Generalized power domination in claw-free regular

 graphs*Hangdi Chen Changhong Lu ${ }^{\dagger}$ Qingjie Ye
School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, P. R. China
Email: 471798693@qq.com
Email: chlu@math.ecnu.edu.cn
Email: mathqjye@qq.com

Abstract

In this paper, we give a series of couterexamples to negate a conjecture and hence answer an open question on the k-power domination of regular graphs (see [P. Dorbec et al., SIAM J. Discrete Math., 27 (2013), pp. 1559-1574]). Furthermore, we focus on the study of k-power domination of claw-free graphs. We show that for $l \in\{2,3\}$ and $k \geq l$, the k-power domination number of a connected claw-free $(k+l+1)$-regular graph on n vertices is at most $\frac{n}{k+l+2}$, and this bound is tight.

Key words. power domination, electrical systems monitoring, domination, regular graphs, claw-free graphs

AMS subject classification. 05C69

[^0]
1 Introduction

In this paper, we only consider simple graphs. Let $G=(V(G), E(G))$ (abbreviated as $G=(V, E)$) be a graph. The open neighborhood $N_{G}(v)$ of a vertex v consists of the vertices adjacent to v and its closed neighborhood is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The open neighborhood of a subset $S \subseteq V$ is the set $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$ and its closed neighborhood is $N_{G}[S]=N_{G}(S) \cup S$. The degree of a vertex v, denoted $d_{G}(v)$, is the size of its open neighborhood $\left|N_{G}(v)\right|$. Let v be a vertex of G and F be a subset of V. We denote $N_{F}(v)=N_{G}(v) \cap F, N_{F}[v]=N_{G}[v] \cap F$ and $d_{F}(v)=\left|N_{G}(v) \cap F\right|$. A graph G is k-regular if $d_{G}(v)=k$ for every vertex $v \in V$. If the graph G is clear from the context, we will omit the subscripts G for convenience. The complete bipartite graph with partite sets of cardinality i and j is denoted by $K_{i, j}$. A claw-free graph is a graph that does not contain a claw, i.e. $K_{1,3}$, as an induced subgraph. For a set $S \subseteq V$, we let $G[S]$ denote the subgraph induced by S. We say a subset $S \subseteq V$ is a packing if the vertices in S are pairwise at distance at least three apart in G.

Electric power systems must be monitored continually. One way of monitoring these systems is to place phase measurement units (PMUs) at selected locations. Since the cost of a PMU is very high, it is desirable to minimize the number of PMUs. The authors of $[3,18]$ introduced power domination to model the problem of monitoring electrical systems. Then, the problem was formulated as a graph theoretical problem by Haynes et al. in [14]. Some additional propagation in power domination is using the Kirschoff's laws in electrical systems. The definition of power domination was simplified to the following definition independently in $[9,10,13,16]$, which originally asked the systems to monitor both edges and vertices.

Definition 1.1. (Power Dominating Set). Let $G=(V, E)$ be a graph. A subset S of V is a power dominating set (abbreviated as PDS) of G if and only if all vertices of V are observed either by Observation Rule 1 (abbreviated as OR 1) initially or by Observation Rule 2 (abbreviated as $O R$ 2) recursively.

OR 1. all vertices in $N_{G}[S]$ are observed initially.
OR 2. If an observed vertex v has all neighbors observed except one neighbor u, then u is observed (by v).

The power domination number $\gamma_{p}(G)$ is the minimum cardinality of a PDS of G. The power domination problem is known to be NP-complete (see [1, 2, 13, 14]). Linear-time algorithms for this problem were presented for trees, interval graphs and block graphs (see
$[14,16,22])$. The Nordhaus-Gaddum problems for power domination were investigated in [4] and parameterized results were given in [15]. The exact values of the power domination numbers of some special graphs were studied in [9, 10]. The upper bounds for the power domination numbers of regular graphs were investigated (see, for example, [19, 21]).

Chang et al. [6] generalized power domination to k-power domination. In here, we use a definition of monitored set to define k-power dominating set.

Definition 1.2. (Monitored Set). Let $G=(V, E)$ be a graph, let $S \subseteq V$, and let $k \geq 0$ be an integer. We define the sets $\left(P_{G}^{i}(S)\right)_{i \geq 0}$ of vertices monitored by S at step i by the following rules:
(1) $P_{G}^{0}(S)=N_{G}[S]$;
(2) $P_{G}^{i+1}(S)=\cup\left\{N_{G}[v]: v \in P_{G}^{i}(S)\right.$ such that $\left.\left|N_{G}[v] \backslash P_{G}^{i}(S)\right| \leq k\right\}$.

It is clear that $P_{G}^{i}(S) \subseteq P_{G}^{i+1}(S) \subseteq V$ for any i. If $P_{G}^{i_{0}}(S)=P_{G}^{i_{0}+1}(S)$ for some i_{0}, then $P_{G}^{j}(S)=P_{G}^{i_{0}}(S)$ for every $j \geq i_{0}$ and we accordingly define $P_{G}^{\infty}(S)=P_{G}^{i_{0}}(S)$.

Definition 1.3. (k-Power Dominating Set). Let $G=(V, E)$ be a graph, let $S \subseteq V$, and let $k \geq 0$ be an integer. If $P_{G}^{\infty}(S)=V$, then S is called a k-power dominating set of G, abbreviated k-PDS. The k-power domination number of G, denoted by $\gamma_{p, k}(G)$, is the minimum cardinality of a $k-P D S$ in G.

The k-power domination problem is known to be NP-complete for chordal graphs and bipartite graphs [6]. Linear-time algorithms for this problem were presented for trees [6] and block graphs [20]. The bounds for the k-power domination numbers in regular graphs were obtained in $[6,7]$. The relationship between the k-forcing and the k-power domination numbers of a graph was given in [12]. The authors of [8] studied the exact values for the k-power domination numbers in Sierpiński graphs.

If G is a connected $(k+1)$-regular graph, then $\gamma_{p, k}(G)=1$. Some scholars began to study the k-power domination number of ($k+2$)-regular graphs. Zhao et al. [19] showed that if G is a 3 -regular claw-free graph on n vertices, then $\gamma_{p, 1}(G) \leq \frac{n}{4}$. Chang et al. [6] generalized this result to $(k+2)$-regular claw-free graphs. Dorbec et al. [7] removed the claw-free condition and show that $\gamma_{p, k}(G) \leq \frac{n}{k+3}$ if G is a $(k+2)$-regular graph on n vertices. Moreover, they presented the following conjecture and question.

Conjecture 1.4. ([7]) For $k \geq 1$ and $r \geq 3$, if $G \not \neq K_{r, r}$ is a connected r-regular graph of order n, then $\gamma_{p, k}(G) \leq \frac{n}{r+1}$.

Question 1.5. ([r]) For $r \geq 3$, let $G \neq K_{r, r}$ is a connected r-regular graph of order n. Determine the smallest positive value, $k_{\min }(r)$, of k such that $\gamma_{p, k}(G) \leq \frac{n}{r+1}$.

The result of Dorbec et al. in [7] implies that Conjecture 1.4 holds for $k=1$ and $r=3$ and $k_{\text {min }}(r) \leq r-2$. Recently, Lu et al. [17] showed that Conjecture 1.4 does not always hold for each even $r \geq 4$ and $k=1$. In this paper, we show that $k_{\min }(r)=r-2$ for $r \geq 3$ and negate Conjecture 1.4 for each $r \geq 4$ and $1 \leq k \leq r-3$. We also show that there exists a series of claw-free r-regular graphs G of order n such that $\gamma_{p, k}(G)>\frac{n}{r}$ if $k<\left\lfloor\frac{r}{2}\right\rfloor$. But Conjecture 1.4 may hold for claw-free r-regular graphs if $k \geq\left\lfloor\frac{r}{2}\right\rfloor$. The following theorem is the main result in this paper.
Theorem 1.6. For $l \in\{2,3\}$ and $k \geq l$, if G is a connected claw-free $(k+l+1)$-regular graph of order n, then $\gamma_{p, k}(G) \leq \frac{n}{k+l+2}$ and the bound is tight.

2 Counterexamples

Motivated by the concept of a fort proposed in [5], we define the concept of a k-fort, which is a natural generalization of a fort.

Definition 2.1. (k-fort). For an integer $k \geq 1$, a k-fort of a graph G is a nonempty set $F \subseteq V$ such that each vertex of $N_{G}(F) \backslash F$ is adjacent to at least $k+1$ vertices in F.

If F is a k-fort of G, then $|F| \geq k+1$. We immediately obtain the following proposition.
Proposition 2.2. Let $G=(V, E)$ be a graph and F be a k-fort of G. If S is a k-PDS of G, then $S \cap N_{G}[F] \neq \emptyset$.
Observation 2.3. For each $r \geq 4$ and $q \geq 2$, there exists a connected r-regular graph $D_{r, q} \neq K_{r, r}$ of order $n=2 q$ r such that $\gamma_{p, r-3}\left(D_{r, q}\right)=2 q=\frac{n}{r}>\frac{n}{r+1}$.

Proof. We define the graph $D_{r, q}$ as follows: Take q disjoint copies $D_{i} \cong K_{r, r}-x_{i} y_{i}$, where $x_{i}, y_{i} \in V\left(K_{r, r}\right)$ and $i \in\{1,2, \cdots q\}$. Then add edges $y_{i} x_{i+1}$ for each $i \in\{1,2, \cdots, q\}$, where $x_{q+1}=x_{1}$ (see Figure 1). Suppose that $T=\bigcup_{i=1}^{q}\left\{x_{i}, y_{i}\right\}$ and $k=r-3$. It is clear that T is a k-PDS of $D_{r, q}$. Then, we have $\gamma_{p, k}\left(D_{r, q}\right) \leq|T| \leq 2 q$. Now, we show $\gamma_{p, k}\left(D_{r, q}\right) \geq 2 q$. Let S be a k-PDS of $D_{r, q}$. Assume that $\left(X_{i}, Y_{i}\right)$ is the bipartition of D_{i}, where $x_{i} \in X_{i}, y_{i} \in Y_{i}$ and $i \in\{1,2, \cdots, q\}$. We claim that $\left|S \cap V\left(D_{i}\right)\right| \geq 2$ for each $i \in\{1,2, \cdots, q\}$. Otherwise, without loss of generality, suppose that $\left|S \cap V\left(D_{1}\right)\right| \leq 1$ and $S \cap Y_{1}=\emptyset$. Then $F=X_{1} \backslash\left(S \cup\left\{x_{1}\right\}\right)$ is a k-fort and $N_{D_{r, q}}[F] \cap S=\emptyset$, contradicting Proposition 2.2.

Figure 1. The graph $D_{r, 6}$

By Observation 2.3, we know that Conjecture 1.4 does not always hold for each $r \geq 4$ and $1 \leq k \leq r-3$, and hence $k_{\min }(r)=r-2$ for $r \geq 3$. A natural problem is whether $\frac{n}{r}$ is always the upper bound of $\gamma_{p, k}(G)$ in Conjecture 1.4. We will discuss this problem using the relation between k-power domination and total domination in regular graphs.

A set S of vertices in a graph G is called a total domination set (abbreviated as TDS) of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a TDS of G is the total domination number of G, denoted by $\gamma_{t}(G)$. Now we present the following observation.

Observation 2.4. For each $k \geq 1$ and $r \geq 1$, if G is a connected r-regular graph of order n, then there exists a connected r^{\prime}-regular graph G^{\prime} of order $n^{\prime}=(k+2) n$ such that $r^{\prime}=(k+2) r$ and $\gamma_{p, k}\left(G^{\prime}\right)=\gamma_{t}(G)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Let G^{\prime} be the graph constructed from G as follows. Take n disjoint independent sets $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, \cdots, v_{i}^{k+2}\right\}$ corresponding to v_{i}, where $i \in$ $\{1,2, \cdots, n\}$. For each edge $v_{i} v_{j} \in E(G)$, add the edges $v_{i}^{s} v_{j}^{q}$ for each $s, q \in\{1,2, \cdots, k+$ $2\}$ (see Figure 2).

Let $S=\left\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{h}}\right\}$ be a TDS of G with $h=\gamma_{t}(G)$. It is easy to check that $\left\{v_{i_{1}}^{1}, v_{i_{2}}^{1}, \cdots, v_{i_{h}}^{1}\right\}$ is a k-PDS of G^{\prime}. Hence, $\gamma_{p, k}\left(G^{\prime}\right) \leq \gamma_{t}(G)$. On the other hand, let $S^{\prime \prime}$ be a k-PDS of G^{\prime} with $\left|S^{\prime}\right|=\gamma_{p, k}\left(G^{\prime}\right)$. We can change some vertices of S^{\prime} such that $\left|S^{\prime} \cap V_{i}\right| \leq 1$ for each $i \in\{1,2, \cdots, n\}$. Otherwise, without loss of generality, assume that $\left|S^{\prime} \cap V_{1}\right| \geq 2$. If there exists $j \in\{2,3, \cdots, n\}$ such that $S^{\prime} \cap V_{j} \neq \emptyset$ and
$V_{j} \subseteq N_{G}\left(v_{1}^{1}\right)$, then $S^{\prime \prime}=\left(S^{\prime} \backslash V_{1}\right) \cup\left\{v_{1}^{1}\right\}$ is also a k-PDS of G^{\prime} and $\left|S^{\prime \prime}\right|<\left|S^{\prime}\right|=\gamma_{p, k}\left(G^{\prime}\right)$, a contradiction. Now we assume $S^{\prime} \cap V_{j}=\emptyset$ for each $V_{j} \subseteq N_{G}\left(v_{1}^{1}\right)$, where $j \in\{2,3, \cdots, n\}$. Let $S^{\prime \prime}=\left(S^{\prime} \backslash V_{1}\right) \cup\left\{v_{1}^{1}, v_{j}^{1}\right\}$. Thus, $S^{\prime \prime}$ is also a k-PDS of G^{\prime} such that $\left|S^{\prime \prime} \cap V_{1}\right|=1$. Let $S^{\prime}=S^{\prime \prime}$. Hence, we find a k-PDS S^{\prime} of G^{\prime} such that $\left|S^{\prime} \cap V_{i}\right| \leq 1$ for each $i \in\{1,2, \cdots, n\}$. Let $S=\emptyset$. For each $i \in\{1,2, \cdots, n\}$, if $\left|S^{\prime} \cap V_{i}\right|=1$, we add v_{i} to S. Then S is a TDS of G with $|S|=\gamma_{p, k}\left(G^{\prime}\right)$, implying that $\gamma_{p, k}\left(G^{\prime}\right) \geq \gamma_{t}(G)$.

Figure 2. An example of transformation in Observation 2.4 for $k=1$

The authors of [11] constructed 3-regular graphs $F_{0, q}$ of order $4 q$ such that $\gamma_{t}\left(F_{0, q}\right)=2 q$ (see Figures 3-4). By Observation 2.4, we can construct $F_{k, q}\left(=G^{\prime}\right)$ from $F_{0, q}(=G)$, and so $\gamma_{p, k}\left(F_{k, q}\right)=\gamma_{t}\left(F_{0, q}\right)=2 q=\frac{3}{2} \frac{n^{\prime}}{3 k+6}=\frac{3 n^{\prime}}{2 r^{\prime}}$. Hence, $\frac{n^{\prime}}{r^{\prime}}$ is not the upper bound of $\gamma_{p, k}\left(G^{\prime}\right)$ in Conjecture 1.4.

Figure 3. The graph $F_{0,1}$

Figure 4. The graph $F_{0,4}$

Now, an interesting problem is whether $\frac{n}{r}$ is always the upper bound of $\gamma_{p, k}(G)$ when G is claw-free. We will discuss this problem in next section.

3 Claw-free regular graphs

First, we establish the relation between k-power domination and domination by presenting Observation 3.1. Then, we use Observation 3.1 to construct a series of regular claw-free graphs satisfying that $\gamma_{p, k}(G)=\frac{4 n}{3(r+1)}>\frac{n}{r}$, where $r>3$.

A set S of vertices in a graph G is called a domination set (abbreviated as DS) of G if every vertex of $V \backslash S$ is adjacent to some vertex of G. The minimum cardinality of a DS of G is the domination number of G, denoted by $\gamma(G)$.

Observation 3.1. For each $k \geq 1$ and $r \geq 1$, if G is a connected r-regular claw-free graph of order n, then there exists a connected r^{\prime}-regular claw-free graph G^{\prime} of order $n^{\prime}=(k+1) n$ such that $r^{\prime}=k r+r+k$ and $\gamma_{p, k}\left(G^{\prime}\right)=\gamma(G)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Let G^{\prime} be the graph constructed from G as follows. Take n disjoint cliques $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, \cdots, v_{i}^{k+1}\right\}$ corresponding to v_{i}. For each edge $v_{i} v_{j} \in$ $E(G)$, add the edges $v_{i}^{s} v_{j}^{q}$ for each $s, q \in\{1,2, \cdots, k+1\}$ (see Figure 5). It is easy to check that G^{\prime} is a claw-free graph.

Let $S=\left\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{t}}\right\}$ be a DS of G with $t=\gamma(G)$. Then $\left\{v_{i_{1}}^{1}, v_{i_{2}}^{1}, \cdots, v_{i_{t}}^{1}\right\}$ is a k PDS of G^{\prime}, implying that $\gamma_{p, k}\left(G^{\prime}\right) \leq \gamma(G)$. On the other hand, let $S^{\prime}=\left\{v_{i_{1}}^{j_{1}}, v_{i_{2}}^{j_{2}}, \cdots, v_{i_{t}}^{j_{t}}\right\}$ be a k-PDS of G^{\prime} with $t=\gamma_{p, k}\left(G^{\prime}\right)$. If there exists $i \in\{1,2, \cdots, n\}$ such that $\left|S^{\prime} \cap V_{i}\right| \geq 2$, then $S^{\prime \prime}=\left(S^{\prime} \backslash V_{i}\right) \cup\left\{v_{i}^{1}\right\}$ is also a k-PDS of G^{\prime} with $\left|S^{\prime \prime}\right|<\left|S^{\prime}\right|$, a contradiction. Hence, $\left|S^{\prime} \cap V_{i}\right| \leq 1$ for each $i \in\{1,2, \cdots, n\}$. Thus, $\left\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{t}}\right\}$ is a DS of G^{\prime}, implying that $\gamma_{p, k}\left(G^{\prime}\right) \geq \gamma(G)$.

Figure 5. An example of transformation in Observation 3.1 for $k=1$

Let H be the graph of order 6 as drawn in Figure 6. We define the graph $H_{0, q}$ as follows. Take q disjoint copies $H_{i} \cong H$, where $i=1,2, \cdots, q$. For each $i \in\{1,2, \cdots, q\}$, let $x_{i}, y_{i} \in V\left(H_{i}\right)$ such that $d_{H_{i}}\left(x_{i}\right)=d_{H_{i}}\left(y_{i}\right)=2$. Add the edges $y_{i} x_{i+1}$, where $i=1,2, \cdots, q$ and $x_{q+1}=x_{1}$ (see Figure 7). It is clear that $H_{0, q}$ is a connected 3-regular claw-free graph of order $6 q$. By Observation 3.1, we can construct $H_{k, q}\left(=G^{\prime}\right)$ from $H_{0, q}(=G)$.

Let $S=\bigcup_{i=1}^{q}\left\{x_{i}, y_{i}\right\}$. Then S is a DS of $H_{0, q}$, implying that $\gamma\left(H_{0, q}\right) \leq 2 q$. Since $\gamma\left(C_{4}\right)=2$, we get $\gamma\left(H_{0, q}\right) \geq 2 q$. So $\gamma\left(H_{0, q}\right)=2 q$. By Observation 3.1, $\gamma_{p, k}\left(H_{k, q}\right)=$ $\gamma\left(H_{0, q}\right)=2 q=\frac{4}{3} \frac{n^{\prime}}{4 k+4}=\frac{4 n^{\prime}}{3\left(r^{\prime}+1\right)}>\frac{n^{\prime}}{r^{\prime}}$. Hence, $\frac{n^{\prime}}{r^{\prime}}$ is not always the upper bound of $\gamma_{p, k}\left(G^{\prime}\right)$ when G^{\prime} is claw-free.

Figure 6. The graph H

Figure 7. The graph $H_{0,4}$

Now we know that in Conjecture 1.4, if $r-k$ is sufficiently large, then $\frac{n}{r}$ is not always the upper bound of $\gamma_{p, k}(G)$. For each $r \geq 4$ and $k=\left\lfloor\frac{r}{2}\right\rfloor-1$, we will show that Conjecture 1.4 does not always hold for claw-free r-regular graphs by presenting Observations 3.2 and 3.3. It means that $k_{\min }(r) \geq\left\lfloor\frac{r}{2}\right\rfloor$ even restricted to claw-free regular graphs in the Question 1.5.

Observation 3.2. For each odd $r \geq 5$ and $q \geq 1$, there exists a connected claw-free r-regular graph $G_{r, q}$ of order $n=\left|V\left(G_{r, q}\right)\right|$ such that $\gamma_{p, \frac{r-3}{2}}\left(G_{r, q}\right)=\frac{n+2}{r+1}>\frac{n}{r+1}$.

Proof. We define $A_{i}=\left\{a_{i}^{1}, \cdots, a_{i}^{(r-1) / 2}\right\}, B_{i}=\left\{b_{i}^{1}, \cdots, b_{i}^{(r-1) / 2}\right\}$ and $U_{i}=\left\{u_{i}^{1}, u_{i}^{2}\right\}$ for each $i \in\{0,1, \cdots, q\}$. Then, we construct $G_{r, q}$ by the following steps. Firstly, let $V\left(G_{r, q}\right)=\left(A_{0} \cup B_{0}\right) \cup\left(\bigcup_{i=1}^{q}\left(U_{i} \cup A_{i} \cup B_{i}\right)\right)$. Secondly, add the edges such that $A_{q} \cup B_{q}$, $A_{i} \cup B_{i}, B_{i} \cup U_{i+1}$ and $U_{i+1} \cup A_{i+1}$ are cliques for each $i \in\{0,1, \cdots, q-1\}$. Finally, add the edges $a_{0}^{j} b_{q}^{j}$ and $a_{0}^{j} b_{q}^{j+1}$ for each $j \in\left\{1, \cdots, \frac{r-1}{2}\right\}$, where $b_{q}^{\frac{r+1}{2}}=b_{q}^{1}$ (see Figures 8-10).

It is easy to check that $G_{r, q}$ is a connected r-regular claw-free graph of order $n=(q+$ $1)(r+1)-2$. Let $k=\frac{r-3}{2}$. Since $\left\{a_{0}^{1}, \cdots, a_{q}^{1}\right\}$ is a k-PDS of $G_{r, q}$, we have $\gamma_{p, k}\left(G_{r, q}\right) \leq q+1$. On the other hand, let S be a k-PDS of $G_{r, q}$. It is clear that A_{q} is a k-fort and B_{i} is also a k-fort for each $i \in\{0, \cdots, q-1\}$. By Propostion 2.2, $\left|S \cap\left(A_{q} \cup B_{q} \cup U_{q}\right)\right| \geq 1$ and $\left|S \cap\left(A_{i} \cup B_{i} \cup U_{i+1}\right)\right| \geq 1$ for each $i \in\{0, \cdots, q-1\}$. It leads to $|S| \geq q$. Moreover, if $|S|=q$, then $\left|S \cap U_{i}\right|=1$ for each $i \in\{1, \cdots, q\}$. In this case, $P_{G_{r, q}}^{\infty}(S)=V \backslash\left(A_{0} \cup B_{q}\right)$, contradicting that S is a k-PDS of $G_{r, q}$. Hence, $\gamma_{p, k}\left(G_{r, q}\right)=q+1=\frac{n+2}{r+1}>\frac{n}{r+1}$.

Figure 8. The graph $G_{5,1}$

Figure 9. The graph $G_{5,2}$

Figure 10. The graph $G_{5, q+1}$

Observation 3.3. For each even $r \geq 4$ and $q \geq 1$, there exists a connected claw-free r-regular graph $G_{r, q}$ of order $n=\left|V\left(G_{r, q}\right)\right|$ such that $\gamma_{p, \frac{r-2}{2}}\left(G_{r, q}\right)=\frac{n+1}{r+1}>\frac{n}{r+1}$.

Proof. We consider a graph $G_{r, q}$ which was presented by Lu et al. in [17] and was noted by $Q_{r, k}$ in their paper. Let $A_{i}=\left\{a_{i}^{1}, \cdots, a_{i}^{r / 2}\right\}, B_{i}=\left\{b_{i}^{1}, \cdots, b_{i}^{r / 2}\right\}$ and $U_{i}=\left\{u_{i}\right\}$ for each $i \in\{0,1, \cdots, q\}$. Now we redefine $G_{r, q}$ by the following steps. Firstly, let $V\left(G_{r, q}\right)=\left(A_{0} \cup B_{0}\right) \cup\left(\bigcup_{i=1}^{q}\left(U_{i} \cup A_{i} \cup B_{i}\right)\right)$. Secondly, add the edges such that $A_{q} \cup B_{q}$, $A_{i} \cup B_{i}, B_{i} \cup U_{i+1}$ and $U_{i+1} \cup A_{i+1}$ are cliques for each $i \in\{0, \cdots, q-1\}$. Finally, add the edges $a_{0}^{j} b_{q}^{j}$ for each $j \in\left\{1, \cdots, \frac{r}{2}\right\}$ (see Figures 11-13).

It is easy to check that $G_{r, q}$ is a connected claw-free r-regular graph. Similar to the proof of Observation 3.2, we have $\gamma_{p, \frac{r-2}{2}}\left(G_{r, q}\right)=q+1=\frac{n+1}{r+1}>\frac{n}{r+1}$.

Figure 11. The graph $G_{4,1}$ Figure 12. The graph $G_{4,2}$ Figure 13. The graph $G_{4, q+1}$

Hence, we will consider Conjecture 1.4 when G is a connected claw-free r-regular graph and $k \geq\left\lfloor\frac{r}{2}\right\rfloor$. It means that $k \geq \frac{r-1}{2}$. If we let $r=k+l+1$, we have $k \geq \frac{k+l}{2}$, implying that $k \geq l$. Chang et al. [6] studied the case that $l=1$. We further studied the cases $l=2$ and $l=3$ by proving Theorem 1.6.

If the statement of Theorem 1.6 fails, then we suppose that G is a counterexample with minimal $|V(G)|$, i.e, G is a connected claw-free $(k+l+1)$-regular graph of minimal order n and $\gamma_{p, k}(G)>\frac{n}{k+l+2}$ for $l \in\{2,3\}$ and $k \geq l$.

Before giving the proof of Theorem 1.6, we define an important structure, which is an L-configuration in G.

Definition 3.4. (L-configuration). The subgraph $H \cong G[N[L]]$ is an L-configuration if L is both a clique and a k-fort of G.

Let $j \leq k$ be a positive integer and A_{j} be the graph obtained from K_{k+j+2} by removing j edges which share a common vertex in K_{k+j+2} (see Figures 14-15). Remark that A_{j} is an L-configuration in G.

Figure 14. A_{2} for $k=2$

Figure 15. A_{3} for $k=3$

Then, we present three useful lemmas.
Lemma 3.5. Let H be an L-configuration of G. If $S \subseteq L$ and $|S| \geq|L|-k$, then $N[S]=V(H)$.

Proof. Suppose that $S \subseteq L$ and $|S| \geq|L|-k$. It is clear that $L \subseteq N[S] \subseteq V(H)$. For each $v \in V(H) \backslash L$, we have $\left|N_{L}(v) \cap S\right| \geq 1$ since L is a k-fort of G and $|L|-|S| \leq k$. Hence, $v \in N[S]$, implying that $V(H) \subseteq N[S]$.

Lemma 3.6. Let H be an L-configuration of G and H^{\prime} be an L^{\prime}-configuration of G. If $V(H) \cap V\left(H^{\prime}\right) \neq \emptyset$, then $V(H)=V\left(H^{\prime}\right)$.

Proof. For each $u \in V(H) \cap V\left(H^{\prime}\right)$, we define $S_{u}=N[u] \cap\left(L \cap L^{\prime}\right)$. Then $\left|S_{u}\right|=$ $|N[u] \cap L|+\left|N[u] \cap L^{\prime}\right|-\left|N[u] \cap\left(L \cup L^{\prime}\right)\right|$ according to the inclusion and exclusion principle.

It is clear that $|L|-\left|N[u] \cap\left(L \cup L^{\prime}\right)\right| \geq(k+1)-(k+l+2) \geq-k-1$. We claim that the equation can't hold. Otherwise, suppose the equation holds. Then, we have
$|L|=k+1$ and $N[u] \subseteq L \cup L^{\prime}$. Without loss of generality, assume $u \in L$, and so $N[u] \backslash L \subseteq N[L] \backslash L$. Since L is a k-fort, $N(v) \cap L=L$ for each $v \in N[u] \backslash L$. Since L^{\prime} is a clique and $N[u] \backslash L \subseteq L^{\prime}$, we have $N[u] \backslash L$ is a clique. It means that $N[u]$ is a clique, and so $G \cong K_{k+l+2}$, contradicting that G is a counterexample. So, $|L|-\left|N[u] \cap\left(L \cup L^{\prime}\right)\right| \geq-k$.

We claim that $L \cap L^{\prime} \neq \emptyset$. Otherwise, suppose that $L \cap L^{\prime}=\emptyset$. If $u \notin L \cup L^{\prime}$ for each $u \in V(H) \cap V\left(H^{\prime}\right)$, then $d_{G}(u) \geq|L|+\left|L^{\prime}\right| \geq 2(k+1)>k+l+1$, a contradiction. Without loss of generality, we assume $u \in L$. Then $\left|S_{u}\right|=\left|N[u] \cap L^{\prime}\right|+|L|-\left|N[u] \cap\left(L \cup L^{\prime}\right)\right| \geq$ $\left|N[u] \cap L^{\prime}\right|-k \geq 1$. It means that $\left|L \cap L^{\prime}\right| \geq 1$, a contradiction. Hence, $L \cap L^{\prime} \neq \emptyset$.

Let $v \in L \cap L^{\prime}$. Then $\left|S_{v}\right|=|L|+\left|L^{\prime}\right|-\left|N[v] \cap\left(L \cup L^{\prime}\right)\right|$. It means that $\left|S_{v}\right| \geq|L|-k$ and $\left|S_{v}\right| \geq\left|L^{\prime}\right|-k$. By Lemma 3.5, $V(H)=N\left[S_{v}\right]=V\left(H^{\prime}\right)$.

Lemma 3.7. Let H be an L-configuration of G. Then, we have $V(H) \subseteq P^{\infty}(u)$ for each $u \in L$.

Proof. Let $u \in L$. If $|L|=k+1$, then $N[u]=V(H)$ by Lemma 3.5, implying that $V(H) \subseteq P^{\infty}(u)$. Now suppose that $|L| \geq k+2$. Since G is a $(k+l+1)$-regular graph and $l \leq k, V(H) \subseteq P^{\infty}(u)$.

We give the following method to choose a vertex subset \mathcal{P}_{0} for G. First, let $\mathcal{P}_{0}=\emptyset$. Then, we process the following step. If G contains an L-configuration and none vertex of L is contained in $P^{\infty}\left(\mathcal{P}_{0}\right)$, then we add one vertex of L to \mathcal{P}_{0}. Process the step till G contains no such an L-configuration.

By Lemmas 3.6 and 3.7, it is clear that \mathcal{P}_{0} is a packing of G. We extend the packing \mathcal{P}_{0} of G to a maximal packing and denote the resulting packing by S_{0}.

Lemma 3.8. For $l \in\{2,3\}$ and $k \geq l$, G has a sequence $S_{0}, S_{1}, \cdots, S_{q}$ such that the following holds:
(a) For all $t \geq 0,\left|S_{t+1}\right|=\left|S_{t}\right|+1$ and $\left|P^{\infty}\left(S_{t+1}\right)\right| \geq\left|P^{\infty}\left(S_{t}\right)\right|+k+l+2$.
(b) $P^{\infty}\left(S_{q}\right)=V(G)$.

Proof. We prove part (a) and part (b) by induction on t. If $P^{\infty}\left(S_{0}\right)=V(G)$, then there is nothing to prove. Hence, we may assume that $P^{\infty}\left(S_{0}\right) \neq V(G)$. Let $t \geq 0$ and suppose that S_{t} exists and $P^{\infty}\left(S_{t}\right) \neq V(G)$. Denote $M=P^{\infty}\left(S_{t}\right)$ and $\bar{M}=V(G) \backslash M$. Let $\mathcal{U}=\left\{u \mid u \in M\right.$ and $\left.N_{G}(u) \cap \bar{M} \neq \emptyset\right\}$. For each vertex $u \in \mathcal{U}$, since $N_{G}[u] \nsubseteq M$, we note that $d_{M}(u) \geq 1$ and $k+1 \leq d_{\bar{M}}(u) \leq k+l$. Moreover, for each $u \in \mathcal{U}$, we define
$L_{u}=N_{G}(u) \cap \bar{M}=\left\{u_{1}, u_{2}, \ldots, u_{d_{\bar{M}}(u)}\right\}, F_{u}=N_{G}\left(L_{u}\right) \backslash L_{u}$ and $F_{u}^{\prime}=F_{u} \backslash\{u\}$. Hence, $k+1 \leq\left|L_{u}\right| \leq k+l$.

We claim that for each vertex $x \in \bar{M}, N_{G}(x) \cap \mathcal{U} \neq \emptyset$. Otherwise, suppose to the contrary that there exists $y \in \bar{M}$ such that $N_{G}(y) \cap \mathcal{U}=\emptyset$. Then $S_{0} \cup\{y\}$ is also a packing, contradicting that S_{0} is a maximal packing. Now we present seven useful claims.

Claim 1. If H is an L-configuration of G, then $V(H) \subseteq M$.

Proof. By the choose of S_{0} and Lemma 3.7, we immediately obtain the Claim 1.
Claim 2. For each $u \in \mathcal{U}, L_{u}$ induces a clique in G.

Proof. Suppose x_{1} and x_{2} are two neighbors of u in L_{u} and u is observed by v in M. Then $x_{1} v, x_{2} v \notin E(G)$. If $x_{1} x_{2} \notin E(G)$, then $\left\{u, x_{1}, x_{2}, v\right\}$ induces a claw, a contradiction. Therefore, L_{u} induces a clique in G.

Claim 3. Let $u \in \mathcal{U}$. If $\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right| \geq k+l+2$, then for $S_{t+1}=S_{t} \cup\left\{u_{1}\right\}$, we have $\left|P^{\infty}\left(S_{t+1}\right)\right| \geq\left|P^{\infty}\left(S_{t}\right)\right|+k+l+2$.

Proof. Suppose $\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right| \geq k+l+2$. By Claim 2, L_{u} induces a clique in G. We define $S_{t+1}=S_{t} \cup\left\{u_{1}\right\}$ and we let j be the minimum integer such that $P^{j}\left(S_{t}\right)=P^{\infty}\left(S_{t}\right)$. Then, $N\left[u_{1}\right] \subseteq P^{0}\left(S_{t+1}\right) \subseteq P^{j}\left(S_{t+1}\right)$, and so $L_{u} \cup\{u\} \subseteq P^{j}\left(S_{t+1}\right)$. For each $u^{\prime} \in L_{u} \backslash\left\{u_{1}\right\}$, we have

$$
\left|N\left(u^{\prime}\right) \backslash P^{j}\left(S_{t+1}\right)\right| \leq k+l+1-\left|L_{u} \backslash u^{\prime}\right|-|\{u\}| \leq l \leq k .
$$

It means that $N\left[u^{\prime}\right] \subseteq P^{j+1}\left(S_{t+1}\right)$. Therefore,

$$
\left|P^{\infty}\left(S_{t+1}\right)\right| \geq\left|P^{\infty}\left(S_{t}\right)\right|+\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right| \geq\left|P^{\infty}\left(S_{t}\right)\right|+k+l+2
$$

Claim 4. Let $u \in \mathcal{U}$. If there exists a vertex $w \in F_{u} \cap \bar{M}$ such that $\left|L_{u}\right|-d_{L_{u}}(w) \leq k$ and $v w \notin E$ for each $v \in M \cap F_{u}$, then for $S_{t+1}=S_{t} \cup\{w\}$, we have $\left|P^{\infty}\left(S_{t+1}\right)\right| \geq$ $\left|P^{\infty}\left(S_{t}\right)\right|+k+l+2$.

Proof. Suppose there exists a vertex $w \in F_{u} \cap \bar{M}$ such that $\left|L_{u}\right|-d_{L_{u}}(w) \leq k$ and $v w \notin E$ for each $v \in M \cap F_{u}$. By Claim 2, L_{u} induces a clique in G. Since $N_{G}(w) \cap \mathcal{U} \neq \emptyset$, there exists $x \in \mathcal{U}$ such that $w \in L_{x}$. We claim that $L_{x} \cap L_{u}=\emptyset$. Otherwise, without loss of generality, assume $u_{1} \in L_{x} \cap L_{u}$. Then, $u_{1} x \in E$, and so $x \in F_{u} \cap M$. It leads to $x w \notin E$, a contradiction. Hence, $L_{x} \cap L_{u}=\emptyset$. We define $S_{t+1}=S_{t} \cup\{w\}$ and we let j be the
minimum integer such that $P^{j}\left(S_{t}\right)=P^{\infty}\left(S_{t}\right)$. Then, $N[w] \subseteq P^{0}\left(S_{t+1}\right) \subseteq P^{j}\left(S_{t+1}\right)$. By Claim 2, $L_{x} \subseteq P^{j}\left(S_{t+1}\right) \backslash P^{j}\left(S_{t}\right)$. Since $\left|L_{u}\right|-d_{L_{u}}(w) \leq k$, we have $L_{u} \subseteq P^{j+1}\left(S_{t+1}\right)$. Therefore, we obtain

$$
\left|P^{\infty}\left(S_{t+1}\right)\right| \geq\left|P^{\infty}\left(S_{t}\right)\right|+\left|L_{x}\right|+\left|L_{u}\right| \geq\left|P^{\infty}\left(S_{t}\right)\right|+2(k+1) \geq\left|P^{\infty}\left(S_{t}\right)\right|+k+l+2
$$

Claim 5. If there is a vertex $u \in \mathcal{U}$ such that $\left|L_{u}\right|=k+l$, part (a) follows as desired.
Proof. Suppose there is a vertex $u \in \mathcal{U}$ such that $\left|L_{u}\right|=k+l$. By Claim 2, L_{u} induces a clique in G. If there is a vertex $w \in F_{u}^{\prime}$ such that $d_{L_{u}}(w) \geq k+1$, then $G\left[\{u, w\} \cup L_{u}\right]$ is an L-configuration where $L=N_{G}(w) \cap L_{u}$, contradicting Claim 1 .

Now we assume that $d_{L_{u}}(w) \leq k$ for each $w \in F_{u}^{\prime}$. Then, $\left|F_{u}^{\prime}\right| \geq 2$. If there is a vertex $w \in F_{u}^{\prime}$ such that $w \in M$, without loss of generality, suppose $u_{1} \in L_{w}$. Since $\left|L_{w}\right| \geq k+1$ and $d_{L_{u}}(w) \leq k$, there is a vertex $w^{\prime} \in L_{w} \backslash L_{u}$. By Claim $2, u_{1} w^{\prime} \in E$. It leads to $d\left(u_{1}\right) \geq\left|L_{u} \backslash\left\{u_{1}\right\}\right|+\left|\left\{u, w, w^{\prime}\right\}\right| \geq k+l+2$, a contradiction. Now suppose $F_{u}^{\prime} \subseteq \bar{M}$. Then, $\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right|=\left|L_{u}\right|+\left|F_{u}^{\prime}\right| \geq k+l+2$. By Claim 3, part (a) follows as desired.

Claim 6. When $l=3$, if $\left|L_{u}\right|=k+2$ for each $u \in \mathcal{U}$, part (a) follows as desired.

Proof. When $l=3$, suppose $\left|L_{u}\right|=k+2$ for each $u \in \mathcal{U}$. By Claim 2, L_{u} induces a clique in G. Since G is a connected claw-free $(k+l+1)$-regular graph, $\left|N\left(u_{1}\right) \backslash\left(L_{u} \cup\{u\}\right)\right|=$ $k+l+1-(k+2)=2$, implying that $\left|F_{u}^{\prime}\right| \geq 2$. We claim that $\left|F_{u}^{\prime}\right| \geq 3$. Otherwise, we suppose $F_{u}^{\prime}=\left\{w_{1}, w_{2}\right\}$, implying that $d_{L_{u}}\left(w_{1}\right)=d_{L_{u}}\left(w_{2}\right)=k+2$. Then, $G\left[L_{u} \cup F_{u}\right]$ is an L-configuration where $L=L_{u}$, contradicting Claim 1. Hence, $\left|F_{u}^{\prime}\right| \geq 3$. If $F_{u}^{\prime} \cap M=\emptyset$, then $\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right|=\left|L_{u}\right|+\left|F_{u}^{\prime}\right| \geq k+l+2$. By Claim 3, part (a) follows as desired.

Now suppose that $F_{u}^{\prime} \cap M \neq \emptyset$. If there is a vertex $w \in F_{u}^{\prime} \cap M$ such that $d_{L_{u}}(w) \leq k$, without loss of generality, suppose that $u_{1} \in L_{w}$. Since $\left|L_{w}\right|=k+2$, there are two vertices $w^{\prime}, w^{\prime \prime} \in L_{w} \backslash L_{u}$. By Claim 2, $u_{1} w^{\prime}, u_{1} w^{\prime \prime} \in E$. It leads to $d\left(u_{1}\right) \geq\left|L_{u} \backslash\left\{u_{1}\right\}\right|+$ $\left|\left\{u, w, w^{\prime}, w^{\prime \prime}\right\}\right|=k+5$, a contradiction.

If there is a vertex $w \in F_{u}^{\prime} \cap M$ such that $d_{L_{u}}(w)=k+1$, without loss of generality, suppose $N_{L_{u}}(w)=\left\{u_{1}, u_{2}, \cdots, u_{k+1}\right\}$. Since $\left|L_{w}\right|=k+2$, there is a vertex $w^{\prime} \in L_{w} \backslash L_{u}$. By Claim 2, $\left\{u_{1}, u_{2}, \cdots, u_{k+1}, w^{\prime}\right\}$ induces a clique in G. Then, $G\left[L_{u} \cup\left\{u, w, w^{\prime}\right\}\right]$ is an L-configuration where $L=N_{G}(w) \cap L_{u}$, contradicting Claim 1 .

Finally, we consider the case that there is a vertex $w \in F_{u}^{\prime} \cap M$ such that $d_{L_{u}}(w)=k+2$. Let $F_{u}^{\prime \prime}=F_{u}^{\prime} \backslash\{w\}$. If $F_{u}^{\prime \prime} \cap M \neq \emptyset$, let $w^{\prime} \in F_{u}^{\prime \prime} \cap M$. By the above argument, we deduce
that $d_{L_{u}}\left(w^{\prime}\right)=k+2$. Hence, $G\left[L_{u} \cup\left\{u, w, w^{\prime}\right\}\right]$ is an L-configuration where $L=L_{u}$, contradicting Claim 1. Now suppose $F_{u}^{\prime \prime} \subseteq \bar{M}$. If $\left|F_{u}^{\prime \prime}\right|=1$, let $F_{u}^{\prime \prime}=\left\{w^{\prime \prime}\right\}$ and we have $d_{L_{u}}\left(w^{\prime \prime}\right)=k+2$. Similar to the above proof, we obtain a contradiction. If $\left|F_{u}^{\prime \prime}\right|=2$, let $F_{u}^{\prime \prime}=\left\{w_{1}, w_{2}\right\}$ and $w_{1}, w_{2} \in \bar{M}$. Since $d_{L_{u}}\left(w_{1}\right)+d_{L_{u}}\left(w_{2}\right)=k+2$, without loss of generality, we assume that $d_{L_{u}}\left(w_{1}\right) \geq 2$. Since $\left|L_{w}\right|=\left|L_{u}\right|=k+2$, we obtain $\left|L_{u}\right|-d_{L_{u}}\left(w_{1}\right) \leq k$, $u w_{1} \notin E$ and $w w_{1} \notin E$. By Claim 4, we have proved part (a). If $\left|F_{u}^{\prime \prime}\right| \geq 3$, then $\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right|=\left|L_{u}\right|+\left|F_{u}^{\prime \prime}\right| \geq k+5$. By Claim 3, part (a) follows as desired.

Claim 7. If there is a vertex $u \in \mathcal{U}$ such that $\left|L_{u}\right|=k+1$, part (a) follows as desired.

Proof. Suppose there is a vertex $u \in \mathcal{U}$ such that $\left|L_{u}\right|=k+1$. By Claim 2, L_{u} induces a clique in G. If $M \cap F_{u}^{\prime}=\emptyset$, then $F_{u}^{\prime} \subseteq \bar{M}$. Since G is a connected claw-free $(k+l+1)$ regular graph, $\left|N\left(u_{1}\right) \backslash\left(L_{u} \cup\{u\}\right)\right|=k+l+1-\left|L_{u}\right|=l$, implying that $\left|F_{u}^{\prime}\right| \geq l$. We claim that $\left|F_{u}^{\prime}\right| \geq l+1$. Otherwise, suppose $F_{u}^{\prime}=\left\{v_{1}, v_{2}, \cdots, v_{l}\right\}$, implying that $L_{u} \subseteq N_{G}\left[v_{i}\right]$ for each $i \in\{1,2, \cdots, l\}$. Then, $G\left[L_{u} \cup F_{u}\right]$ is an L-configuration where $L=L_{u}$, contradicting Claim 1. So, $\left|F_{u}^{\prime}\right| \geq l+1$ and $\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right|=\left|L_{u}\right|+\left|F_{u}^{\prime}\right| \geq k+l+2$. By Claim 3, part (a) follows as desired.

Now assume that $M \cap F_{u}^{\prime} \neq \emptyset$. If there is a vertex $w \in M \cap F_{u}^{\prime}$ such that $d_{L_{u}}(w) \leq$ $k-l+1$, without loss of generality, suppose that $u_{1} \in N_{G}(w) \cap L_{u}$. Since $\left|L_{w}\right| \geq k+1$, we have $\left|L_{w} \backslash L_{u}\right| \geq l$. Assume that $\left\{x_{1}, x_{2}, \cdots, x_{l}\right\} \subseteq\left(L_{w} \backslash L_{u}\right)$. By Claim 2, $u_{1} x_{i} \in E$ for each $i \in\{1,2, \cdots, l\}$. It leads to $d\left(u_{1}\right) \geq\left|L_{u} \backslash\left\{u_{1}\right\}\right|+\left|\left\{u, w, x_{1}, x_{2}, \cdots, x_{l}\right\}\right| \geq k+l+2$, a contradiction.

Then, we suppose $d_{L_{u}}(w) \geq k-l+2$ for each $w \in M \cap F_{u}^{\prime}$. If there exists a vertex $w_{1} \in F_{u} \cap \bar{M}$ such that $v w_{1} \notin E$ for each $v \in M \cap F_{u}$, by Claim 4, part (a) follows as desired. Otherwise, we can assume that for each $w_{1} \in F_{u} \cap \bar{M}$, there is a vertex $v \in M \cap F_{u}$ such that $v w_{1} \in E$. By Claim $2, N_{G}(v) \cap L_{u} \subseteq N_{G}\left(w_{1}\right) \cap L_{u}$, and so $d_{L_{u}}\left(w_{1}\right) \geq d_{L_{u}}(v) \geq k-l+2$. Hence, $d_{L_{u}}\left(w_{1}\right) \geq k-l+2$ for each $w_{1} \in F_{u}$. If $d_{L_{u}}(w)=k+1$ for each $w \in M \cap F_{u}^{\prime}$, then for each $w^{\prime} \in F_{u}^{\prime} \cap \bar{M}$, there is a vertex $w^{\prime \prime} \in M \cap F_{u}$ such that $w^{\prime \prime} w^{\prime} \in E$ and $d_{L_{u}}\left(w^{\prime \prime}\right)=k+1$. By the above argument, we deduce that $d_{L_{u}}\left(w^{\prime}\right) \geq d_{L_{u}}\left(w^{\prime \prime}\right)=k+1$ and $\left|F_{u}^{\prime}\right|=l$. Then, $G\left[L_{u} \cup F_{u}\right]$ is an L-configuration where $L=L_{u}$, contradicting Claim 1.

If there is a vertex $w \in M \cap F_{u}^{\prime}$ such that $d_{L_{u}}(w)=k$, without loss of generality, suppose that $N_{G}(w) \cap L_{u}=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$. Since $\left|L_{w}\right| \geq k+1$, there is a vertex $w_{1} \in L_{w} \backslash L_{u}$. By Claim 2, $u_{i} w_{1} \in E$ for each $i \in\{1,2, \cdots, k\}$. Let $F_{u}^{\prime \prime}=F_{u}^{\prime} \backslash\left\{w, w_{1}\right\}$. It is clear that $F_{u}^{\prime \prime} \neq \emptyset$. For $l=2$, let $w_{2} \in F_{u}^{\prime \prime}$. Then $d_{L_{u}}\left(w_{2}\right)=1<k=k-l+2$, contradicting that $d_{L_{u}}(x) \geq k-l+2$ for each $x \in F_{u}$. For $l=3$, if there is a vertex $w_{2} \in F_{u}^{\prime \prime}$ such that $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\} \subseteq N_{G}\left(w_{2}\right) \cap L_{u}$, we can similarly get a contradiction. Now we assume
that for each vertex $v^{\prime} \in F_{u}^{\prime \prime},\left\{u_{1}, u_{2}, \cdots, u_{k}\right\} \nsubseteq N_{G}\left(v^{\prime}\right) \cap L_{u}$. If $F_{u}^{\prime \prime} \cap M \neq \emptyset$, suppose $w_{2} \in F_{u}^{\prime \prime} \cap M$. Since $d_{L_{u}}\left(w_{2}\right) \geq k-l+2 \geq k-1 \geq l-1 \geq 2$, we have $N_{L_{u}}(w) \cap N_{G}\left(w_{2}\right) \neq \emptyset$. Let $x \in N_{L_{u}}(w) \cap N_{G}\left(w_{2}\right)$. Since $d(x)=k+4$ and Claim 2, $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\} \subseteq N_{G}\left(w_{2}\right) \cap L_{u}$, a contradiction. So, $F_{u}^{\prime \prime} \subseteq \bar{M}$. Let $y \in F_{u}^{\prime \prime}$. It is clear that $u y \notin E$. We claim that $w y \notin E$. Otherwise, suppose $w y \in E$. By Claim $2,\left\{u_{1}, u_{2}, \cdots, u_{k}\right\} \subseteq N_{G}(y) \cap L_{u}$, a contradiction. Hence, $\left|L_{u}\right|-d_{L_{u}}(y) \leq k$ and $v y \notin E$ for each $v \in M \cap F_{u}$. By Claim 4, part (a) follows as desired.

If there is a vertex $w \in M \cap F_{u}^{\prime}$ such that $d_{L_{u}}(w)=k-1$, then we obtain $l=3$ since $d_{L_{u}}(w)=k-1 \geq k-l+2$. Without loss of generality, assume that $N_{G}(w) \cap L_{u}=$ $\left\{u_{1}, u_{2}, \cdots, u_{k-1}\right\}$. Since $\left|L_{w}\right| \geq k+1$, there are two vertices $w_{1}, w_{2} \in L_{w} \backslash L_{u}$. By Claim $2, u_{i} w_{1}, u_{i} w_{2} \in E$ for each $i \in\{1,2, \cdots, k-1\}$. Let $F_{u}^{\prime \prime}=F_{u}^{\prime} \backslash\left\{w, w_{1}, w_{2}\right\}$. It is clear that $F_{u}^{\prime \prime} \neq \emptyset$. Then, for each $w^{\prime} \in F_{u}^{\prime \prime}$, we have $d_{L_{u}}\left(w^{\prime}\right) \leq 2$. Since $d_{L_{u}}\left(w^{\prime}\right) \geq k-l+2$ and $k \geq l$, we obtain $k=3$ and $d_{L_{u}}\left(w^{\prime}\right)=2$. If $F_{u}^{\prime \prime} \cap M=\emptyset$, then $F_{u}^{\prime \prime} \subseteq \bar{M}$. Let $z \in F_{u}^{\prime \prime}$. Then, $z u \notin E$. We claim that $z w \notin E$. Otherwise, suppose $z w \in E$. By Claim $2, z u_{1} \in E$. It leads to $d\left(u_{1}\right) \geq\left|L_{u} \backslash\left\{u_{1}\right\}\right|+\left|\left\{u, w, w_{1}, w_{2}, z\right\}\right| \geq k+5$, a contradiction. Since $\left|L_{u}\right|-d_{L_{u}}(z) \leq k$ and Claim 4, part (a) follows as desired. Then, we assume that $F_{u}^{\prime \prime} \cap M \neq \emptyset$ and $w_{3} \in F_{u}^{\prime \prime} \cap M$. If $w_{1} w_{3}, w_{2} w_{3} \in E$, then $d_{L_{u}}\left(w_{1}\right)=d_{L_{u}}\left(w_{2}\right)=4$ by Claim 2. So, $G\left[L_{u} \cup F_{u}\right]$ is an L-configuration where $L=L_{u} \cup\left\{w_{1}, w_{2}\right\}$, contradicting Claim 1. If $w_{1} w_{3}, w_{2} w_{3} \notin E$, then there are two vertices $w_{4}, w_{5} \in L_{w_{3}} \backslash L_{u}$. Since $w_{3} \in \mathcal{U}$ and Claim 2, we have $w_{4}, w_{5} \in F_{u}$. Then, $\left|L_{u}\right|+\left|F_{u} \cap \bar{M}\right| \geq\left|L_{u}\right|+\left|\left\{w_{1}, w_{2}, w_{4}, w_{5}\right\}\right| \geq k+l+2$. By Claim 3, part (a) follows as desired. Now we consider the last case. Without loss of generality, suppose $w_{1} w_{3} \in E$ and $w_{2} w_{3} \notin E$. Then, there is a vertex $w_{4} \in N\left(w_{3}\right) \backslash\left(L_{u} \cup\left\{w_{1}\right\}\right)$ such that $w_{4} \in \bar{M}$. By Claim 2, $\left\{u_{3}, u_{4}, w_{1}, w_{4}\right\}$ induces a clique in G. So, $d\left(w_{1}\right) \geq$ $\left|L_{u}\right|+\left|\left\{w, w_{2}, w_{3}, w_{4}\right\}\right|=8>k+l+1=7$, a contradiction.

Since $\left|L_{u}\right| \in\{k+1, k+2\}$ for $l=2$ and $\left|L_{u}\right| \in\{k+1, k+2, k+3\}$ for $l=3$, by Claims 5-7, part (a) follows as desired. Since $|V(G)|$ is finite, there exists an integer q such that $P^{\infty}\left(S_{q}\right)=V(G)$. Hence, we complete the proof.

We are now in a position to prove our main result, namely, Theorem 1.6.
Proof. Let G be a counterexample such that $|V(G)|$ is minimal. Let $S_{0}, S_{1}, \cdots, S_{q}$ be a sequence satisfying properties (a)-(b) in the statement of Lemma 3.8 with q as small as possible. By Lemma $3.8(\mathrm{~b})$, the set S_{q} is a k-PDS in G, and so $\gamma_{p, k}(G) \leq\left|S_{q}\right|$. Since S_{0} is a packing in G, we have that $\left|P^{0}\left(S_{0}\right)\right|=\left|N\left[S_{0}\right]\right|=(k+l+2)\left|S_{0}\right|$. If $q=0$,
then $(k+l+2)\left|S_{0}\right| \leq n$ and $\gamma_{p, k}(G) \leq\left|S_{0}\right| \leq \frac{n}{k+l+2}$, a contradiction. Now we suppose that $q \geq 1$. By Lemma 3.8 (a), $\left|S_{q}\right|=\left|S_{0}\right|+q$. By our choice of q, we decuce that $\left|P^{\infty}\left(S_{t+1}\right)\right| \geq\left|P^{\infty}\left(S_{t}\right)\right|+k+l+2$ for $0 \leq t \leq q-1$. Thus,

$$
n=\left|P^{\infty}\left(S_{q}\right)\right| \geq\left|P^{0}\left(S_{0}\right)\right|+q(k+l+2)=\left(\left|S_{0}\right|+q\right)(k+l+2)=\left|S_{q}\right|(k+l+2) .
$$

Hence, $\gamma_{p, k}(G) \leq\left|S_{q}\right| \leq \frac{n}{k+l+2}$, a contradiction. This proves the desired upper bound.
Next, we show this bound is tight. For positive integers $k \geq l$ and t, we define the graph $C_{k, t}$ as follows. Take t disjoint copies $C_{i} \cong A_{l}$ and link any two copies $\left(C_{i}, C_{i+1}\right)$ with l edges, where the subscripts are to be read as integers modulo t and where $i=1,2, \cdots, t$. (see Figure 16). Then, $C_{k, t}$ is a connected claw-free $(k+l+1)$-regular graph of order $n=t(k+l+2)$. Suppose that S is an arbitrary k-PDS in $C_{k, t}$. It is easy to check that C_{i} contains a k-fort of G, where $i=1,2, \cdots, t$. By Proposition 2.2, $\left|S \cap V\left(C_{i}\right)\right| \geq 1$ for each $i \in\{1,2, \cdots, t\}$. It means that $\gamma_{p, k}\left(C_{k, t}\right) \geq t=\frac{n}{k+l+2}$. Since the above proof, we obtain $\gamma_{p, k}\left(C_{k, t}\right) \leq \frac{n}{k+l+2}$. Hence, $\gamma_{p, k}\left(C_{k, t}\right)=\frac{n}{k+l+2}$.

Figure 16. $C_{k, t}$ for $l=3, k=3$ and $t=2$

4 Conjecture and Question

We pose the following conjecture which is still open.
Conjecture 4.1. For $l \geq 1$ and $k \geq l$, if G is a connected claw-free $(k+l+1)$-regular graph of order n, then $\gamma_{p, k}(G) \leq \frac{n}{k+l+2}$ and the bound is tight.

Remark that if $l=1$, then the conjecture is true by the result of Chang et al. in [6]. If $l \in\{2,3\}$, the conjecture is true by our Theorem 1.6. When $l \geq 4$, the conjecture is still open. However, note that the bound of Conjecture 4.1 is tight since we can generalize the graph $C_{k, t}$ (defined in Section 3) to achieve this bound.

Now we pose the following question.
Question 4.2. For $r \geq 3$, let G be a connected claw-free r-regular graph of order n. Determine the smallest positive value, $k_{\text {min }}(r)$, of k such that $\gamma_{p, k}(G) \leq \frac{n}{r+1}$.

By Observations 3.2 and 3.3 , we deduce that $k_{\min }(r) \geq\left\lfloor\frac{r}{2}\right\rfloor$. We remark that if Conjecture 4.1 is true, the answer of Question 4.2 is $k_{\text {min }}(r)=\left\lfloor\frac{r}{2}\right\rfloor$.

References

[1] A. Aazami, Domination in graphs with bounded propagation: Algorithms, formulations and hardness results, J. Comb. Optim., 19 (2010), pp. 429-456.
[2] A. Aazami and K. Stilp, Approximation algorithms and hardness for domination with propagation, SIAM J. Discrete Math., 23 (2009), pp. 1382-1399.
[3] T. L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa, Power system observability with minimal phasor measurement placement, IEEE Trans. Power Systems, 8 (1993), pp. 707-715.
[4] K. F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, and V. Vasilevska, Nordhaus-Gaddum problems for power domination, Discrete Appl. Math., 251 (2018), pp. 103-113.
[5] C. Bozeman, B. Brimkov, C. Erickson, D. Ferrero, M. Flagg, and L. Hogben, Restricted power domination and zero forcing problems, J. Comb. Optim., 37 (2019), pp. 935-956.
[6] G. J. Chang, P. Dorbec, M. Montassier, and A. Raspaud, Generalized power domination of graphs, Discrete Appl. Math., 160 (2012), pp. 1691-1698.
[7] P. Dorbec, M. A. Henning, C. Löwenstein, M. Montassier, and A. RasPaud, Generalized power domination in regular graphs, SIAM J. Discrete Math., 27 (2013), pp. 1559-1574.
[8] P. Dorbec and S. Klavžar, Generalized power domination: propagation radius and sierpiński graphs, Acta Appl. Math., 134 (2014), pp. 75-86.
[9] P. Dorbec, M. Mollard, S. Klavžar, and S. Špacapan, Power domination in product graphs, SIAM J. Discrete Math., 22 (2008), pp. 554-567.
[10] M. Dorfling and M. A. Henning, A note on power domination in grid graphs, Discrete Appl. Math., 154 (2006), pp. 1023-1027.
[11] O. Favaron, M. Henning, C. Mynhart, and J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory, 34 (2000), pp. 9-19.
[12] D. Ferrero, L. Hogben, F. H. Kenter, and M. Young, The relationship between k-forcing and k-power domination, Discrete Math., 341 (2018), pp. 17891797.
[13] J. Guo, R. Niedermeier, and D. Raible, Improved algorithms and complexity results for power domination in graphs, Algorithmica, 52 (2008), pp. 177-202.
[14] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, Domination in graphs applied to electric power networks, SIAM J. Discrete Math., 15 (2002), pp. 519-529.
[15] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Parameterized power domination complexity, Inform. Process. Lett., 98 (2006), pp. 145-149.
[16] C.-S. Liao and D.-T. Lee, Power domination problem in graphs, Lecture Notes in Comput. Sci., 3595 (2005), pp. 818-828.
[17] C. Lu, R. Mao, and B. Wang, Power domination in regular claw-free graphs, Discrete Appl. Math., 284 (2020), pp. 401-415.
[18] L. Mili, T. Baldwin, and A. Phadke, Phasor measurement placement for voltage and stability monitoring and control, In Proceedings of the EPRI-NSF Workshop on Application of Advanced Mathematics to Power Systems, San Francisco, CA, 1991.
[19] Z. Min, L. Kang, and G. J. Chang, Power domination in graphs, Discrete Math., 306 (2006), pp. 1812-1816.
[20] C. Wang, L. Chen, and C. Lu, k-power domination in block graphs, J. Comb. Optim., 31 (2016), pp. 865-873.
[21] G. Xu and L. Kang, On the power domination number of the generalized petersen graphs, J. Comb. Optim., 22 (2011), pp. 282-291.
[22] G. Xu, L. Kang, E. Shan, and M. Zhao, Power domination in block graphs, Theoret. Comput. Sci., 359 (2006), pp. 299-305.

[^0]: *Supported in part by National Natural Science Foundation of China (No. 11871222) and Science and Technology Commission of Shanghai Municipality (Nos. 18dz2271000, 19JC1420100)
 ${ }^{\dagger}$ Corresponding author.

