v
1
1), then S ′′ = (S ′\V1)∪{v11} is also a k-PDS of G′ and |S ′′| < |S ′| = γp,k(G

′), a

contradiction. Now we assume S ′ ∩Vj = ∅ for each Vj ⊆ NG(v
1
1), where j ∈ {2, 3, · · · , n}.

Let S ′′ = (S ′\V1) ∪ {v11, v
1
j}. Thus, S

′′ is also a k-PDS of G′ such that |S ′′ ∩ V1| = 1. Let

S ′ = S ′′. Hence, we find a k-PDS S ′ of G′ such that |S ′∩Vi| ≤ 1 for each i ∈ {1, 2, · · · , n}.

Let S = ∅. For each i ∈ {1, 2, · · · , n}, if |S ′ ∩ Vi| = 1, we add vi to S. Then S is a TDS

of G with |S| = γp,k(G
′), implying that γp,k(G

′) ≥ γt(G).

Figure 2. An example of transformation in Observation 2.4 for k = 1

The authors of [11] constructed 3-regular graphs F0,q of order 4q such that γt(F0,q) = 2q

(see Figures 3-4). By Observation 2.4, we can construct Fk,q (= G′) from F0,q (= G), and

so γp,k(Fk,q) = γt(F0,q) = 2q = 3
2

n′

3k+6
= 3n′

2r′
. Hence, n′

r′
is not the upper bound of γp,k(G

′)

in Conjecture 1.4.

Figure 3. The graph F0,1 Figure 4. The graph F0,4

Now, an interesting problem is whether n
r
is always the upper bound of γp,k(G) when

G is claw-free. We will discuss this problem in next section.

3 Claw-free regular graphs

First, we establish the relation between k-power domination and domination by pre-

senting Observation 3.1. Then, we use Observation 3.1 to construct a series of regular

claw-free graphs satisfying that γp,k(G) = 4n
3(r+1)

> n
r
, where r > 3.

A set S of vertices in a graph G is called a domination set (abbreviated as DS) of G

if every vertex of V \ S is adjacent to some vertex of G. The minimum cardinality of a

DS of G is the domination number of G, denoted by γ(G).

6



Observation 3.1. For each k ≥ 1 and r ≥ 1, if G is a connected r-regular claw-free graph

of order n, then there exists a connected r′-regular claw-free graph G′ of order n′ = (k+1)n

such that r′ = kr + r + k and γp,k(G
′) = γ(G).

Proof. Let V (G) = {v1, v2, · · · , vn}. Let G′ be the graph constructed from G as follows.

Take n disjoint cliques Vi = {v1i , v
2
i , · · · , v

k+1
i } corresponding to vi. For each edge vivj ∈

E(G), add the edges vsi v
q
j for each s, q ∈ {1, 2, · · · , k + 1} (see Figure 5). It is easy to

check that G′ is a claw-free graph.

Let S = {vi1 , vi2 , · · · , vit} be a DS of G with t = γ(G). Then {v1i1 , v
1
i2
, · · · , v1it} is a k-

PDS of G′, implying that γp,k(G
′) ≤ γ(G). On the other hand, let S ′ = {vj1i1 , v

j2
i2
, · · · , vjtit }

be a k-PDS of G′ with t = γp,k(G
′). If there exists i ∈ {1, 2, · · · , n} such that |S ′∩Vi| ≥ 2,

then S ′′ = (S ′\Vi) ∪ {v1i } is also a k-PDS of G′ with |S ′′| < |S ′|, a contradiction. Hence,

|S ′ ∩ Vi| ≤ 1 for each i ∈ {1, 2, · · · , n}. Thus, {vi1, vi2 , · · · , vit} is a DS of G′, implying

that γp,k(G
′) ≥ γ(G).

Figure 5. An example of transformation in Observation 3.1 for k = 1

LetH be the graph of order 6 as drawn in Figure 6. We define the graphH0,q as follows.

Take q disjoint copies Hi
∼= H , where i = 1, 2, · · · , q. For each i ∈ {1, 2, · · · , q}, let

xi, yi ∈ V (Hi) such that dHi
(xi) = dHi

(yi) = 2. Add the edges yixi+1, where i = 1, 2, · · · , q

and xq+1 = x1 (see Figure 7). It is clear that H0,q is a connected 3-regular claw-free graph

of order 6q. By Observation 3.1, we can construct Hk,q (= G′) from H0,q (= G).

Let S =
⋃q

i=1{xi, yi}. Then S is a DS of H0,q, implying that γ(H0,q) ≤ 2q. Since

γ(C4) = 2, we get γ(H0,q) ≥ 2q. So γ(H0,q) = 2q. By Observation 3.1, γp,k(Hk,q) =

γ(H0,q) = 2q = 4
3

n′

4k+4
= 4n′

3(r′+1)
> n′

r′
. Hence, n′

r′
is not always the upper bound of γp,k(G

′)

when G′ is claw-free.
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Figure 6. The graph H

x1

y1

x2 y2

x3

y3

x4y4

Figure 7. The graph H0,4

Now we know that in Conjecture 1.4, if r− k is sufficiently large, then n
r
is not always

the upper bound of γp,k(G). For each r ≥ 4 and k = ⌊ r
2
⌋−1, we will show that Conjecture

1.4 does not always hold for claw-free r-regular graphs by presenting Observations 3.2

and 3.3. It means that kmin(r) ≥ ⌊ r
2
⌋ even restricted to claw-free regular graphs in the

Question 1.5.

Observation 3.2. For each odd r ≥ 5 and q ≥ 1, there exists a connected claw-free

r-regular graph Gr,q of order n = |V (Gr,q)| such that γp, r−3

2

(Gr,q) =
n+2
r+1

> n
r+1

.

Proof. We define Ai = {a1i , · · · , a
(r−1)/2
i }, Bi = {b1i , · · · , b

(r−1)/2
i } and Ui = {u1

i , u
2
i}

for each i ∈ {0, 1, · · · , q}. Then, we construct Gr,q by the following steps. Firstly, let

V (Gr,q) = (A0 ∪ B0) ∪ (
⋃q

i=1 (Ui ∪Ai ∪Bi)). Secondly, add the edges such that Aq ∪ Bq,

Ai ∪Bi, Bi ∪ Ui+1 and Ui+1 ∪Ai+1 are cliques for each i ∈ {0, 1, · · · , q − 1}. Finally, add

the edges aj0b
j
q and aj0b

j+1
q for each j ∈ {1, · · · , r−1

2
}, where b

r+1

2
q = b1q (see Figures 8-10).

It is easy to check that Gr,q is a connected r-regular claw-free graph of order n = (q+

1)(r+1)−2. Let k = r−3
2
. Since {a10, · · · , a

1
q} is a k-PDS of Gr,q, we have γp,k(Gr,q) ≤ q+1.

On the other hand, let S be a k-PDS of Gr,q. It is clear that Aq is a k-fort and Bi is also

a k-fort for each i ∈ {0, · · · , q − 1}. By Propostion 2.2, |S ∩ (Aq ∪ Bq ∪ Uq)| ≥ 1 and

|S ∩ (Ai ∪ Bi ∪ Ui+1)| ≥ 1 for each i ∈ {0, · · · , q − 1}. It leads to |S| ≥ q. Moreover, if

|S| = q, then |S ∩ Ui| = 1 for each i ∈ {1, · · · , q}. In this case, P∞
Gr,q

(S) = V \(A0 ∪ Bq),

contradicting that S is a k-PDS of Gr,q. Hence, γp,k(Gr,q) = q + 1 = n+2
r+1

> n
r+1

.
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Figure 8. The graph G5,1

a10b10
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1
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1

u1
2
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2

Figure 9. The graph G5,2

a11 b1q

a21 b2q

. . .

a10 a1q+1b10 b1q+1

u1
1 u1

q+1

a20 a2q+1b20 b2q+1

u2
1 u2

q+1

Figure 10. The graph G5,q+1

Observation 3.3. For each even r ≥ 4 and q ≥ 1, there exists a connected claw-free

r-regular graph Gr,q of order n = |V (Gr,q)| such that γp, r−2

2

(Gr,q) =
n+1
r+1

> n
r+1

.

Proof. We consider a graph Gr,q which was presented by Lu et al. in [17] and was noted

by Qr,k in their paper. Let Ai = {a1i , · · · , a
r/2
i }, Bi = {b1i , · · · , b

r/2
i } and Ui = {ui}

for each i ∈ {0, 1, · · · , q}. Now we redefine Gr,q by the following steps. Firstly, let

V (Gr,q) = (A0 ∪ B0) ∪ (
⋃q

i=1 (Ui ∪Ai ∪Bi)). Secondly, add the edges such that Aq ∪ Bq,

Ai ∪ Bi, Bi ∪ Ui+1 and Ui+1 ∪ Ai+1 are cliques for each i ∈ {0, · · · , q − 1}. Finally, add

the edges aj0b
j
q for each j ∈ {1, · · · , r

2
} (see Figures 11-13).

It is easy to check that Gr,q is a connected claw-free r-regular graph. Similar to the

proof of Observation 3.2, we have γp, r−2

2

(Gr,q) = q + 1 = n+1
r+1

> n
r+1

.

a10b10

a20b20

a11b11

a21b21

u1

Figure 11. The graph G4,1

a10b10

a20b20

a12b12

a22b22
a11 b11

a21 b21

u1 u2

Figure 12. The graph G4,2

a11 b
1
1

a21 b
2
1

a12 b
1
2

a22 b
2
2

a1q b
1
q

a2q b
2
q

u1 u2 u3 uq uq+1

a10 a1q+1b10 b1q+1

a20 a2q+1b20 b2q+1

Figure 13. The graph G4,q+1

Hence, we will consider Conjecture 1.4 when G is a connected claw-free r-regular graph

and k ≥ ⌊ r
2
⌋. It means that k ≥ r−1

2
. If we let r = k + l + 1, we have k ≥ k+l

2
, implying

that k ≥ l. Chang et al. [6] studied the case that l = 1. We further studied the cases

l = 2 and l = 3 by proving Theorem 1.6.
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If the statement of Theorem 1.6 fails, then we suppose that G is a counterexample

with minimal |V (G)|, i.e, G is a connected claw-free (k + l+ 1)-regular graph of minimal

order n and γp,k(G) > n
k+l+2

for l ∈ {2, 3} and k ≥ l.

Before giving the proof of Theorem 1.6, we define an important structure, which is an

L-configuration in G.

Definition 3.4. (L-configuration). The subgraph H ∼= G[N [L]] is an L-configuration if

L is both a clique and a k-fort of G.

Let j ≤ k be a positive integer and Aj be the graph obtained fromKk+j+2 by removing

j edges which share a common vertex in Kk+j+2 (see Figures 14-15). Remark that Aj is

an L-configuration in G.

Figure 14. A2 for k = 2 Figure 15. A3 for k = 3

Then, we present three useful lemmas.

Lemma 3.5. Let H be an L-configuration of G. If S ⊆ L and |S| ≥ |L| − k, then

N [S] = V (H).

Proof. Suppose that S ⊆ L and |S| ≥ |L| − k. It is clear that L ⊆ N [S] ⊆ V (H). For

each v ∈ V (H) \ L, we have |NL(v) ∩ S| ≥ 1 since L is a k-fort of G and |L| − |S| ≤ k.

Hence, v ∈ N [S], implying that V (H) ⊆ N [S].

Lemma 3.6. Let H be an L-configuration of G and H ′ be an L′-configuration of G. If

V (H) ∩ V (H ′) 6= ∅, then V (H) = V (H ′).

Proof. For each u ∈ V (H) ∩ V (H ′), we define Su = N [u] ∩ (L ∩ L′). Then |Su| =

|N [u] ∩ L| + |N [u] ∩ L′| − |N [u] ∩ (L ∪ L′)| according to the inclusion and exclusion

principle.

It is clear that |L| − |N [u] ∩ (L ∪ L′)| ≥ (k + 1) − (k + l + 2) ≥ −k − 1. We claim

that the equation can’t hold. Otherwise, suppose the equation holds. Then, we have

10



|L| = k + 1 and N [u] ⊆ L ∪ L′. Without loss of generality, assume u ∈ L, and so

N [u]\L ⊆ N [L] \ L. Since L is a k-fort, N(v) ∩ L = L for each v ∈ N [u]\L. Since L′ is a

clique and N [u] \L ⊆ L′, we have N [u] \L is a clique. It means that N [u] is a clique, and

so G ∼= Kk+l+2, contradicting that G is a counterexample. So, |L|−|N [u]∩(L∪L′)| ≥ −k.

We claim that L ∩ L′ 6= ∅. Otherwise, suppose that L∩ L′ = ∅. If u /∈ L ∪ L′ for each

u ∈ V (H)∩V (H ′), then dG(u) ≥ |L|+|L′| ≥ 2(k+1) > k+l+1, a contradiction. Without

loss of generality, we assume u ∈ L. Then |Su| = |N [u] ∩ L′| + |L| − |N [u] ∩ (L ∪ L′)| ≥

|N [u] ∩ L′| − k ≥ 1. It means that |L ∩ L′| ≥ 1, a contradiction. Hence, L ∩ L′ 6= ∅.

Let v ∈ L∩L′. Then |Sv| = |L|+ |L′| − |N [v]∩ (L∪L′)|. It means that |Sv| ≥ |L| − k

and |Sv| ≥ |L′| − k. By Lemma 3.5, V (H) = N [Sv] = V (H ′).

Lemma 3.7. Let H be an L-configuration of G. Then, we have V (H) ⊆ P∞(u) for each

u ∈ L.

Proof. Let u ∈ L. If |L| = k + 1, then N [u] = V (H) by Lemma 3.5, implying that

V (H) ⊆ P∞(u). Now suppose that |L| ≥ k + 2. Since G is a (k + l + 1)-regular graph

and l ≤ k, V (H) ⊆ P∞(u).

We give the following method to choose a vertex subset P0 for G. First, let P0 = ∅.

Then, we process the following step. If G contains an L-configuration and none vertex

of L is contained in P∞(P0), then we add one vertex of L to P0. Process the step till G

contains no such an L-configuration.

By Lemmas 3.6 and 3.7, it is clear that P0 is a packing of G. We extend the packing

P0 of G to a maximal packing and denote the resulting packing by S0.

Lemma 3.8. For l ∈ {2, 3} and k ≥ l, G has a sequence S0, S1, · · · , Sq such that the

following holds:

(a) For all t ≥ 0, |St+1| = |St|+ 1 and |P∞(St+1)| ≥ |P∞(St)|+ k + l + 2.

(b) P∞(Sq) = V (G).

Proof. We prove part (a) and part (b) by induction on t. If P∞(S0) = V (G), then there

is nothing to prove. Hence, we may assume that P∞(S0) 6= V (G). Let t ≥ 0 and suppose

that St exists and P∞(St) 6= V (G). Denote M = P∞(St) and M = V (G) \ M . Let

U = {u | u ∈ M and NG(u) ∩ M 6= ∅}. For each vertex u ∈ U , since NG[u] 6⊆ M , we

note that dM(u) ≥ 1 and k + 1 ≤ dM(u) ≤ k + l. Moreover, for each u ∈ U , we define
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Lu = NG(u) ∩ M = {u1, u2, . . . , ud
M

(u)}, Fu = NG(Lu)\Lu and F ′
u = Fu \ {u}. Hence,

k + 1 ≤ |Lu| ≤ k + l.

We claim that for each vertex x ∈ M , NG(x) ∩ U 6= ∅. Otherwise, suppose to the

contrary that there exists y ∈ M such that NG(y) ∩ U = ∅. Then S0 ∪ {y} is also a

packing, contradicting that S0 is a maximal packing. Now we present seven useful claims.

Claim 1. If H is an L-configuration of G, then V (H) ⊆ M .

Proof. By the choose of S0 and Lemma 3.7, we immediately obtain the Claim 1.

Claim 2. For each u ∈ U , Lu induces a clique in G.

Proof. Suppose x1 and x2 are two neighbors of u in Lu and u is observed by v in M .

Then x1v, x2v /∈ E(G). If x1x2 /∈ E(G), then {u, x1, x2, v} induces a claw, a contradiction.

Therefore, Lu induces a clique in G.

Claim 3. Let u ∈ U . If |Lu|+ |Fu ∩M | ≥ k + l + 2, then for St+1 = St ∪ {u1}, we have

|P∞(St+1)| ≥ |P∞(St)|+ k + l + 2.

Proof. Suppose |Lu| + |Fu ∩M | ≥ k + l + 2. By Claim 2, Lu induces a clique in G. We

define St+1 = St ∪{u1} and we let j be the minimum integer such that P j(St) = P∞(St).

Then, N [u1] ⊆ P 0(St+1) ⊆ P j(St+1), and so Lu∪{u} ⊆ P j(St+1). For each u′ ∈ Lu\{u1},

we have

|N(u′) \ P j(St+1)| ≤ k + l + 1− |Lu \ u
′| − |{u}| ≤ l ≤ k.

It means that N [u′] ⊆ P j+1(St+1). Therefore,

|P∞(St+1)| ≥ |P∞(St)|+ |Lu|+ |Fu ∩M | ≥ |P∞(St)|+ k + l + 2.

Claim 4. Let u ∈ U . If there exists a vertex w ∈ Fu ∩M such that |Lu| − dLu
(w) ≤ k

and vw /∈ E for each v ∈ M ∩ Fu, then for St+1 = St ∪ {w}, we have |P∞(St+1)| ≥

|P∞(St)|+ k + l + 2.

Proof. Suppose there exists a vertex w ∈ Fu∩M such that |Lu|−dLu
(w) ≤ k and vw /∈ E

for each v ∈ M ∩ Fu. By Claim 2, Lu induces a clique in G. Since NG(w) ∩ U 6= ∅, there

exists x ∈ U such that w ∈ Lx. We claim that Lx ∩ Lu = ∅. Otherwise, without loss of

generality, assume u1 ∈ Lx ∩Lu. Then, u1x ∈ E, and so x ∈ Fu ∩M . It leads to xw /∈ E,

a contradiction. Hence, Lx ∩ Lu = ∅. We define St+1 = St ∪ {w} and we let j be the
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minimum integer such that P j(St) = P∞(St). Then, N [w] ⊆ P 0(St+1) ⊆ P j(St+1). By

Claim 2, Lx ⊆ P j(St+1) \ P j(St). Since |Lu| − dLu
(w) ≤ k, we have Lu ⊆ P j+1(St+1).

Therefore, we obtain

|P∞(St+1)| ≥ |P∞(St)|+ |Lx|+ |Lu| ≥ |P∞(St)|+ 2(k + 1) ≥ |P∞(St)|+ k + l + 2.

Claim 5. If there is a vertex u ∈ U such that |Lu| = k + l, part (a) follows as desired.

Proof. Suppose there is a vertex u ∈ U such that |Lu| = k + l. By Claim 2, Lu induces a

clique in G. If there is a vertex w ∈ F ′
u such that dLu

(w) ≥ k + 1, then G[{u, w} ∪ Lu] is

an L-configuration where L = NG(w) ∩ Lu, contradicting Claim 1.

Now we assume that dLu
(w) ≤ k for each w ∈ F ′

u. Then, |F
′
u| ≥ 2. If there is a vertex

w ∈ F ′
u such that w ∈ M , without loss of generality, suppose u1 ∈ Lw. Since |Lw| ≥ k+1

and dLu
(w) ≤ k, there is a vertex w′ ∈ Lw \ Lu. By Claim 2, u1w

′ ∈ E. It leads to

d(u1) ≥ |Lu \ {u1}| + |{u, w, w′}| ≥ k + l + 2, a contradiction. Now suppose F ′
u ⊆ M .

Then, |Lu|+ |Fu∩M | = |Lu|+ |F ′
u| ≥ k+ l+2. By Claim 3, part (a) follows as desired.

Claim 6. When l = 3, if |Lu| = k + 2 for each u ∈ U , part (a) follows as desired.

Proof. When l = 3, suppose |Lu| = k+2 for each u ∈ U . By Claim 2, Lu induces a clique

in G. Since G is a connected claw-free (k + l + 1)-regular graph, |N(u1) \ (Lu ∪ {u})| =

k + l + 1 − (k + 2) = 2, implying that |F ′
u| ≥ 2. We claim that |F ′

u| ≥ 3. Otherwise, we

suppose F ′
u = {w1, w2}, implying that dLu

(w1) = dLu
(w2) = k+2. Then, G[Lu ∪Fu] is an

L-configuration where L = Lu, contradicting Claim 1. Hence, |F ′
u| ≥ 3. If F ′

u ∩M = ∅,

then |Lu|+ |Fu ∩M | = |Lu|+ |F ′
u| ≥ k + l + 2. By Claim 3, part (a) follows as desired.

Now suppose that F ′
u ∩M 6= ∅. If there is a vertex w ∈ F ′

u ∩M such that dLu
(w) ≤ k,

without loss of generality, suppose that u1 ∈ Lw. Since |Lw| = k + 2, there are two

vertices w′, w′′ ∈ Lw \ Lu. By Claim 2, u1w
′, u1w

′′ ∈ E. It leads to d(u1) ≥ |Lu\{u1}| +

|{u, w, w′, w′′}| = k + 5, a contradiction.

If there is a vertex w ∈ F ′
u ∩M such that dLu

(w) = k + 1 , without loss of generality,

suppose NLu
(w) = {u1, u2, · · · , uk+1}. Since |Lw| = k + 2, there is a vertex w′ ∈ Lw \ Lu.

By Claim 2, {u1, u2, · · · , uk+1, w
′} induces a clique in G. Then, G[Lu ∪ {u, w, w′}] is an

L-configuration where L = NG(w) ∩ Lu, contradicting Claim 1.

Finally, we consider the case that there is a vertex w ∈ F ′
u∩M such that dLu

(w) = k+2.

Let F ′′
u = F ′

u \ {w}. If F
′′
u ∩M 6= ∅, let w′ ∈ F ′′

u ∩M . By the above argument, we deduce

13



that dLu
(w′) = k + 2. Hence, G[Lu ∪ {u, w, w′}] is an L-configuration where L = Lu,

contradicting Claim 1. Now suppose F ′′
u ⊆ M . If |F ′′

u | = 1, let F ′′
u = {w′′} and we have

dLu
(w′′) = k + 2. Similar to the above proof, we obtain a contradiction. If |F ′′

u | = 2, let

F ′′
u = {w1, w2} and w1, w2 ∈ M . Since dLu

(w1)+dLu
(w2) = k+2, without loss of generality,

we assume that dLu
(w1) ≥ 2. Since |Lw| = |Lu| = k + 2, we obtain |Lu| − dLu

(w1) ≤ k,

uw1 /∈ E and ww1 /∈ E. By Claim 4, we have proved part (a). If |F ′′
u | ≥ 3, then

|Lu|+ |Fu ∩M | = |Lu|+ |F ′′
u | ≥ k + 5. By Claim 3, part (a) follows as desired.

Claim 7. If there is a vertex u ∈ U such that |Lu| = k + 1, part (a) follows as desired.

Proof. Suppose there is a vertex u ∈ U such that |Lu| = k+ 1. By Claim 2, Lu induces a

clique in G. If M ∩ F ′
u = ∅, then F ′

u ⊆ M . Since G is a connected claw-free (k + l + 1)-

regular graph, |N(u1)\(Lu∪{u})| = k+ l+1−|Lu| = l, implying that |F ′
u| ≥ l. We claim

that |F ′
u| ≥ l+1. Otherwise, suppose F ′

u = {v1, v2, · · · , vl}, implying that Lu ⊆ NG[vi] for

each i ∈ {1, 2, · · · , l}. Then, G[Lu∪Fu] is an L-configuration where L = Lu, contradicting

Claim 1. So, |F ′
u| ≥ l+1 and |Lu|+ |Fu ∩M | = |Lu|+ |F ′

u| ≥ k+ l+2. By Claim 3, part

(a) follows as desired.

Now assume that M ∩ F ′
u 6= ∅. If there is a vertex w ∈ M ∩ F ′

u such that dLu
(w) ≤

k− l+1, without loss of generality, suppose that u1 ∈ NG(w)∩Lu. Since |Lw| ≥ k+1, we

have |Lw \ Lu| ≥ l. Assume that {x1, x2, · · · , xl} ⊆ (Lw \ Lu). By Claim 2, u1xi ∈ E for

each i ∈ {1, 2, · · · , l}. It leads to d(u1) ≥ |Lu \ {u1}|+ |{u, w, x1, x2, · · · , xl}| ≥ k+ l+ 2,

a contradiction.

Then, we suppose dLu
(w) ≥ k − l + 2 for each w ∈ M ∩ F ′

u. If there exists a vertex

w1 ∈ Fu∩M such that vw1 /∈ E for each v ∈ M∩Fu, by Claim 4, part (a) follows as desired.

Otherwise, we can assume that for each w1 ∈ Fu ∩M , there is a vertex v ∈ M ∩ Fu such

that vw1 ∈ E. By Claim 2, NG(v)∩Lu ⊆ NG(w1)∩Lu, and so dLu
(w1) ≥ dLu

(v) ≥ k−l+2.

Hence, dLu
(w1) ≥ k − l + 2 for each w1 ∈ Fu. If dLu

(w) = k + 1 for each w ∈ M ∩ F ′
u,

then for each w′ ∈ F ′
u ∩ M , there is a vertex w′′ ∈ M ∩ Fu such that w′′w′ ∈ E and

dLu
(w′′) = k+1. By the above argument, we deduce that dLu

(w′) ≥ dLu
(w′′) = k+1 and

|F ′
u| = l. Then, G[Lu ∪ Fu] is an L-configuration where L = Lu, contradicting Claim 1.

If there is a vertex w ∈ M∩F ′
u such that dLu

(w) = k, without loss of generality, suppose

that NG(w) ∩ Lu = {u1, u2, · · · , uk}. Since |Lw| ≥ k + 1, there is a vertex w1 ∈ Lw \ Lu.

By Claim 2, uiw1 ∈ E for each i ∈ {1, 2, · · · , k}. Let F ′′
u = F ′

u \ {w,w1}. It is clear that

F ′′
u 6= ∅. For l = 2, let w2 ∈ F ′′

u . Then dLu
(w2) = 1 < k = k − l + 2, contradicting that

dLu
(x) ≥ k − l + 2 for each x ∈ Fu. For l = 3, if there is a vertex w2 ∈ F ′′

u such that

{u1, u2, · · · , uk} ⊆ NG(w2) ∩ Lu, we can similarly get a contradiction. Now we assume
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that for each vertex v′ ∈ F ′′
u , {u1, u2, · · · , uk} 6⊆ NG(v

′) ∩ Lu. If F ′′
u ∩ M 6= ∅, suppose

w2 ∈ F ′′
u ∩M . Since dLu

(w2) ≥ k−l+2 ≥ k−1 ≥ l−1 ≥ 2, we have NLu
(w)∩NG(w2) 6= ∅.

Let x ∈ NLu
(w)∩NG(w2). Since d(x) = k+4 and Claim 2, {u1, u2, · · · , uk} ⊆ NG(w2)∩Lu,

a contradiction. So, F ′′
u ⊆ M . Let y ∈ F ′′

u . It is clear that uy /∈ E. We claim that wy /∈ E.

Otherwise, suppose wy ∈ E. By Claim 2, {u1, u2, · · · , uk} ⊆ NG(y)∩Lu, a contradiction.

Hence, |Lu| − dLu
(y) ≤ k and vy /∈ E for each v ∈ M ∩ Fu. By Claim 4, part (a) follows

as desired.

If there is a vertex w ∈ M ∩ F ′
u such that dLu

(w) = k − 1, then we obtain l = 3

since dLu
(w) = k − 1 ≥ k − l + 2. Without loss of generality, assume that NG(w) ∩ Lu =

{u1, u2, · · · , uk−1}. Since |Lw| ≥ k+1, there are two vertices w1, w2 ∈ Lw \Lu. By Claim

2, uiw1, uiw2 ∈ E for each i ∈ {1, 2, · · · , k − 1}. Let F ′′
u = F ′

u\{w,w1, w2}. It is clear

that F ′′
u 6= ∅. Then, for each w′ ∈ F ′′

u , we have dLu
(w′) ≤ 2. Since dLu

(w′) ≥ k − l + 2

and k ≥ l, we obtain k = 3 and dLu
(w′) = 2. If F ′′

u ∩ M = ∅, then F ′′
u ⊆ M . Let

z ∈ F ′′
u . Then, zu /∈ E. We claim that zw /∈ E. Otherwise, suppose zw ∈ E. By Claim

2, zu1 ∈ E. It leads to d(u1) ≥ |Lu \ {u1}| + |{u, w, w1, w2, z}| ≥ k + 5, a contradiction.

Since |Lu| − dLu
(z) ≤ k and Claim 4, part (a) follows as desired. Then, we assume that

F ′′
u ∩M 6= ∅ and w3 ∈ F ′′

u ∩M . If w1w3, w2w3 ∈ E, then dLu
(w1) = dLu

(w2) = 4 by Claim

2. So, G[Lu∪Fu] is an L-configuration where L = Lu∪{w1, w2}, contradicting Claim 1. If

w1w3, w2w3 /∈ E, then there are two vertices w4, w5 ∈ Lw3
\Lu. Since w3 ∈ U and Claim 2,

we have w4, w5 ∈ Fu. Then, |Lu|+|Fu∩M | ≥ |Lu|+|{w1, w2, w4, w5}| ≥ k+l+2. By Claim

3, part (a) follows as desired. Now we consider the last case. Without loss of generality,

suppose w1w3 ∈ E and w2w3 /∈ E. Then, there is a vertex w4 ∈ N(w3) \ (Lu ∪ {w1})

such that w4 ∈ M . By Claim 2, {u3, u4, w1, w4} induces a clique in G. So, d(w1) ≥

|Lu|+ |{w,w2, w3, w4}| = 8 > k + l + 1 = 7, a contradiction.

Since |Lu| ∈ {k+1, k+2} for l = 2 and |Lu| ∈ {k+1, k+2, k+3} for l = 3, by Claims

5-7, part (a) follows as desired. Since |V (G)| is finite, there exists an integer q such that

P∞(Sq) = V (G). Hence, we complete the proof.

We are now in a position to prove our main result, namely, Theorem 1.6.

Proof. Let G be a counterexample such that |V (G)| is minimal. Let S0, S1, · · · , Sq be a

sequence satisfying properties (a)-(b) in the statement of Lemma 3.8 with q as small as

possible. By Lemma 3.8 (b), the set Sq is a k-PDS in G, and so γp,k(G) ≤ |Sq|. Since

S0 is a packing in G, we have that |P 0(S0)| = |N [S0]| = (k + l + 2)|S0|. If q = 0,
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then (k + l + 2)|S0| ≤ n and γp,k(G) ≤ |S0| ≤
n

k+l+2
, a contradiction. Now we suppose

that q ≥ 1. By Lemma 3.8 (a), |Sq| = |S0| + q. By our choice of q, we decuce that

|P∞(St+1)| ≥ |P∞(St)|+ k + l + 2 for 0 ≤ t ≤ q − 1. Thus,

n = |P∞(Sq)| ≥ |P 0(S0)|+ q(k + l + 2) = (|S0|+ q)(k + l + 2) = |Sq|(k + l + 2).

Hence, γp,k(G) ≤ |Sq| ≤
n

k+l+2
, a contradiction. This proves the desired upper bound.

Next, we show this bound is tight. For positive integers k ≥ l and t, we define the

graph Ck,t as follows. Take t disjoint copies Ci
∼= Al and link any two copies (Ci, Ci+1) with

l edges, where the subscripts are to be read as integers modulo t and where i = 1, 2, · · · , t.

(see Figure 16). Then, Ck,t is a connected claw-free (k + l + 1)-regular graph of order

n = t(k+ l+2). Suppose that S is an arbitrary k-PDS in Ck,t. It is easy to check that Ci

contains a k-fort of G, where i = 1, 2, · · · , t. By Proposition 2.2, |S ∩ V (Ci)| ≥ 1 for each

i ∈ {1, 2, · · · , t}. It means that γp,k(Ck,t) ≥ t = n
k+l+2

. Since the above proof, we obtain

γp,k(Ck,t) ≤
n

k+l+2
. Hence, γp,k(Ck,t) =

n
k+l+2

.

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

Figure 16. Ck,t for l = 3, k = 3 and t = 2

4 Conjecture and Question

We pose the following conjecture which is still open.

Conjecture 4.1. For l ≥ 1 and k ≥ l, if G is a connected claw-free (k + l + 1)-regular

graph of order n, then γp,k(G) ≤ n
k+l+2

and the bound is tight.
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Remark that if l = 1, then the conjecture is true by the result of Chang et al. in [6]. If

l ∈ {2, 3}, the conjecture is true by our Theorem 1.6. When l ≥ 4, the conjecture is still

open. However, note that the bound of Conjecture 4.1 is tight since we can generalize the

graph Ck,t (defined in Section 3) to achieve this bound.

Now we pose the following question.

Question 4.2. For r ≥ 3, let G be a connected claw-free r-regular graph of order n.

Determine the smallest positive value, kmin(r), of k such that γp,k(G) ≤ n
r+1

.

By Observations 3.2 and 3.3, we deduce that kmin(r) ≥ ⌊ r
2
⌋. We remark that if

Conjecture 4.1 is true, the answer of Question 4.2 is kmin(r) = ⌊ r
2
⌋.
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