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Abstract

A polynomial is said to be unimodal if its coefficients are non-decreasing and then non-

increasing. The domination polynomial of a graph G is the generating function of the number

of domination sets of each cardinality in G, and its coefficients have been conjectured to be uni-

modal. In this paper we will show the domination polynomial of paths, cycles and complete

multipartite graphs are unimodal, and that the domination polynomial of almost every graph is

unimodal with mode ⌈n

2
⌉.

1 Introduction

Domination in graphs has been investigated both for applied and theoretical reasons. A subset of

vertices S of a (finite, undirected) graph G = (V,E) is a dominating set iff every vertex of G is either

in S or adjacent to a vertex of S (equivalently, for any vertex v of G, the closed neighbourhood N [v] of v

has nonempty intersection with S). Much of the attention has been directed at the domination number

of G, γ(G), the minimum cardinality of a dominating set of G, but overall, the study of dominating

sets in graphs is quite extensive (see, for example, [9]).

As for many graph properties, one can more thoroughly examine domination via generating func-

tions. Let di(G) denote be the number of dominating sets of a graphG of cardinality i. The domination

polynomial D(G, x) of G is defined as

D(G, x) =

|V (G)|
∑

i=γ(G)

di(G)xi.

(See [1], for example, for a thorough discussion of domination polynomials.)
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A natural question for any graphs polynomial is whether or not the sequence of coefficients is

unimodal: a polynomial with real coefficients a0 + a1x + · · · + anx
n is said to be unimodal if there

exists 0 ≤ k ≤ n, such that

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak−1 ≥ · · · ≥ an

(in such a case, we call the location(s) of the largest coefficient the mode). To show a polynomial is

unimodal, it has often been helpful (and easier) to show a stronger condition, called log-concavity,

holds, as the latter does not require knowing where the peak might be located. A polynomial is log-

concave if for every 1 ≤ i ≤ n− 1, a2i ≥ ai−1ai+1. It is not hard to see that a polynomial with positive

coefficients that is log-concave is also unimodal.

A variety of techniques have been used to show many graph polynomials are log-concave, and hence

unimodal, including:

• real analysis (log-concavity of the matching polynomial [10] and the independence polynomial of

claw-free graphs [5]),

• homological algebra (June Huh’s proof of the log concavity of chromatic polynomials), and

• combinatorial arguments (the arguments of Krattenthaler [13] and Hamidoune [8] that reproved

the log concavity of matching polynomials and independence polynomial of claw-free graphs,

respectively, as well as Horrocks’ [11] result that the dependent k-set polynomial is log-concave

(a subset of vertices is dependent iff it contains an edge of the graph).

The domination polynomial of every graph of order at most 8 is log-concave. However the domi-

nation polynomial of the graph on 9 vertices in Figure 1.1 is

D(G, x) = x9 + 9x8 + 35x7 + 75x6 + 89x5 + 50x4 + 7x3 + x2

which is not log-concave as d3(G)2 = 49 but d4(G)d2(G) = 50. Although not all domination polyno-

mials are log-concave they are conjectured to be unimodal [2].

Figure 1.1: The only graph of order 9 which is not log-concave
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Conjecture 1.1. [2] The domination polynomial of any graph is unimodal.

To date, only a little progress has been made on Conjecture 1.1. In the following theorem, kG denotes

the disjoint union of k copies of G, and G◦H denotes the corona [7] of two disjoint graphs G and H is

formed from G and |V (G)| copies of H , one for each vertex of G, by joining v ∈ V (G) to every vertex

in the corresponding copy of H .

Theorem 1.2. [3] For n ≥ 1 and any graph G:

(i) The friendship graph Fn
∼= K1 ∨ nK2 is unimodal.

(ii) The graph formed by adding a universal vertex to nK2 ∪K1 is unimodal.

(iii) G ◦Kn is log-concave and hence unimodal.

(iv) G ◦ P3 is log-concave and hence unimodal.

In this paper we extend the families for which unimodality of the domination polynomial is known

to paths, cycles and complete multipartite graphs. More significantly, we will also show almost all

domination polynomials are unimodal with mode ⌈n
2 ⌉.

2 Paths, Cycles and Complete Multipartite Graphs

We say a graph contains a simple k-path if there exists k vertices of degree two which induce a path in

G. Two families of graphs which contains simple k-paths are paths Pn and cycles Cn (where k = n− 2

and n− 1, respectively).

Theorem 2.1. [12] Suppose G is a graph with vertices u, v, w that form a simple 3-path. Then

D(G, x) = x(D(G/u, x) +D(G/u/v, x) +D((G/u/v/w, x))

where G/u is the graph formed by joining every pair of neighbours of u and then deleting u and

G/u/v = (G/u)/v. �

There is no useful closed formula for the coefficients of D(Pn, x) and D(Cn, x). However consider

Table 1, which displays D(Pn, x), D(Cn, x), and their respective modes. Note that for both paths and

cycles, consecutive modes differ by at most one in these small cases. We will now show that these

observations for small n are sufficient to prove that the domination polynomials of all paths and cycles

are unimodal.
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n D(Pn, x) mn

1 x 1
2 x2 + 2x 1
3 x3 + 3x2 + x 2
4 x4 + 4x3 + 4x2 3

n D(Cn, x) mn

3 x3 + 3x2 + 3x 2
4 x4 + 4x3 + 6x2 2
5 x5 + 5x4 + 10x3 + 5x2 3
6 x6 + 6x5 + 15x4 + 14x3 + 3x2 4

Table 1: Domination polynomials for paths and cycle of small order

Theorem 2.2. Suppose we have a sequence of polynomials (fn)n≥1 with non-negative coefficients

which satisfy

fn = x(fn−1 + fn−2 + fn−3) (1)

for n ≥ 4. Let Pn denote the property that for all i ∈ {1, 2, . . . , n}, fi is unimodal with mode mi and

if i ≥ 2, 0 ≤ mi − mi−1 ≤ 1. Assume P4 holds. Then Pn holds for all n ≥ 1 (and so each fn is

unimodal).

Proof. We will prove our assertion via induction on n ≥ 4. Our base case is satisfied by the assumption

that P4 holds. For some k ≥ 4, suppose Pk holds, and so Pj holds for all 1 ≤ j ≤ k. To show Pk+1 holds

it suffices to show fk+1 is unimodal with mode mk+1 = mk or mk + 1. By our inductive hypothesis,

fk, fk−1, and fk−2 are all unimodal with modes mk, mk−1, and mk−2 respectively. Additionally,

mk−1 ≤ mk ≤ mk−1 + 1 and mk−2 ≤ mk−1 ≤ mk−2 + 1. For simplicity let mk = m. Note that

m− 2 ≤ mk−2 ≤ mk−1 ≤ mk = m. Furthermore for each n ≥ 1 let

fn =

∞
∑

j=0

an,jx
j .

Therefore for n = k, k − 1, k − 2 we have

an,0 ≤ an,1 ≤ · · · ≤ an,m−2 and an,m ≥ an,m+1 ≥ · · · .

By the recursive relation (1) we see that ak+1,0 = 0 and for each j ≥ 1

ak+1,j = ak,j−1 + ak−1,j−1 + ak−2,j−1.

Therefore

0 = ak+1,0 ≤ ak+1,1 ≤ · · · ≤ ak+1,m−1 and ak+1,m+1 ≥ ak+1,m+2 ≥ · · · .

We will now show ak+1,m−1 ≤ ak+1,m. Consider the following two cases:
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Case 1: m− 1 ≤ mk−2 ≤ m

As m− 1 ≤ mk−2 then the modes of fk, fk−1, and fk−2 are each at least m− 1. Thus ak,m−2 ≤

ak,m−1, ak−1,m−2 ≤ ak−1,m−1, and ak−2,m−2 ≤ ak−2,m−1. Therefore

ak+1,m−1 = ak,m−2 + ak−1,m−2 + ak−2,m−2

≤ ak,m−1 + ak−1,m−1 + ak−2,m−1

= ak+1,m.

Case 2: mk−2 = m− 2

By the recursive relation the polynomials follow we obtain ak,0 = 0 and ak,j = ak−1,j−1+ak−2,j−1+

ak−3,j−1 for each j ≥ 1. Note ak,m ≥ ak,m−1 because the mode of fk is m. Therefore

ak−1,m−1 + ak−2,m−1 + ak−3,m−1 ≥ ak−1,m−2 + ak−2,m−2 + ak−3,m−2.

Let the mode of fk−3 be mk−3. By our inductive hypothesis mk−3 ≤ mk−2 = m − 2, and therefore

ak−3,m−1 ≤ ak−3,m−2. Furthermore

ak−1,m−1 + ak−2,m−1 ≥ ak−1,m−2 + ak−2,m−2.

Again the mode of fk is m so ak,m−1 ≥ ak,m−2. Hence

ak+1,m−1 = ak,m−2 + ak−1,m−2 + ak−2,m−2

≤ ak,m−1 + ak−1,m−1 + ak−2,m−1

= ak+1,m.

As ak+1,m−1 ≤ ak+1,m then fk+1 is unimodal with mode at either m or m + 1. Therefore Pk+1

holds and by induction Pn holds for all n ≥ 1.

Note that for a vertex u in either Pn or Cn, Pn/u ∼= Pn−1 and Cn/u ∼= Cn−1. Thus by Theorem

2.1 paths and cycles follow the recursion relation (1). It follows from Theorem 2.2 and Table 1 that

the following corollary holds.

Corollary 2.3. For n ∈ N and n ≥ 3, Pn and Cn are unimodal. �
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We remark that Theorem 2.2 can be leveraged to show many other families of graphs which contain

simple k-paths are unimodal. For example, let Ln denote a path on n− 2 vertices with a K2 joined to

one of the leaves (See Figure 2.1).

. . .

Figure 2.1: The graph Ln

For n ≥ 5, Ln contains a simple n−4-path and therefore by Theorem 2.1 follows the recurrence relation

(1). Furthermore, Table 2 shows that the base condition in Theorem 2.2 holds for four consecutive

values of n – 4,5,6 and 7. It follows that Ln is unimodal for n ≥ 4.

n D(Ln, x) mn

4 x4 + 4x3 + 5x2 + x 2
5 x5 + 5x4 + 9x3 + 6x2 3
6 x6 + 6x5 + 14x4 + 14x3 + 4x2 4
7 x7 + 7x6 + 20x5 + 27x4 + 15x3 + x2 4

Table 2: Domination polynomials for graphs Ln.

We shall now show complete multipartite graphs are unimodal. We shall rely on an important result

of Alikhani et al. that shows that the coefficients of the domination polynomial are non-decreasing up

to n
2 .

Proposition 2.4. [2] Let G be a graph of order n. Then for every 0 ≤ i < n
2 , we have di(G) ≤ di+1(G).

We are now ready to proceed.

Theorem 2.5. For n1, . . . , nk ∈ N, the complete multipartite graph Kn1,...,nk
is unimodal.

Proof. Set G = Kn1,...,nk
. Consider any subset of vertices S ⊆ V (G) which is dependent. Therefore

S contains two adjacent vertices u and v. Note that as G is complete multipartite, each of u and v

are adjacent to every vertex in G except the other vertices in their respective parts. As u and v are

adjacent, they are not in the same part of G and hence S dominate G. Let f(x) = fG(x) denote the

dependent polynomial of G (the generating function of the number of dependent sets of cardinality k

in G). As mentioned earlier, f(x) is log-concave [11]. Furthermore

6



D(G, x) = f(x) +

k
∑

i=1

xni ,

as the only dominating sets which are not dependent sets is all the vertices of a part of G. Let G have

n vertices. By Proposition 2.4 di(G) ≤ di+1(G) for every 0 ≤ i < n
2 . If all nj < n

2 , then di(G) = fi

for all i ≥ n
2 where fi is the coefficient of xi in f(x). Furthermore as f(x) is log-concave then f(x) as

unimodal and hence D(G, x) is unimodal. So suppose there exists some nj ≥ n
2 . Note that there is

either exactly one nj ≥
n
2 or G ∼= Kn

2
,n
2
.

First suppose there is exactly one nj ≥
n
2 . Then di(G) = fi for all i ≥

n
2 except for dj(G) = fj +1.

As the sequence f(x) is log-concave and hence unimodal then the only way for the sequence to not

be unimodal is for fj = fj+1 < fj+2 or fj−2 > fj−1 = fj . However each case would contradict f(x)

being log-concave.

Now suppose G ∼= Kn

2
,n
2
. Note that every subset of vertices which contains at least n

2 + 1 vertices

is a dominating set as it necessarily contains vertices from both parts. Therefore di(G) =
(

n
i

)

for all

i ≥ n
2 + 1. Furthermore di(G) is non-increasing for i ≥ n

2 + 1 and hence G is unimodal.

3 Almost all graphs are unimodal

In this section we will show that the domination polynomial of almost all graphs is unimodal with

mode ⌈n
2 ⌉, and hence that any counterexamples to unimodality are relatively rare.

We will now show graphs with minimum degree at least 2 log2(n) are unimodal. We begin with a

few preliminary definitions and observations. For a graph of order n, let ri(G) proportion of subsets

of vertices of G with cardinality i which are dominating. That is,

ri(G) =
di(G)
(

n
i

) .

Note that 0 ≤ ri(G) ≤ 1. For all 1 ≤ i ≤ n, let Di(G) denote the collection of dominating sets of

cardinality exactly i. Note for any dominating set S ∈ Di(G) and any vertex v ∈ V − S, S ∪ {v} ∈

Di+1(G). More specifically if we let Ai+1 = {(v, S) : S ∈ Di+1(G), v ∈ S} and Bi = {(v, S) : S ∈

Di(G), v /∈ S} there is an injective mapping f : Bi → Ai+1 defined as f(v, S) = (v, S ∪{v}). Therefore

|Ai+1| ≥ |Bi| and equivalently (i+ 1)di+1(G) ≥ (n− i)di(G). Furthermore

ri+1(G) =
di+1(G)
(

n
i+1

) ≥
(n− i)di(G)

(i+ 1)
(

n
i+1

) =
di(G)
(

n
i

) = ri(G).

This allow us to obtain the following lemma.
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Lemma 3.1. Let G be a graph on n vertices, and k ≥ n
2 . If rk(G) ≥ n−k

k+1 then di+1(G) ≤ di(G) for

all i ≥ k. In particular if k = ⌈n
2 ⌉ then G is unimodal with mode ⌈n

2 ⌉.

Proof. Set di = di(G) and ri = ri(G) for all i. Note that

di+1 ≤ di ⇔ ri+1

(

n

i+ 1

)

≤ ri

(

n

i

)

⇔
ri+1

ri
≤

i+ 1

n− i
⇔

ri
ri+1

≥
n− i

i + 1
.

Therefore for each i, if ri ≥
n−i
i+1 then di+1 ≤ di as ri+1 ≤ 1. So suppose for some k ≥ n

2 , rk(G) ≥ n−k
k+1 .

Then for any i ≥ k we have

ri(G) ≥ rk(G) ≥
n− k

k + 1
≥

n− i

i+ 1

and hence di+1 ≤ di. Finally, if k = ⌈n
2 ⌉ then together with Proposition 2.4 we have

d1 ≤ d2 ≤ · · · ≤ d⌈n

2
⌉ ≥ · · · ≥ dn.

Theorem 3.2. If G is a graph with n vertices with minimum degree δ(G) ≥ 2 log2(n) then D(G, x) is

unimodal with mode at ⌈n
2 ⌉.

Proof. Set δ = δ(G), di = di(G) and ri = ri(G) for all i. Let ni denote the number of non-dominating

subsets S ⊆ V (G) of cardinality i. Note that ni =
(

n
i

)

− di and hence

ri = 1−
ni
(

n
i

) .

We will now show ni ≤ n
(

n−δ−1
i

)

. For each vertex v ∈ V let ni(v) denote the number of subsets

sets which do not dominate v. A subset S does not dominate v if and only if it does not contain any

vertices in N [v]. Therefore ni(v) simply counts every subset of V (G) with i vertices which omits N [v].

Hence ni(v) =
(

n−deg(v)−1
i

)

. Furthermore any non-dominating set of order i must not dominate some

vertex of G. Therefore

ni ≤
∑

v∈V

ni(v) =
∑

v∈V

(

n− deg(v)− 1

i

)

≤
∑

v∈V

(

n− δ − 1

i

)

= n

(

n− δ − 1

i

)

,

and
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ri =1−
ni
(

n
i

)

≥1−
n
(

n−δ−1
i

)

(

n
i

)

≥1−
n(n− δ − 1)!

i!(n− δ − 1− i)!
·
i!(n− i)!

n!

≥1−
(n− 1− δ)!

(n− 1)!
·

(n− i)!

(n− i− δ − 1)!

≥1−
(n− i)(n− i− 1)(n− i− 2) · · · (n− i− δ)

(n− 1)(n− 2) · · · (n− δ)
.

Note that for any k ≥ 0, n−i−k
n−k

≥ n−i−k−1
n−k−1 holds as i ≥ 0. Therefore

n− i

n
≥

n− i− 1

n− 1
≥ · · · ≥

n− i− δ

n− 1− δ
.

and so

ri ≥ 1− (n− i)

(

n− i

n

)δ

.

Now let f(x, δ) = 1− (n − x)
(

n−x
n

)δ
and g(x) = n−x

x+1 = n+1
x+1 − 1 for x, δ ∈ [0, n]. Note that f(x, δ) is

an increasing function of both x and δ and g(x) is also a decreasing function of x. By Lemma 3.1, it

suffices to show f(n2 , 2 log2(n)) ≥ g(n2 ). Note

f
(n

2
, 2 log2(n)

)

= 1−
n

2

(

1

2

)2 log
2
(n)

= 1−
n

2n2
= 1−

1

2n

and

g
(n

2

)

=
n
2

n
2 + 1

=
n

n+ 2
= 1−

2

n+ 2
.

Therefore f(n2 , 2 log2(n)) ≥ g(n2 ) if and only if 2
n+2 ≥ 1

2n which holds for all n ≥ 1.

Let G(n, p) denote the Erdös-Rényi random graph model on n vertices (each edge exists is inde-

pendent present with probability p).

Theorem 3.3. Fix p ∈ (0, 1). Let Gn ∈ G(n, p). Then with probability tending to 1, D(Gn, x) is

unimodal with mode ⌈n
2 ⌉.

Proof. The degree of any vertex v of Gn has a binomial distribution Xv with N = n− 1, with mean

p(n− 1). From Hoeffding’s well known bound on the tail of a binomial distribution, it follows that for
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any fixed ε > 0,

Prob (Xv ≤ (p− ε)(n− 1)) ≤ e−2ε2(n−1).

Thus

Prob (∪vXv ≤ (p− ε)(n− 1)) ≤ ne−2ε2(n−1) → 0.

It follows that for sufficiently large n, δ(Gn) > (p− ε)(n− 1) > 2 log2(n) with probability tending to 1.

By Theorem 3.2, it follows that, with probability tending to 1, D(Gn, x) is unimodal with mode ⌈n
2 ⌉.

4 Open Problem

Theorem 3.2 shows Conjecture 1.1 is true for graphs with sufficiently high minimum degree. However,

the conjecture remains elusive for graphs with low minimum degree, and in particular for trees. Another

interesting family of graphs to investigate are graphs with universal vertices. We verified using Maple

all graphs of order up to 10 which have universal vertices are unimodal, with mode at either ⌈n
2 ⌉ or

⌈n
2 ⌉+1. If a graph G with n vertices has a universal vertex then di(G) ≥

(

n−1
i−1

)

and hence ri(G) ≥ i
n
.

It is possible a technique similar to the one used in Theorem 3.2 can yield some results for this class.

From a well known theorem of Newton, if a polynomial f with positive coefficients has all real

roots then f is log-concave and hence unimodal, and Darroch [6] further showed that mode of such an

f is at either
⌊

f ′(1)
f(1)

⌋

or
⌈

f ′(1)
f(1)

⌉

. In [4] the authors defined the average size of a dominating set in a

graph G as avd(G) = D′(G,1)
D(G,1) . They also showed n

2 ≤ avd(G) ≤ n+1
2 for graphs with minimum degree

δ ≥ 2 log2(n). Theorem 3.2 implies that the mode of D(G, x) is at ⌈avd(G)⌉ or ⌊avd(G)⌋ for graphs

with minimum degree δ ≥ 2 log2(n). This leads us to the following question: For a graph G, is the

mode of D(G, x) always at ⌈avd(G)⌉ or ⌊avd(G)⌋? If not, how much can the mode and avd(G) differ?

Finally, Proposition 2.4 shows that up the half-way mark, the coefficients of the domination poly-

nomial are non-decreasing, so that any problem with unimodality must occur after this point. We can

show that if a graph has no isolated vertices, then from ⌊ 3n
4 ⌋, the coefficients are non-increasing. It

would certainly be worthwhile to investigate further the last half of the coefficients sequence for graphs

with isolated vertices, and the middle quarter for those that do not.
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